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Non-Hermitian systems with specific forms of Hamiltonians can exhibit novel phenomena. However, it is
difficult to study their quantum thermodynamical properties. In particular, the calculation of work statistics can
be challenging in non-Hermitian systems due to the change of state norm. To tackle this problem, we modify the
two-point measurement method in Hermitian systems. The modified method can be applied to non-Hermitian
systems which are Hermitian before and after the evolution. In Hermitian systems, our method is equivalent to
the two-point measurement method. When the system is non-Hermitian, our results represent a projection of
the statistics in a larger Hermitian system. As an example, we calculate the work statistics in a non-Hermitian
Su-Schrieffer-Heeger model. Our results reveal several differences between the work statistics in non-Hermitian

systems and the one in Hermitian systems.
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I. INTRODUCTION

Ideal physical systems are conceptually Hermitian, but
realistic systems are sometimes non-Hermitian because of
their interactions with their environments. Non-Hermitian
systems occur in various fields of physics and are exper-
imentally accessible [1-10]. Many fascinating phenomena
related to non-Hermiticity were discovered in, e.g., topo-
logical systems [11-15], many-body systems [16,17], adia-
batic passage [18-23], nonreciprocal scattering [24-26], and
localization-delocalization transitions [27-30]. Many works
have introduced non-Hermiticity to well-known systems,
especially those already shown to have novel properties
in the Hermitian cases. Among these systems, the non-
Hermitian Su-Schrieffer-Heeger (SSH) model [31-35] plays
an important role, since it exhibits both a P7T (parity-time)-
symmetry-breaking phase transition and a topological phase
transition. However, these non-Hermitian systems also bring
problems which are not considered in Hermitian quantum
mechanics.

One important problem is the quantum thermodynami-
cal description of non-Hermitian systems. Previous works in
quantum thermodynamics [36—40] mainly considered Her-
mitian systems, so that the norm of the state is usually
assumed to be conserved. However, such assumption is not
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always valid in non-Hermitian systems, which can cause trou-
bles in specific thermodynamics studies, e.g., work statistics
[41-50]. Along with the typical complex-eigenvalue problem
in non-Hermitian systems, two main problems can arise in
non-Hermitian work statistics. First, many quantum thermo-
dynamics results are based on different kinds of trajectories,
which refer to processes with certain probability. The def-
inition of trajectories in non-Hermitian systems becomes
ambiguous because the probability of a trajectory usually
changes with time. Second, the change of the state norm
can give rise to entropy changes, so that we need to distin-
guish work from heat flow. These problems can be solved
by introducing a biorthogonal basis if all the eigenvalues are
real [51,52], but the problems become complicated when the
system passes through an exceptional point (EP). Thus, a more
general method is necessary to understand the thermodynamic
work in non-Hermitian systems.

Here we study the work statistics in non-Hermitian systems
which are Hermitian at the initial and the final times. To have
a good definition of energy change, we consider systems with
non-Hermitian Hamiltonians only during their evolution. Our
main goal is to solve the trajectory problem and the entropy
problem caused by state norm change. To avoid these two
problems, we purify the state of the system and define the
statistics in an enlarged Hilbert space. After the state purifi-
cation, the work statistics can be defined in a non-Hermitian
system. Our method is then compared to the ordinary two-
point measurement method, and is shown to be a projection
of Hermitian work statistics. As an example to illustrate
the properties of non-Hermitian work statistics, we calculate
the work statistics in the non-Hermitian SSH model. The
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distributions of work on the two sides of the EP are compared.
We also introduce some additional non-Hermitian terms to
show that work statistics can be significantly modified by a
negligible variation in the spectrum.

This paper is organized as follows. In Sec. I we summarize
the difficulties in non-Hermitian work statistics, and present
our method. In Sec. III, as an example,the work statistics of
the non-Hermitian SSH model is derived. Section IV presents
our conclusions.

II. WORK STATISTICS IN NON-HERMITIAN SYSTEMS
A. Model considered

We consider a non-Hermitian system which consists of
a Hermitian part Hy = H, and a non-Hermitian part H,, #

H . The non-Hermitian part is assumed to vanish at the
beginning time ¢t = 0 and the ending time ¢ = ;. With this
assumption, the energy and the thermal equilibrium state
can be well defined at these two time points. The sys-
tem is assumed to be in the thermal equilibrium state py =
exp(—pBHy)/Tr[exp(—BHy)] at the beginning time, where 8 is
the inverse of the temperature. This thermal state is achieved
by coupling to an environment, but we assumed the coupling
strength to be negligible during the following evolution. When
the non-Hermitian part is on, the system evolves according to
the following relation (setting s = 1) [53]:

