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Asymmetric exclusion processes with fixed resources: Reservoir crowding and steady states
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We study the reservoir crowding effect by considering the nonequilibrium steady states of an asymmetric
exclusion process (TASEP) coupled to a reservoir with fixed available resources and dynamically coupled entry
and exit rate. We elucidate how the steady states are controlled by the interplay between the coupled entry and
exit rates, both being dynamically controlled by the reservoir population, and the fixed total particle number in
the system. The TASEP can be in the low-density, high-density, maximal current, and shock phases. We show
that such a TASEP is different from an open TASEP for all values of available resources: here the TASEP can
support only localized domain walls for any (finite) amount of resources that do not tend to delocalize even
for large resources, a feature attributed to the form of the dynamic coupling between the entry and exit rates.
Furthermore, in the limit of infinite resources, in contrast to an open TASEP, the TASEP can be found in its
high-density phase only for any finite values of the control parameters, again as a consequence of the coupling
between the entry and exit rates.
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I. INTRODUCTION

An overall theoretical understanding of nonequilibrium
driven diffusive systems, with potential connections with
hosts of natural phenomena, remains elusive today. In the
absence of any general theoretical framework to study
nonequilibrium systems, it is useful to consider and study
simple model systems, where explicit calculations can be
performed easily, helping to develop wide-ranging physical
intuitions. The totally asymmetric simple exclusion process
(TASEP), an archetypal driven system, was originally intro-
duced as a conceptual model for describing protein synthesis
in biological cells [1]. Later it emerged as a paradigmatic
model for boundary-induced nonequilibrium phase transitions
in one dimension [2]. Unlike a TASEP with open boundary
conditions, TASEPs in closed geometries strictly conserve
the total particle number. A TASEP on a ring with a single
point defect has been studied in Ref. [3] that shows a lo-
calized domain wall (LDW) for intermediate densities. An
open TASEP with a global constraint on the total particle
number, i.e., a TASEP connected with a particle reservoir of
finite capacity or a particle storage [4–8], is distinct from
a conventional open TASEP or a TASEP on a ring. These
models, broadly called TASEPs with finite resources, are ex-
pected to be relevant in related biological processes of protein
synthesis in cells [4] and also in the context of traffic [9];
see also Ref. [10] for a similar study. In these models, the
primary effect of the finiteness of the available resources is
that the effective entry rate of the particles to the TASEP, e.g.,
the actual protein synthesis taking place, sensitively depends
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upon the available resources. Detailed studies, both numerical
MCS and analytical MFT, reveal rich nonuniform steady-state
density profiles including pinning of domain walls in these
models [4–8]. These have been applied to various different
problems, e.g., limited resources in driven diffusive systems
[11], different biological contexts like mRNA translations and
motor protein dynamics in cells [12], and traffic problems [9].
Notable experimental studies relevant to these model systems
include studies on spindles in eukaryotic cells [13]. From
the standpoint of nonequilibrium statistical mechanics, these
models serve as minimal models for “nonequilibrium phase
transitions with a global conservation law.”

In the existing models for TASEPs with finite resources,
the exit rates from the TASEP lanes are unaffected by the
reservoir population. It is, however, reasonable to expect that a
crowded reservoir (i.e., with “high” reservoir occupation) not
only facilitates entry of particles into the TASEP but may also
hinder particles leaving TASEP as well. This can potentially
lead to a very low current in the TASEP in the steady state in
the limit of high reservoir occupation. In this work, we explore
a simple mechanism for avoidance of a crowded reservoir by
the particles or agents, i.e., the particles are more inclined
to leave the reservoir, but more inhibited to return to it, if
the latter gets more crowded. We show that this ensures that
even in the limit of infinite resources, the TASEP connected
to a reservoir remains qualitatively different from a TASEP
with open boundary conditions. We call this the “reservoir
crowding effect” and model this in terms of “effective entry
and exit rates,” both of which depend upon the instantaneous
reservoir occupation and which are mutually coupled. In this
article we study how this can affect the NESS of the TASEP
connected to it.