U)poU' (1)
= 22Dpo” 1) 1
p) N, (1)

where U (t) = T, exp{—i f(; ds[H.w(s) + Hyl} is the evolution
operator, N,(t) = Tr[U (t)poU ()] is the normalization fac-
tor, and the term T is a time-ordered matrix. Note that the
approach in Eq. (1) describes the non-Hermiticity of open
systems, which is different from the one for closed non-
Hermitian systems [51,52,54] (also see Appendix A). To focus
on the work related to non-Hermitian process, we assume H)
to be time independent. This dynamics corresponds to the
projection of the system evolution onto a set of incomplete
basis, as shown in Fig. 1(a). Although the total system is in a
Hermitian space, we can observe it in a smaller state space and
describe the dynamics with the non-Hermitian evolution in
Eq. (1). In spite of the dynamical equivalence, this description
brings trouble to the work statistics in non-Hermitian systems.
Both theoretical [42-48] and experimental [55,56] approaches
for studying work statistics depend on trajectories, which de-
scribe physical or virtual processes with certain properties.
The probabilities of trajectories are not conserved in non-
Hermitian systems, which makes the definition of trajectories
difficult in these systems. Now we discuss related problems
and the way to solve these.

B. Difficulties of applying the two-point measurement method

The two-point measurement method [38,44,45,50] is a
widely used tool in work statistics. However, such a method
cannot be directly applied to non-Hermitian systems. There-
fore, we analyze the problems of the two-point measurement
method in non-Hermitian cases, so that the necessary modifi-
cations can be introduced.
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FIG. 1. (a) Schematic illustration of the statistics in non-
Hermitian systems. The processes with decreasing norm, conserved
norm, and increasing norm are shown with a red dashed line, a
black solid line, and a blue dotted line, respectively. (b) Illustra-
tion of the Hermitian Su-Schrieffer-Heeger model and two types of
non-Hermitian terms. The terms in the red dashed squares and the
terms in the blue dotted squares represent the loss-gain terms and
nonreciprocal terms, respectively.

For the two-point measurement in Hermitian problems, the
system is initially prepared in the thermal equilibrium state
po = exp[—BH(0)]/Tr{exp[—BH (0)]} with the Hamiltonian
H(0) and the inverse of temperature . The first projection
measurement is implemented on the thermal state according to
the eigenstate basis of the system. After the measurement, we
have the probability P, = exp[—BE,(0)]/Tr{exp[—BH (0)]}
to obtain the eigenstate |n(0)) with eigenvalue E,(0). The
collapsed state |n(0)) then evolves under the influence of the
time-dependent Hamiltonian

[¥u(2)) = T exp (-i/ods H(S))In(o)) =U®In0). (2

After the evolution, the second projection measurement is
implemented on the system according to some measurement
basis |m(t)) (usually the eigenstate basis of the system at
the beginning time or the ending time), which gives the state
|m(t)) with the probability

Tom = [m(@) [, (). 3)

The probability to observe the whole process mentioned above
is P,y = T,.mP,. Note that the work done in this process is
Wom = En(t) — E,(0), where E,,(¢) and E, (¢) are the energies
of |m(t)) and |n(0)), respectively. Finally, the quantity W, ,,,
which corresponds to a stochastic process with the distribution
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P,.m, 1s used to describe the work statistics. This definition
of work has two main advantages. First, the average value of
work is equivalent to the classical work. Second, the Jarzyn-
ski relation [41], which is initially a classical extension of
the dissipation-fluctuation relation, can be satisfied in closed
quantum systems and open quantum systems at thermal equi-
librium under this two-point measurement scheme [37,38,50].

Now we show that the two-point measurement method
cannot be directly applied to non-Hermitian systems. The first
problem is that the system dynamics can be changed by the
projection measurement. In Hermitian systems, if we take
the average of the states |1,(¢)) according to the probability
P,, the density matrix without the first measurement can be
retained,

U)ol (1) = Y Palhu () (Y 1)1 )

As aresult, the first measurement does not change the dynam-
ics of the system on average. Thus, this approach can reveal
the thermodynamic properties of the process. However, the
situation becomes complicated for non-Hermitian systems. A
non-Hermitian system evolves according to Eq. (1) with a
normalization factor N,(¢) which depends on the initial state
po. Therefore, different |n(0))’s experience different dynam-
ics. For example, assume that the first measurement gives the
result [n(0)). The corresponding state at # becomes

(1) = U (0)n(0)) {n(0)|U" (1)
(nO)|UT (U (1)In(0))

In a non-Hermitian system, the product U (#)U (¢) is usually
not an identity operator, which contributes a normalization
factor depending on the result of the first measurement. If we
average over the results of the first measurement, the obtained
state is

®)

(6)

) U (1) |n(0)) (1)U (1)
= Pn )
PO =D P ST D0 OO

n

instead of the density matrix without the measurement. As a
result, the two-point measurement approach provides the work
statistics of another process. Such effects are quite common
in systems with initial coherence (see e.g. [48,49]), but the
problem here originates from the nonpreservation of the norm
in non-Hermitian systems [54].

The second problem is the purity change due to the change
of the norm. In general, non-Hermitian dynamics can influ-
ence the system purity (also the entropy) [53,57]. However,
the work has no impact on the entropy of a closed system
because the corresponding process is reversible. Therefore, it
is straightforward to expect that the non-Hermiticity can affect
both work and heat current.

C. Work statistics with purification

As mentioned above, the work statistics based on the two-
point measurement has problems in non-Hermitian systems.
To solve these problems, we introduce some modifications to
the two-point measurement method, and present our way of
calculating work statistics in non-Hermitian systems.

Although the purity of the system usually changes under
the influence of a non-Hermitian Hamiltonian, non-Hermitian

dynamics preserves the purity of a pure initial state. For such
initial states, there is no entropy change, because entropy is
always zero for a pure state. In such a case, we can safely
calculate the work with an energy difference. A thermal state
with the inverse temperature § can be expressed as a pure
state in a larger Hilbert space if the eigenstate thermalization
hypothesis is assumed [58,59]. In the following discussion, we
call the Hilbert space in addition to our system a “heat bath”
(also see Appendix B). However, this heat bath is different
for a large system, e.g., harmonic oscillators, in a thermal
equilibrium state. By assuming our system initial state to be
the result of eigenstate thermalization, it can be expressed as
the partial trace of a pure state:

Po = Troan {|Wiot) (Wiotl} s
with
Wiot) = Y Caln(0)) ® [y),

811,m = (w:alh‘w’t}iﬁth). @)

Note that |1ﬂ,'fath) is not necessarily an eigenstate of the bath.
We further assume the following relations:

o, _ [erEOT
n Trlexp(—BHo)]’
EPah _ phah — E(0) — E,(0),

m

and
<'(ﬂr|l)ath|Hbath|1prl:1ath> =0, for m # n. (8)

Here E,(0) is the eigenvalue of [n(0)), 8 = 1/(kgT) is the
inverse of the bath temperature, Hp, is the Hamiltonian of
the bath, and EP" = (y%30 | Hy g |4031) is the average energy
of the state [Py,

Next, we briefly justify these assumptions. The first equa-
tion in Eq. (8) makes sure that the reduced state in the system’s
Hilbert space is the thermal state with temperature T'. The sec-
ond equation in Eq. (8) refers to the eigenstate thermalization
assumption, which is a possible thermalization mechanism
in closed systems. The bath energies EP*" and E* in the
second equation of Eq. (8) are in general not eigenvalues but
average values. However, note that |2} is the superposition
of eigenstates with eigenvalues close to E,'ja‘h, which is impor-
tant to the last assumption. Let us assume that |1ﬁ}1’a‘h> contains
eigenstates with eigenvalues within the range

(Ebalh _ 8Ebath Ebath + (SEbath).
The last assumption is fulfilled if we have
|Ebath _ Ebath| > |8Ebalh| + |8Ebath|.

The last assumption is necessary to avoid the system-energy
shift caused by the bath. For example, terms like [(|n(0)) +
|m(0))){k(0)| + H.c.] can drive both |n(0)) and |m(0)) to a
third state |k(0)), which provides a state in the “system +
bath” Hilbert space with the following form:

K(0)) ® (|y2h) + [y ham)). ©)

If the coherence of the bath provides energy, the energy
change of this transition can be modified by this energy. This
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effect is similar to the case of exchange energy. Apparently, an
ordinary thermal bath does not have such an effect, because
the system is assumed to be fully described by the reduced
density matrix. Therefore, the coherence of the bath states
does not contribute to the bath energy.

Based on these assumptions, the work statistics of the non-
Hermitian system can be studied. Now, we turn on the non-
Hermitian Hamiltonian, so that the system evolves according
to Eq. (1). This evolution can also be written in the Hilbert
space of the system plus the bath,

U (1) Upain (1) Wio) {Weot [U (U (1)
Npml (t)

Prot (t ) =

with

Upbatn (1) = exp(—iHpam?). (10)

Unlike the Hermitian Hamiltonian, the non-Hermitian Hamil-
tonian can also have an effect on the heat bath. To show this
effect, we trace out the system degrees of freedom in Eq. (10),

Poath (7)) = Trsys[ptol(t)]
=D PoannO|Y " O ()

’

with
phan gy — CalnOIUT OV @)1n(©))
" Np!m (t)
and
Y (0)) = Upan ()| ™). (11)

For a non-Hermitian system, the term (n(0)|U (¢)U (¢)|n(0))
usually changes with time, so the bath dynamics is also in-
fluenced by the non-Hermitian Hamiltonian of the system.
Therefore, generating a non-Hermitian Hamiltonian contains
operations outside the Hilbert space of the system.