We introduce and systematically study a simple minimal
model for reservoir crowding that consists of a single TASEP
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lane that is connected to a reservoir without any spatial ex-
tent at both its ends and having both its entry and exit rates
being controlled dynamically by the reservoir population. The
dynamical control of both the actual entry and exit rates by
the same quantity (reservoir population) naturally introduces
a coupling between the two rates that, to our best knowledge,
along with its effects on the steady states are considered here
for the first time. This dynamic coupling between the entry
and exit rates clearly sets our model apart from the existing
models. This model is parametrized by three parameters: α

and β that parametrize the actual entry and exit rates of the
TASEP lane, and μ, which is a measure of the total particle
number (see the next section for more precise definitions of
these parameters). Our principal results are as follows. Its
NESS admits four distinct phases: low-density (LD), high-
density (HD), maximal current (MC), and shock (SP) phases:
(i) In general, the phase diagram of this model in the α-β plane
is very different from that of an open TASEP as parametrized
by the model parameters; by tuning α, β, the TASEP can
preferentially be populated or depopulated. More specifically,
(ii) the well-known first-order transition between the LD and
HD phases in an open TASEP is replaced by two second-
order transitions, one between the LD and SP phases, and
another between the SP and HD phases. The system shows
generic LDWs in the SP phase. Unexpectedly and in contrast
to the results in Ref. [14], the LDWs remain pinned for any
particle number or any resources in the system and show no
tendency to delocalize even in the limit of very large resources
for which the effects of the particle number conservation is
naïvely expected to be unimportant. (iii) In the limit of large
μ, the phase diagram of the TASEP does not approach that of
an open TASEP [7]; instead it can only be in its HD phase. We
argue that these results are linked to the dynamical coupling
between the entry and the exit rates introduced in this model,
and make the present model fundamentally different from the
existing models of TASEPs with finite resources, where the
exit rates are taken to be fixed [7]. This is one of the aspects of
our model that directly brings out the essence of the reservoir
crowding effect, the main thrust of the present work.

Our model serves as a minimal 1D nonequilibrium model
to study the crowding effect, and how it gets affected by the
dynamical coupling between the effective entry and exit rates.
This should be useful in transport problems where the agents
actively prefer to avoid getting stuck in crowded intersections
or stations by either exiting from it quicker or entering into it
slower, depending upon the degree of crowd. Consider, e.g.,
a fixed number of vehicles in a closed network of roads with
a toll plaza or a drive-in (any place where several vehicles
would wait at any given time for some specific purposes,
that may serve as a “pool” or “reservoir” of vehicles). In
addition, this model can serve as the simplest representation of
devices connected to particle sources and sinks having tunable
entry and exit rates for the particles that are mutually coupled
in some manner by virtue of their dependences on a single
quantity, e.g., reservoir population.

The rest of the article is organized as follows. In Sec. II
we have introduced and defined the model. In Sec. III we
heuristically argue the nature of the steady states. We also
present a series of phase diagrams in the α − β plane for
various values of μ, which highlight the sensitive depen-

FIG. 1. Schematic model diagram: the filled (deep green) ellipse
R is the point reservoir of infinite capacity; the broken line T is the
TASEP lane with L sites connected to R at both the ends, with αe and
βe being the effective entry and exit rates of T . Small (light green)
circles represent particles that hop along T , subject to asymmetric
exclusion process (see text).

dences of the phase boundaries on μ. Next, in Sec. IV
mean-field theory (MFT) analysis of our model along with
the phase diagrams and the steady-state density profiles,
complemented by extensive Monte Carlo simulation (MCS)
studies, are presented. Then in Sec. V we discuss the nature
of the phase transitions in the models. In Sec. VI we ana-
lyze the nature of the domain walls, including their pinning
for large resources. We end by summarizing our results in
Sec. VII.

II. MODEL

The model consists of a single TASEP lane T connected
at both its ends to a reservoir R. The particles from R enter T
through its entry end, hop unidirectionally along T subject to
exclusion, and eventually leave T at its exit end and enter back
into R; see Fig. 1. Due to the closed geometry of the system,
the dynamics clearly conserves the total particle number N0.
The reservoir R is a point reservoir, without any spatial extent
or internal dynamics, and can accommodate any number of
particles without any upper limit.

TASEP lane T has L sites, which are labeled by i; i ∈ [1, L]
with i = 1 and i = L being at the entry and exit sides, respec-
tively. The entry and exit rates of T are parametrized by α and
β, respectively, which can take any positive values without
restrictions. The actual entry and exit rates are dynamically
controlled and are given by

αe = α f (N ), βe = βg(N ), (1)

where N is the instantaneous occupation of R. We define
filling factor μ = N0/L, which describes the population of the
whole model (T and R combined) relative to the size L of T ;
thus 0 � μ � ∞. Our model, therefore, is a three-parameter
model: the NESS are parametrized by α, β, and μ. Both α, β

are free parameters with 0 � α, β � ∞. Rate functions f (N )
and g(N ) control the actual entry and exit of particles to and
from T . Since we are considering a situation where enhanced
particle content in R leads to a greater inflow of particles into
T and hinders outflow of particles from T to R, f (N ) and g(N )
are assumed to be, respectively, monotonically increasing and
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decreasing functions of N . Once the functions f (N ) and g(N )
are specified, our model is completely defined.