As a result, the work done on the bath should also be con-
sidered. However, it is impossible to implement work statistics
in the Hilbert space of the system plus the bath, because the
bath states here are, in general, not the eigenstates of the bath
Hamiltonian. Instead of the eigenstates of the bath, we esti-
mate the work on the bath with the basis formed by |22 (1)).
Note that these states are complete and orthogonal for the
problem studied here. In addition, by considering the bath en-
ergy, all the possible results of the first measurement have the
same energy, which indicates that the first measurement is not
necessary. Therefore, we do not have problems related to the
projection measurement. We start from the initial state |Wy)
with the energy Ei = E,(0) + EP*™. After the influence of
the non-Hermitian Hamiltonian, we measure the total system
on the basis,

Im(0)) ® |¥r*®(ze)). (12)

It is straightforward to see that the energy difference between
Im(0)) ® |2 (1)) and |Wio) is just

En(0) + EP*™ — Eie = E,,(0) — E,(0). (13)

The probability of the transition from [W) to [m(0)) ®
[ (1)) s

Pon = (m(0)] @ (Y™ (t)] pror () Im(0)) ® |2 (tr))(14)

Since the system has a unit probability to be in the state |W,y),
the characteristic function of the work can be calculated with

X)) =Y expliulEn(0) = Ex(0)]}Po.r. (15)

m,n

Equation (15) is similar to the ordinary characteristic function
of work in Hermitian systems, but it has different meanings.
The indexes n and m correspond to two Hilbert spaces in one
measurement instead of two successive measurements; what
is calculated in our method is not the work done on the system
but the work done on the system plus the bath.

System work statistics containing measurements on the
heat bath might be counter-intuitive. However, such definition
is necessary even in Hermitian cases if the system-bath cou-
pling exists [50]. Although there is no direct coupling in our
case, measurements on the system can also influence the bath.

D. Relation with the work statistics in Hermitian systems

We now discuss the relation between the work statistics in
our work and the ordinary two-point measurement method in
Hermitian systems. Here we mainly focus on two issues. One
is Hermitian limit of our method, the other is the justification
of this method from the aspect of open systems.

When the Hamiltonian is Hermitian, the bath state is not
influenced, and the normalizing factor N, (¢) is always one.
Therefore, the characteristic function of work in Eq. (15)
becomes

x(@) = M EOEON () U ()" | Vror)

m,n

| 2

_ Z HER0)~E,(O)] exp[—BE,(0)]
m,n Z

x [(m(0)|U (tr)|n(0))|?, (16)

which is the ordinary expression for work statistics in a Her-
mitian system. After this simple situation, we consider general
cases.

First, we formally retain the dynamics in the total Hilbert
space shown in Fig. 1(a), which is closed and Hermitian.
The Hamiltonian and the state in the total Hilbert space are
expressed as Hyys(?) and |Yrrus(f)), respectively. The state
evolves according to the following relation:

a
Ewms(z» = —iHrus (D) Yras (). a7

We can introduce the projection operator onto the observed
Hilbert space P, and the one onto the remaining part of the to-
tal Hilbert space Q = I — P. By applying P and Q in Eq. (17),
the following equation can be obtained:

a
57 P Wmus (1)) = —iPHrus ()P + Q)[Ymus (1))

= —i[PHrus(t)P]P|Yrrus(t))
—iPHrus (1)Q|¥rus(?)). (18)

If we design a proper Hrys(?), it is possible to satisfy the
relation

—iPHrus(1)Q|¥rus (1)) = —iM(©)P|Ymus(@)), (19)
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where M is a non-Hermitian matrix in the observed Hilbert
space. With Eq. (19), the non-Hermitian evolution can be
expressed as a projection of the dynamics in a larger Hilbert
space.

ad " B 8P
E' wi(t)) = 5 [Vrus (1))

= —i[PHrus(1)P + M(0)]P|Yrrus (1))
= —i[Hun (1) + Hol[Wio (7)),

with [W(¢)) = P|Yrrys(t)). Such a projection can usually be
realized by introducing an ancillary system and measurements
on the ancillary system [60—62].

Second, we apply the method presented in the previous
subsection to the total Hilbert space. As the non-Hermitian
part Hy, is turned off at the beginning time and the ending
time, the observed space and the remaining part are decoupled
at these two time points. So we have the relation

= PHryusP + QHtus Q.