This model can be studied for specific independent choices
of f (N ) and g(N ), subject to the general condition that in
order to reflect the crowding effect in a meaningful way f (N )
and g(N ) should be, respectively, increasing and decreasing
functions of N . We intend to study the effects of coupling f
and g that can arise through their dependence on a common
quantity N . Given their monotonic nature of dependences on
N and positive definiteness, their mutual coupling should be
such that when one of them increases, the other should de-
crease. While there can be many different choices of couplings
between f (N ) and g(N ), in the present work, we choose a very
simple form of the coupling by setting

f (N ) + g(N ) = 1. (2)

This choice clearly ensures that when f rises, g decreases, and
vice versa. In order to be able to proceed further, we make the
choice f (N ) = N/N∗, for reasons of analytical amenability,
where N∗ is a scale that sets the capacity of the reservoir;
see also Ref. [7]. The steady states should depend on what
we choose for N∗. In the absence of any general results, it
is useful to consider specific simple choices for N∗. In this
work, we focus on the specific case where N∗ ≡ N0, the total
available particles. This corresponds to a situation where all
the particles in the system can be accommodated in the reser-
voir; this means the total particle number in TASEP can never
exceed N∗. This gives

f (N ) = N/N0. (3)

The choice (3) implies that the actual entry rate is proportional
to the reservoir occupation N . Thus, f (N ) rises monotonically
with N with f (0) = 0 and f (N = N0) = 1. The choice (3),
though similar, but is different quantitatively from the existing
models for TASEPs with finite resources [4–7]; this suffices
for our purposes and is easily amenable to analytical MFT
treatments. Further, the choice (3) implies

g(N ) = 1 − f (N ) = 1 − N/N0. (4)

Thus, g(N ) is monotonically decreasing with the reservoir
occupation N with g(0) = 1 and g(N = N0) = 0. We thus see
that as N rises, f (N ) rises but g(N ) reduces. This implies that
as N increases, more particles try to enter into the TASEP lane
and fewer particles would be able to leave it. In particular, for
large N0, when most of the particles are in R, αe approaches α

and βe becomes very small. On the other hand, for small N0,
when the reservoir population N is also small, αe is small, but
βe approaches β. Thus, fewer particles will enter T , but those
which are already in T have a larger tendency to leave T and to
enter R. These features form the essence of the crowding effect
that we intend to study and distinguish our model from the
existing models for TASEPs with finite resources where the
exit rates are a free model parameter (just as in open TASEPs)
[4–8]. Our choices (3) and (4) are simple and minimal choices
that are easily analytically tractable and suffice to study the
crowding effect introduced above. Since the only condition on
f (N ) and g(N ) is that these functions must be non-negative,
N can go up to N0. Since N0, the total number of particles, can
even be infinity, there are no restrictions on N either.

III. STEADY-STATE DENSITIES

Let ni be the occupation at site i and J be the corresponding
current. The latter is a constant in the steady states. Below
we outline the mean-field theory (MFT) and use it to obtain
the phases and phase diagram in the α-β plane, parametrized
by μ, supported by our extensive MCS studies. Before we
embark on our MFT analysis, we already note that for small
μ, αe should be small, whereas βe should be large. Thus T
should not be in its HD phase. In fact, if μ < 1/2, there are
not enough particles in the system to keep T in its HD or
MC phases. Thus, for μ < 1/2, T is always in its LD or SP
phases independent of α and β. In contrast, for very large μ,
αe � βe and T are expected to be in the HD phase only. For
intermediate values of μ, transition to the MC phase may be
observed. We will see below that our detailed MFT analysis
corroborates this intuitive physical picture.

We first summarize our results in terms of a series of
phase diagrams in the α-β plane parametrized by μ =
0.6, 1, 2, 1000, 100 000; see Fig. 2(a), Fig. 2(b), Fig. 2(c),
Fig. 2(d), and Fig. 2(e), respectively. As revealed by these
phase diagrams, the phases and the phase boundaries in the
α-β plane sensitively depend upon the value of μ.