To better show the relation between the work statistics in the
total Hilbert space and the one in the observed space, we
divide the state |rys) into two parts and introduce basis states
defined in Eq. (7),

(20)

Hrps 21

Yrrus) = Zc”m P)® |[yy5) + ) CLIn, 0) ® [vyg),
(22)
where
P|Vl, P) ® |1//bath> |Vl P ® }wbath>
Q|n Q ® |wbdth) ® |1//bath>

The form of |n, P) is decided by Hy, but the form of the
other states can have many possibilities as long as they satisfy
Eqgs. (7) and (8). Note that the observed space is formed by
the basis |1, P) ® [ >4), which is the same as that formed by

In(0)) ® |¥2ah(#)) in Eq. (12). Therefore, we also have
Pln, P) ® |y5) =
Pln, Q) ® |¥pip) = 0.

The characteristic function of work in the total Hilbert space
can then be divided into four parts:

(23)

XTHS(M) — Z[ iu(Ep p— E,IP)PPP + etu(Emp EnQ)Prgi
p
4 eiu(Em'Q_E”'Q)P,gg —}-ei"(E’"'Q_E”'Q)PnI;%],
with
Hrys|n, P) = E, pln, P),
Hrus|n, Q) = E, gln, 0),
PP = (m, P| ® (Y25 (tr)| prus () lm, P) ® [ (1)),
P2 = (m, P| ® (Y0 (t6)| prus (te)lm, P) & |2 (1)),
P22 = (m, 0| ® (Y25 (tr)| prus (te)lm, Q) ® |wid (te)),
P2 = (m, Q| ® (Y25 (tr)| prus (t)|m, Q) ® |24 (1r)).

(24)

Here the term prus(fr) = [Yrus () (Yrus(f)| is the den-
sity matrix at #; in the total Hilbert space. The first part

Y ¢ Enr=Enr) PP corresponds to the trajectories ending
in the observed Hllbert space. Other terms describe the trajec-
tories falling outside the observed Hilbert space.

As we have the relation in Eq. (20), it is straightforward to
show that the characteristic function of work in the observed
space is

N, (0 .
(M) Pm:( ) Z m(Em'P_E”'P)PyI;YI;'

25
ptol ([f ) ( )

Note that the Hamiltonian in the total Hilbert space Hyys(?)
is Hermitian, so that our method just provides the results of
the ordinary two-point measurement method. Therefore, the
work statistics introduced by us in a non-Hermitian process
is a statistics on part of the trajectories in the total Hilbert
space [black solid line and blue dotted line in Fig. 1(a)].
Note that it is also possible to define Pln, P) ® | bath)
In, P) ® |2*8) in Eq. (23), which results in a different choice
of the observed space. In this case, the basis states of the bath
|ybathy in Eq. (12) contain both | b‘“h) and | b‘“h) the term
Y g € Enr=En@) POP in Eq. (24) also contributes to the work
statistics.

The relation in Eq. (25) can also be useful when we want
to calculate work statistics of non-Hermitian systems. Esti-
mating Eq. (15) is usually difficult due to measurements on
the bath. However, Egs. (24) and (25) allow to obtain the non-
Hermitian work statistics from the Hermitian work statistics in
the total Hilbert space. We can first estimate the work statistics
in the total Hilbert space by using the ordinary two-point
measurement method. Next, we pick up the trajectories ending
in the observed space and obtain the non-Hermitian work
statistics. Note that if there is no energy exchange between
system and bath in the total Hilbert space, measurements on
the bath can be avoided.

III. WORK STATISTICS IN THE NON-HERMITIAN
SSH MODEL

As an example, we introduce a non-Hermitian SSH model
based on the Hermitian version of the model [31-34], which
describes a one-dimensional topological chain with two dif-
ferent hopping integrals [Fig. 1(b)]. The Hamiltonian of the
Hermitian SSH model is

= Z(glczn02n+l + 82€;n+102n+2 +H.c),  (206)

n

where ¢, and ¢/ are the fermionic annihilation and creation
operators on the nth site, respectively. Generally, the inner-
unit-cell hopping integral g; and the inter-unit-cell hopping
integral g, are not identical. In our examples, we assume
g» = 1.5g;. In addition to Hj in Eq. (26), the non-Hermitian
version of the model usually contains one of the following
Hamiltonians:

)4
Hé‘ﬁ(f)—Zf(f)( c3yCons1 — 2c§n+1c2n),

HE(t) = if(t)8 Y (c},Con — €hpyCans1), 27)
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FIG. 2. (a) The average work W,,. and the system-energy change
probability AE, for y = 1.9g, (before the EP). (b) The average
work W, and the system-energy change AE; for y = 2.1g; (after
the EP). (c) The comparison between the average works W, of
a slowly changing Hamiltonian and a fast changing Hamiltonian
for y = 1.9g, (before the EP). (d) The comparison between the
average works W, of a slowly changing Hamiltonian and a fast
changing Hamiltonian for y = 2.1g; (after the EP). The inverse of
the temperature B and the energy are expressed in units of 1/g, and
g1, respectively.