Direct visual inspections of these phase diagrams reveal
the following qualitative features. There are four phases, LD,
HD, MC, and SP, in these phase diagrams. Further, all the
phase boundaries meet at a single point. Then at μ = 1 all
the phase boundaries are straight lines, whereas for all μ �= 1,
except for the SP-HD boundary, all other boundaries are again
straight lines. In contrast, the SP-HD boundary is a curved
line for μ �= 1, whose shape appears to change as μ crosses
unity. The phase diagrams in Fig. 2(c) (μ = 2), Fig. 2(d)
(μ = 1000), and Fig. 2(e) (μ = 100 000) have very similar
forms; however, the scales of the β-axis in these figures differ
enormously. We now discuss the principles behind calculating
these phase boundaries and the phase diagrams.

IV. MEAN-FIELD THEORY

We now use MFT to construct the principles behind ob-
taining the phase diagrams and the associated density profiles
in the steady states. We recall that the instantaneous con-
figuration of T , having L sites, is described by a set of
occupation numbers that can take values 0 or 1, for each of
the sites in T . MFT entails neglecting spatial correlations:
〈ρiρi=1〉 ≈ 〈ρi〉〈ρi+1〉, where ρi is the occupation at site i and
〈· · · 〉 implies averages in the steady states. One then takes the
continuum limit with ρ(x) ≡ 〈n(i)〉, denoting the steady-state
densities in T ; x = i/L becomes quasicontinuous in the ther-
modynamic limit L → ∞ [15,16]. Here x starts from 0 at the
entry end with x = 1 at the exit end. MFT applications have
a long history in TASEP. It was first used for a single TASEP
lane with open boundaries, which was later corroborated by
more sophisticated arguments [17]. Later, MFT has been
widely applied in many different variants of TASEP; see, e.g.,
Refs. [7,8,14,18–22], with strong validation from stochastic
simulations of the microscopic models. In the absence of any
rigorous proof available for the validity of MFT in TASEPs
with fixed resources, we use it as a guideline to understand
the broad features of the consequences of the dynamically
coupled rates introduced here, which are complemented and
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FIG. 2. Phase diagrams in the α-β plane. (a) μ = 0.6, (b) μ = 1, (c) μ = 2, (d) μ = 1000, (e) μ = 100 000. Continuous lines represent
the MFT predictions (see text); the discrete points are the corresponding MCS results, which agree well with the MFT predictions.

supported by our MCS studies. The latter undoubtedly lends
credence to the MFT applications in the present model. In
our MFT analysis, we study the phases of T in terms of the
well-known phases of a TASEP lane with open boundaries,
delineated by the effective entry (αe) and exit (βe) rates,
respectively [7,8,14,18]. In the next sections, we obtain the
phase boundaries in α-β plane, parametrized by μ, and the
corresponding steady-state densities in the different phases.

A. Low-density phase

We begin with the LD phase. In the LD phase, we get by
using (3)

ρLD = αe = α
N

N0
. (5)

The total particle number is given by N0 = N + Lαe. This
implies for the total particle number

N0 = N

(
1 + αL

N0

)
. (6)

This then gives

ρLD = α

1 + α
μ

, (7)

giving ρLD < α, as expected. See Fig. 3 for representative
plots of the steady-state density profiles in the LD phase
with different parameter values: μ = 1000, α = 0.2, and β =
1500, and μ = 1, α = 1/2, and β = 2.

From Eq. (7), we note that as μ grows, ρLD approaches α

as it would be for an open TASEP (for α < 1/2); see Fig. 4.

B. High-density phase

Proceeding similarly for HD phase, we find

ρHD = 1 − β +
β
(
1 − 1−β

μ

)
1 + β

μ

= μ

β + μ
. (8)

Thus, ρHD can be more or less than 1 − β, the HD phase bulk
density in an open TASEP with an exit rate β. See Fig. 5
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FIG. 3. Plots of ρ(x) in the LD phase with different values for the
parameters: μ = 1000, α = 0.2, and β = 1500, and μ = 1, α = 1/2,
and β = 2. Continuous lines represents the MFT predictions (see
text), discrete points are the corresponding MCS results. Very good
agreements between the MFT and MCS predictions are found. No-
tice that for μ = 1000, bulk density ρLD is very close to α, whereas
for μ, it is substantially less than α (see text). Unsurprisingly, ρLD is
independent of β.

with (μ = 2, α = 0.2, and β = 0.25), (μ = 1000, α = 0.2,
and β = 200), and (μ = 1000, α = 0.2, and β = 200).

As revealed by Eq. (8), ρHD approaches unity (and hence
independent of β) as μ becomes large; see Fig. 6. This is in
contrast with and marks a significantly departure from an open
TASEP.