where the control function f(¢) is to turn on or off the non-
Hermitian Hamiltonians. The first Hamiltonian H} () makes
the hopping integrals for the left and the right directions
unequal, and it is usually called the nonreciprocal Hamilto-
nian. The second Hamiltonian Hrlﬂg1 (t) introduces gain and loss
to the system, which is usually thought to be semiclassical.
Both non-Hermitian SSH models have P7 symmetry and
their eigenstates can break this symmetry by passing through
the exceptional point (EP). These models can be realized
in, e.g., optical systems or cold atoms [1,2,13,14,63-66], but
the experimental demonstration of the effects in the quantum
regime is still facing a big challenge. In the following two
subsections, we consider the work statistics corresponding to
these two kinds of non-Hermitian terms.

A. Nonreciprocal coupling

Before studying more complicated work statistics, we first
consider simple quantities such as the average work and
the change of the system’s energy to reveal some unique
properties of non-Hermitian systems. The non-Hermitian
Hamiltonian H}j (¢) is introduced by using a slowly changing
control function f(¢) = sin(xt/Ti), Where Ty = 500/g; is
the total evolution time. The results are shown in Figs. 2(a)
and 2(b) for the PT -symmetric and P7 -symmetry-breaking
phases, respectively. First, we compare the average work
with the system-energy change. The work is not equal to
the system-energy change except for the regime of very
low temperatures. Although the system and the bath are not
directly coupled, the norm nonconserving property of the
non-Hermitian Hamiltonian can influence the bath via the
initial system-bath entanglement. Consequently, it is difficult
to define the work without considering the bath.

0.6 0.6
(a) (b)

0.3

b

. .0
-0.1 0.0 0.1 -0.1 0.0 0.1

0.3 ‘ 0.3
- © (@)
%
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B} M J}V |
00 0 2 %% 0o 2
0.3 0.3
(e) (f)
Sl th L.
09 0 2 99 0 2

Work

FIG. 3. (a) High-temperature case § = 0.1/g; with y = 1.9 (be-
fore the EP). (b) Low-temperature case g = 1000/g, with y = 1.9
(before the EP). (c) High-temperature case § = 0.1/g; with y = 2.1
(after the EP). (d) Low-temperature case 8 = 1000/g, with y = 2.1
(after the EP). (e) High-temperature case § = 0.1/g; with y = 2.1
(after the EP) and one additional round. (f) Low-temperature case
B =1000/g; with y = 2.1 (after the EP) and one additional round.
The inverse of the temperature B and the energy are expressed in
units of 1/g; and gy, respectively. The change of the Hamiltonian is
slow.

Then, we focus on the average work in different cases. It is
not surprising to see a vanishing amount of work in the P7 -
symmetric phase because the evolution is nearly adiabatic.
If the system enters the regime of P7T-symmetry-breaking
phase during the process, the amount of the work increases
significantly. It is insightful to discuss nonadiabatic effects.
We consider a fast changing control function: f(1) =1, ¢ €
[0, Tiot], and f = 0 otherwise; namely, the non-Hermitian
Hamiltonian is turned on and off suddenly. Figures 2(c) and
2(d) show the work corresponding to both slow and fast
changes. Similar to the Hermitian case, the sudden change
causes nonadiabatic effects and increases the work. How-
ever, the nonadiabatic effects are significantly suppressed after
passing through the EP. In addition to the average values,
fluctuations can also play an important role in thermody-
namics. Therefore, we consider the fluctuation of the work
corresponding to the generation of a non-Hermitian SSH
model. The statistics of the work is expressed with the work
distribution,

P(w) =Y 8w — Ey + Ey)Pun, (28)

which is shown in Fig. 3. From the numerical results, we can
find that the fluctuation of the work increases significantly
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FIG. 4. The effects of the additional non-Hermitian Hamiltonian. (a) The real parts of the eigenvalues for systems withd = 0Oand § = 0.2y,
respectively. (b) The imaginary parts of the eigenvalues for systems with § = 0 and § = 0.2y, respectively. (¢c) The average work W,,. versus
with y = 2.1g; (after the EP) and different values of . (d) The average work W,,. versus § with y = 2.1g, (after the EP) and different values
of B. (e) The fluctuation of the work (AW?2) versus 8 with § = 0, 0.1y, and 0.2y . (f) The work probabilities with 8 = 1000/g, and different
values of §. The work and y are expressed in units of g;, and § is shown as the ratio to y. The inverse of the temperature g is expressed in units
of 1/g;. The control function is set to be f(t) = 1 in (a) and (b). The strength y of H) is 2.1g; (after the EP) in (c)—().

after passing through the EP. The average work in Fig. (2)
always vanishes at high temperatures in spite of the value of
y, but the fluctuation of the work can change considerably for
different values of y. The fluctuations in Fig. 3(c) are much
larger than those in Fig. 3(a). As a result, it is still possible
to detect a large amount of work in spite of the vanishing
average value after passing through the EP. This distribution
becomes different when the temperature is low. In Fig. 3(d)
the distribution of the work is always positive and concen-
trated on several values. We have mentioned that the slow
evolution can be somewhat “adiabatic.” This statement can be
partially confirmed by the results in Figs. 3(a) and 3(b). The
work distribution P, , is also the distribution of the transition
among different states. Therefore, the transition among most
eigenstates are negligible, and the change is nearly adiabatic.
However, after passing the EP, such “adiabatic” condition
does not exist anymore as shown in Figs. 3(c) and 3(d).