C. Maximal current phase

The MC phase is characterized by ρ(x) = 1/2 in the bulk
as shown in Fig. 7. Hence, at the transition between LD to MC
phase ρLD = 1

2 . This gives the condition

α = 1

2 − 1
μ

. (9)
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FIG. 4. Plot of ρLD vs μ for a given α = 0.2. The continuous
black line represents the MFT result given by Eq. (7); the points
represent the MCS data. Clearly ρLD approaches α as μ grows (see
text). Very good agreements between the MFT and MCS predictions
are found.
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FIG. 5. Plots of ρ(x) in the HD phase for μ = 2, α = 0.2 and
β = 0.25, and μ = 1000, α = 0.2, and β = 200, and μ = 1, α = 2,
and β = 1/2. Continuous lines represent the MFT predictions (see
text); discrete points are the corresponding MCS results. Very good
agreements between the MFT and MCS predictions are found. No-
tice that ρHD can be both smaller or larger than 1 − β (see text).
Unsurprisingly, ρHD is independent of α.

Since α > 0 by definition, μ must be larger than 1/2 for
the boundary (9) to exist. In fact, there is no MC phase if
μ < 1/2, in agreement with our heuristic argument above.
Notice that the boundary (9) between the LD and MC phases
is independent of β, and hence parallel to the β-axis in the
α-β plane; see the phase diagrams in Fig. 2, as obtained from
our MFT as well as our MCS simulation studies.

Similarly, at the transition between HD to MC phase, one
has ρHD = 1

2 , which in turn gives

β = μ. (10)

The boundary (10) between the HD and MC phases is again a
straight line in the α-β plane, in this case parallel to the α-axis,
as can be seen in the phase diagrams in Fig. 2.
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(see text). Very good agreement between MFT and MCS results are
found.
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D. Shock phase and domain walls

The transition between the LD and the HD phases is
marked by the condition

ρLD + ρHD = 1, (11)

which is equivalent to αe = βe. In open TASEPs, this transi-
tion is marked by a single delocalized domain wall (DDW)
that spans the whole length of the TASEP. This is usually
attributed to uncorrelated entry and exit events in an open
TASEP. In the present model, there is a strict number con-
servation. This leads to a localized domain wall (LDW), as
opposed to a DDW in an open TASEP [14,18]. Similar LDWs
or pinning of domain walls were found in previous studies
on TASEPs with fixed resources, where the exit rates were
taken to be constants [4–8]. We discuss the principle behind
the formation of these domain walls and their pinning below;
see also Refs. [4–8].

In order to characterize the SP fully, we must obtain the
domain wall height � and the domain wall position xw as
functions of the model parameters. From particle number
conservation, we get

N0 = L
∫ 1

0
ρ(x) dx + N. (12)

This implies

μ =
∫ xw

0
dx αe +

∫ 1

xw

(1 − βe) dx + N/L

= αexw + (1 − βe)(1 − xw ) + N/L

= Nα

N0
xw + 1 − xw − β

(
1 − N

N0

)

+β

(
1 − N

N0

)
xw + N

L
. (13)

At the LD-HD coexistence, we have

αe = βe. (14)

This gives

α
N

N0
= β

(
1 − N

N0

)
,

⇒ (α + β )
N

N0
= β,

⇒ N

N0
= β

α + β
. (15)

Thus, N/N0 is independent of μ. Hence,

αe = αβ

α + β
= βe. (16)

Using the above equation in (13) for μ we write

μ = xwα
β

α + β
+ 1 − xw − β + β

β

α + β

+βxw − xwβ
β

α + β
+ μ

β

α + β
. (17)

Simplifying the above equation we get

xw = μα − α − β + αβ

2αβ − α − β
. (18)

This gives the position of DW. Note that for fixed α, β,
xw changes continuously with μ. For the SP phase to exist,
0 < xw < 1. For HD to SP transition xw = 0, which in turn
implies

β = α(μ − 1)

1 − α
. (19)

For LD to SP transition xw = 1, which implies

β = μ. (20)

In the α-β plane, (19) is clearly not a straight line in general,
where (20) is a straight line. See the phase diagrams in Fig. 2.
For μ = 1, the phase boundary is, however, a straight line; see
Fig. 2(b). The SP phase is thus confined between the lines (20)
and (19), and hence covers a region in the α-β plane.

We now find the height of the domain wall. Noting that
at the entry side, ρ(x) has a mean value ρLD = αe, whereas
on the exit side, ρHD = 1 − βe = 1 − αe, since αe = βe for a
domain wall to exist, we find the domain wall height � as

� = ρHD − ρLD = 1 − 2αe = 1 − 2
αβ

α + β
. (21)

See Fig. 8 for plots of LDW for various values of the model
parameters.