Although there are no adiabatic like properties after pass-
ing EP, the system may enter a steady state (or metastable state
[67]) after the long-time evolution. To check this point, we
add one more round of evolution, namely, repeat the time-
dependent non-Hermitian Hamiltonian during ¢ € [0, Tio]-
After two rounds of evolution, we calculate the work statis-
tics and show the results in Figs. 3(e) and 3(d). The results
of two-round evolution are nearly the same as those results
of one-round evolution. Therefore, we still have metastable
behavior after passing EP.

B. Adding loss-gain terms

Now, we consider a more complicated case, in which the
non-Hermitian Hamiltonian H;ﬁ is further introduced to Hy +
H3. To show the influence of this term, we study the slow
evolutions in Figs. 2 and 3 with the system described by Hy +
Hip + Hyj.

The properties of non-Hermitian systems are usually ex-
pressed with their eigenvalue spectra. Therefore, we first
consider the influence of the additional term Hi’; on the spec-
trum of the system. To have a clear picture of this effect,
we compare the eigenvalues E, of the system after including
Hiﬁ (6 = 0.2y) with those of the original system Hy + H}
in Figs. 4(a) and 4(b), where we choose f(t) = 1. The re-
sults show that both the real and imaginary parts of E, are
only slightly changed. However, the imaginary parts become
nonzero before approaching the EP of the system without
Hiﬁ. Note that only eigenstates with the smallest imaginary
parts survive in the slow processes considered here, so small
changes of the imaginary parts can have a significant influence
on the system evolution.

Now, we consider the effects of the additional term on work
statistics. In Fig. 4(c) we study the change of the average
work done at different temperatures. Compared with the re-
sults in Fig. 2(b), the average work is reduced at moderate
temperatures but increased at low temperatures. In addition,
a large strength § can suppress Wy, in a wider range of
temperatures but the negative effects at low temperatures are
more significant. In Fig. 4(d), the average work only changes
with 8 in a very small regime. The fluctuations of work are
shown with the quantity (AW?) =Y P(w)(@w — Wye)* in
Figs. 4(e). The additional term can suppress the fluctuations at
most temperatures but can have the opposite function at some
temperatures. The fluctuation increases near the temperature
at which the average work in Fig. 4(c) begins to rise. How-
ever, unlike the average work, the fluctuation vanishes if the
temperature further decreases.

To understand the mechanism of H;ﬁ more clearly, we
present the work distribution with different values of § in
Fig. 4(f). The green (or light gray upper) and blue (or dark
gray upper) bars correspond to the cases without any control
and with a strong enough control, respectively. It is clearly
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shown that these two distributions are totally different. When
the intensity & is not very strong (the black lower bars), the
distribution of the work is the superposition of the green (or
light gray upper) and the blue (or dark gray upper) ones.
We can see from these results that the function of Hrllﬁ is
to switch the system to another metastable state during the
evolution process. This new metastable state has a different
work statistics. Therefore, two non-Hermitian systems with
similar spectra can have totally different thermodynamical
properties in a process.

IV. CONCLUSIONS

We have studied the work statistics of a temporal non-
Hermitian model based on Hermitian one, and take the
non-Hermitian SSH model as an example. To obtain the
work statistics for such a non-Hermitian process, the ordi-
nary work estimation approach, which does not work for the
non-Hermitian cases, is modified here. Our method can be
applied in P7T broken cases, and becomes the ordinary two-
point measurement method in Hermitian systems. With this
method, we analyze the work statistics in the non-Hermitian
SSH model. After passing through the EP, the work statis-
tics changes considerably. The average work becomes larger
at low temperatures, and the work fluctuations significantly
increase at all temperatures. We further consider another
non-Hermitian Hamiltonian with similar spectrum. In spite
of the negligible spectra change, the work fluctuations are
suppressed at most temperatures, and the average work is
also reduced at moderate temperatures. Therefore, the work
statistics is able to provide system information which cannot
be clearly presented by the spectrum.