It is clear from these figures that the LDW height � is a
function of α, β, but does not depend upon μ [cf. Eq. (21);
see also Fig. 9]. In contrast, its position xw depends on all
three of α, β, and μ [cf. Eq. (18)]. In fact, from Eq. (18), we
note that if α = 1/2, xw = β − (μ − 1), a straight line as a
function of β, but is a generic nonlinear function of β for all
other values of α; xw retains a linear dependence on μ for all
α, β within SP.
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FIG. 8. LDW in T for different values of β with (a) μ = 0.6, α = 2.0, (b) μ = 1, α = 0.5, (c) μ = 2, α = 0.2, and (d) μ = 1000, α = 0.2.
Continuous black line represents the MFT prediction (see text), points in various colors are the corresponding MCS results.

In Fig. 10 and Fig. 11, we have shown the dependence of
xw and � on β for given α, μ, as obtained from our MFT and
MCS studies.

The reason that � is independent of μ lies in Eq. (15),
which shows that the reservoir occupation N does not depend
upon μ in the SP phase. Thus, as μ is varied within the
SP phase, N does not change; as a result αe and βe do not
change which in turn leaves � unchanged. As μ changes N0,
however, changes. These extra or deficit particles are adjusted
by changing the position xw of the DW [23].
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0.84
0.842

0.6 0.8 1 1.2 1.4 1.6 1.8 2

∆

μ

α=0.1,β=0.5

FIG. 9. Plot of � vs μ for α = 0.1, β = 0.5. The continuous line
represents the MFT result for � given by Eq. (21); the discrete points
are the corresponding MCS results. Very good agreements between
MFT and MCS results can be seen. Clearly, � does not depend on μ

within SP (see text).

E. Phase boundaries meet a common point

All four phase boundaries meet at a common point
(αc, βc) = (μ/(2μ − 1), μ), which is a multicritical point, as
we explain below in the next section. It is, however, useful
to consider the “distance” d between the origin (0, 0) and
(αc, βc) as a function of μ: We find

d =
√

μ2

(2μ − 1)2
+ μ2. (22)

Thus, d diverges when μ → 1/2 from above, or when μ →
∞; see Fig. 12 for a plot of d (μ) versus μ. Both MFT and
MCS results are shown, which agree well with each other.

In the limit of infinite capacity, i.e., μ → ∞, (αc, βc) →
(1/2, ∞). Since βc → ∞, the latter phase essentially is con-
fined to the β-axis (see Sec. IV F). On the other hand, as
μ → 1/2+, (αc, βc) → (∞, 1/2). Thus, for β < 1/2 and all
α, the TASEP shows an LDW, whereas for β > 1/2 and all
α, the system is in the LD phase. For μ < 1/2, αc becomes
negative, which is unphysical. As heuristically argued above,
this implies that for μ < 1/2, the system can only be in the LD
phase or SP, as there are not enough particles for HD or MC
phases. This can be understood easily. Since HD or MC phase
would require at least μ = 1/2 or more (assuming all particles
are in T , leaving the reservoir empty), with μ < 1/2, there are
enough particles just for LD and SP only.

The nature of the HD-SP boundary changes as μ crosses
unity, as is evident from Eq. (19). For μ < 1, α > 1 necessar-
ily. On the boundary, as α (> 1) grows, β decreases. In fact, in
the limit α → ∞, β → 1 − μ. In contrast for μ > 1, α < 1 at
the boundary since β cannot be negative. As α(< 1) reduces,
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FIG. 10. Plot of xw versus β for (top) α = 0.1 and (bottom) α =
0.5. The continuous line represents the MFT result for xw given by
Eq. (18); the discrete points are the corresponding MCS results. For
α = 0.1, the dependence of xw on β is not linear, whereas for α =
0.5, it depends linearly (see text). Very good agreements between
MFT and MCS results can be seen.

β also reduces. This explains the difference between the shape
of the HD-SP boundary in Fig. 2(a) (μ = 0.6 < 1) vis-à-vis
in the other phase diagrams in Fig. 2 with μ > 1. The phase
diagram in Fig. 2(b) for μ = 1 merits separate attention. At
μ = 1, (18) gives α = 1 as the boundary between the HD and
SP (since β �= 0). On the other hand, (20) gives β = 1 as the
boundary between LD and SP for μ = 1. With μ = 1, all the
four phases meet at (1, 1) in the α-β plane. This immediately
gives the phase diagram in Fig. 2(b).