Our work partially solves the problem of work statistics in
non-Hermitian systems, especially in P77 broken cases. This
method can be applied to many non-Hermitian problems, and
can be potentially extended to more general situations.
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APPENDIX A: COMPARISON BETWEEN
NORMALIZATION AND BIORTHOGONAL BASIS

In a non-Hermitian evolution, the ordinary state norm is
not conserved:

3 .
Eﬁﬂ(t)ll/f(t)) =Yy @OIH"|Y (@) — {g@OIH[@))
# 0. (A1)

There are two main methods to deal with this problem.
One way is to normalize the state:

vy

V@O @)

The density matrices can also be normalized in the same
way [53],

V@) = (A2)

py = 20

Tr[p(r)]
where p(t) is a density matrix under the influence of a non-
Hermitian Hamiltonian.

This method has several advantages.

First, all the quantities, e.g., state, density matrix, or ex-
pectation values, have the same properties as those in the
Hermitian case.

Second, this framework is not influenced by the P77 sym-
metry. However, effects of parity-time symmetry breaking can
still be captured with this method.

Third, this method can be interpreted as the process of
postselection. When a normalized state |yry) is measured, we
can pick up data corresponding to a subspace, e.g., lower two
levels.

The observed state [1/) is in general not normalized as

|¥) = PlYn),
(Uly) + (YnId = P)[Yn) = 1.

Here P is a projection operator and [/ is the identity operator.
We call this kind of non-Hermitian systems “open” due to the
existence of an additional space.

However, this kind of normalization can significantly
change the dynamical and thermodynamic properties of the
system. Thermodynamic relations may be broken. In addition,
it is usually impossible to find the eigenstates and eigenvalues
in this framework.

Another way to deal with non-Hermitian systems is to
introduce a biorthogonal basis (eigenstates) [51,52,54].

HYn) = Eq|tn),
H'|¢n) = Ey|¢n).

(¢n|wm> = Sm,n-
This method can obtain the eigenvalues and eigenstates of
a non-Hermitian Hamiltonian, and is very useful in the P7T
symmetry phase. When the system has parity-time symmetry,

the biorthogonal basis becomes an orthogonal basis with a
nontrivial metric M,

(A3)

(A4)

(A5)

wan) = Enl‘/’n)v
H'MY,) = E.M|y,),

(M) = Smn- (A6)
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In addition, the non-Hermitian dynamics can be mapped onto
a Hermitian dynamics [68]. Therefore, all the thermodynamic
relations in Hermitian systems should conceptually have non-
Hermitian counterparts.

However, this method is less powerful in P77 symmetry-
broken cases. Inner products (including state norms) are not
conserved; thermodynamic relations are no longer assured,
and, complex eigenvalues cannot be simply interpreted as
energies.

APPENDIX B: DESCRIPTION OF THE HEAT BATH

In this Appendix, we briefly discuss the definition of the
heat bath used in this paper. Assume that there is a large
system B in thermal equilibrium,

_ X Eml
>, e P '
Here |n) and E, are eigenstates and eigenvalues, respectively.

System B can be used as a heat bath to drive a small system A
into a thermal equilibrium state:

pa = Trg[U (00)[Ya)(al ® ppU " (00)]
e PPin)(nl
T e
The eigenstates and eigenvalues of system A are described by
|n) and E,, respectively. The coupling between system A and
system B is included by the evolution operator U. Next, we
show that this A+B model can be derived from the form of
Eq. (7).
Note that the reduced density matrix pa is conceptually an
average of a pure state over some degrees of freedom,

Pa = Troter than A{l¥world) (¥wortal}- (B3)

PB (BI)

(B2)

The pure state |ryora) 1S usually unknown but can be simpli-
fied by applying the eigenstate thermalization hypothesis,

|1ﬂworld> = |\I"tnt> ® |1ﬂother>- (B4)

The state |Wy) is defined in Eq. (7); the state |Womer) has
no effects on the thermodynamics properties of system A.
Therefore, we have the relation

Pa = Tromer than A {1 Wiot) (Wiot|}- (BS5)

Note that |W,) covers the Hilbert space of system B because
system A and system B become entangled during the cou-
pling. In addition, the heat bath system B is usually assumed
to be unchanged during the coupling with system A, so that
we also have

PB = Trother than B{| Wrot) (Wiot|}- (B6)

If we describe the thermalization of system A with the cou-
pling between |¥a)(¥a| and pg, the effects of the heat bath
can be characterized by a classical distribution.

Such a description becomes insufficient when postselection
is applied to generate non-Hermitian dynamics,

Pa(r) = Ppa(r)P. (B7)

Here P is a projection operator in the Hilbert space of sys-
tem A. This postselection can influence the Hilbert space of
system B as follows:

PB 75 Trolher than B{Pl“ytot> (‘I’[lot|P}~ (BS)

Therefore, we use |2*) instead of a classical distribution pp
to describe the bath effects in non-Hermitian processes.
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