F. Phases for infinite resources

We now find out the steady states with infinite resources,
i.e., diverging N0. This limit can be reached in two ways. For
instance, we could take the limit N0 → ∞, keeping the ratio
N/N0 fixed. This implies a fixed ρ/μ, where ρ is the mean
TASEP density. Now, for a fixed N/N0, functions f (N ) and
g(N ) do not change, and hence, for fixed α, β, ρ too remains
unchanged. Thus, in this way of taking the limit N0 → ∞, μ

in turn remains fixed. This is equivalent to making the size
L of the TASEP lane scaling with N0. In this case, αe and
βe remain fixed. Therefore, the steady-state density of the
TASEP lane too remains unchanged. Alternatively, one could
take the limit N0 → ∞ keeping L fixed, a situation mentioned
in Refs. [7,8]. In this case, N0 → ∞ implies μ → ∞. In this
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FIG. 11. Plot of � (top) versus α for β = 0.5 and μ = 0.6 and
μ = 1, (bottom) vs β for α = 0.5 and μ = 0.6 and μ = 1. The
continuous line represents the MFT result for � given by Eq. (21);
the points represent the corresponding MCS results, which overlap.
Very good agreements between the MFT and MCS results can be
seen.

case, αe and βe are expected to change. By using the logic of
the MFT constructed above, we can now infer the admissible
phases for μ → ∞. When μ → ∞, the reservoir occupation
N must also approach infinity, since almost every particle will
be in R in that limit. In the same limit of the existing models
for TASEPs with finite resources, the phase diagrams in the
plane of the parameters equivalent to α, β here approach that
for a single open TASEP; see, e.g., Refs. [7,8]. In our model,
as μ rises, the region of the phase space spanned by the HD
phase rises, a feature that is evident from the phase diagrams
presented above. Due to the crowding effect modeled here
by (2), βe → 0 and ρHD → 1 for any finite α; see Eq. (8).
Thus the TASEP channel should be nearly filled, with the HD
phase being the only possible phase for any finite α and β.
No other phase is to be observed, including no possibility
of any domain wall for any finite α and β. This makes it
significantly different from an open TASEP which can be in
LD, HD, or MC phases. That only the HD phase is possible
can be seen from the fact that the multicritical point (αc, βc)
moves to (1/2,∞) for μ → ∞. Thus the boundaries between
the SP and LD phases and HD and MC phases all move to
β = ∞. Further, the slope of the boundary between the SP
and HD phases, as given by Eq. (19), diverges as μ → ∞,
indicating that the shock phase essentially gets concentrated
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FIG. 12. Plot of d (μ) vs μ in the SP phase. The continuous line
represents the MFT result given by Eq. (22); the discrete points
are the corresponding MCS results. Clearly d diverges for when
either μ → 1/2, or μ → ∞, showing the absence of the four-phase
coexistence point as these two limits are approached (see text). Very
good agreement between MFT and MCS results is found.

on the β-axis, leaving the entire phase diagram to be spanned
by the HD phase for any finite α and β. This is clearly in
contrast to the existing models and is essentially an outcome
of the reservoir population-dependent coupling between the
effective entry and exit rates.

V. PHASE TRANSITIONS IN THE MODEL

Phase diagrams in Fig. 2 all have different phases separated
by sharp phase boundaries. We now discuss the nature of the
transitions across these phase boundaries. In an open TASEP,
the transitions between the LD and HD phases are accom-
panied by a sudden jump in the bulk density in the TASEP,
which indicates a first-order transition with the steady-state
bulk density acting as the order parameter. The corresponding
phase boundary is characterized by a single DDW. In the same
vein, the transitions between the LD or HD and MC phases are
second-order transitions, with the density changing smoothly
at the phase transition. In the phase diagram of an open
TASEP, three phase boundaries—two second-order (LD-MC
and HD-MC) and one first-order (LD-HD) boundary—meet
at a multicritical point. In contrast, the phase diagrams for
the present model generically all have four phase boundaries,
one each for the transition between LD-MC, LD-SP, MC-HD,
and SP-HD phases. Notice that, unlike for an open TASEP,
there is no phase boundary that acts as the boundary between
the LD and HD phases. In other words, as one moves in the
parameter space, one cannot directly move from the LD to
the HD phases and vice versa. Again taking the steady-state
bulk density as the order parameter, we note that the density
changes smoothly across all four phase boundaries. Thus, all
the transitions and the associated phase boundaries represent
second-order transitions. This can be easily seen in Fig. 13,
where we have plotted the mean density (a) ρα as a function
of α for a fixed β and μ, and (b) ρβ as a function of β for a
fixed α and μ. In Fig. 13(a) the values of ρα (β = 1) in their SP
phases are calculated from the respective density profiles by
using (18) and (21) for given α, β, and μ, and then averaging
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FIG. 13. Plots of the mean density as a function of (a) α for fixed
β = 1, 3, and μ = 2, and (b) β for fixed α = 1/2, 1 and μ = 2. In
(a) ρ changes smoothly from SP to HD (β = 3) with ρ becoming
independent of α, and LD to MC (β = 1) with ρ = 1/2. In (b) ρ

changes smoothly from HD to MC (α = 1) with ρ = 1/2, and SP
to LD (α = 1/2) with ρ becoming independent of β. MFT (lines)
and MCS (points) are shown, which show good agreement; see text.
MFT (continuous lines) and MCS (discrete points) show very good
agreement.

over the system, which matches smoothly the corresponding
bulk density in the HD phase that is independent of α as
given by (8) and the LD phases values (7) of ρα (β = 3)
match smoothly with its MC phase value (=1/2). Likewise in
Fig. 13(b) the values of ρβ (α = 0.5) in their SP phases match
smoothly with the corresponding LD phase values given by
(7) and ρβ (α = 1) in HD phases matching smoothly the MC
phase. These clearly demonstrate smooth changes in the mean
density across the phase transitions.

All these four second-order lines meet at a multicritical
point (αc, βc). This feature of the phase diagram is similar
to that in the model studied in Refs. [8,18], and in one of the
models studied in Refs. [14]. Last, for μ < 1/2, there are only
two phases—LD and SP—possible, and the multicritical point
naturally ceases to exist for μ < 1/2.

VI. NATURE OF THE DOMAIN WALLS

As a consequence of the strict particle number conserva-
tion, MFT gives the precise location of the DW [see Eq. (18)],
implying an LDW; see Fig. 8 for representative plots of LDW
for various values of the model parameters. It is clear that the
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domain wall is always sharply pinned for all the choices of
μ. This is in contrast to a DDW in an open TASEP that has
no particle number conservation in it. Still, the LDW does
fluctuate about its mean position, as the particle number con-
servation applies on the whole system, and not on the TASEP
segment, leaving the particle content in the TASEP to fluctuate
(subject to maintaining the overall conservation). Indeed, it
was shown recently [14] that in a ring geometry consisting of
a TASEP segment and a diffusive segment, in certain limits of
the model parameters when the variance of the TASEP particle
content scales with the size of the TASEP or the relative
particle content of the diffusive segment, the LDW gets de-
pinned and takes a form identical to that of a DDW in an open
TASEP. This was explained in terms of the attendant diverging
particle fluctuations in the TASEP segment necessary for the
formation of a DDW [14]. It was further demonstrated that
this transition from an LDW to a DDW is a smooth crossover
with the LDW fluctuations increase gradually with the extent
of particle number fluctuations in the TASEP segment, which
in turn grows with the size of the diffusive segment, or the
relative particle content of the diffusive segment. Analogous
to the studies in Ref. [14], it is expected that with rising μ, i.e.,
with increasing total particle numbers in the system, the LDW
fluctuations should increase leading to its eventual delocaliza-
tion and formation of a DDW. Surprisingly and unexpectedly,
no such tendency towards eventual delocalization of the LDW
has been observed in the MCS studies of the present model.
We now explain this unexpected lack of delocalization by
systematically studying its fluctuations.

To proceed further, we need to go beyond the MFT descrip-
tion developed above, and we now analyze the domain wall
fluctuations. For this, we closely follow Refs. [19,22] in this
section. We consider a domain wall with a position at xw, that
fluctuates in time. With � as the height of the DW, increasing
the number of particles by one implies shifting the instanta-
neous DW by δxw = −1/(L�). Similarly, a particle exiting
the TASEP means shifting the DW by δxw = +1/(L�). Let
P(xw, t ) be the probability of finding the DW at xw at time
t . Then, following Refs. [19,22], we find that P satisfies the
Fokker-Planck equation

∂P

∂t
= D

∂2

∂y2
P, (23)

where y ≡ δxw and D is a diffusion constant given by

D = 1
2 [αe(1 − αe) + βe(1 − βe)]. (24)

As shown above, in the limit μ → ∞, 1 − βe = ρHD → 1.
This implies βe → 0. Since αe = βe for a DW, we must have
αe → 0 as well. Thus, D → 0 for μ → ∞. Therefore, the
corresponding timescale of fluctuations 1/D diverges for a
fixed L. Thus, even for a finite L, the typical time required
for the DW to traverse the whole of TASEP of size L diverges,
making any delocalization essentially unobservable.

VII. SUMMARY AND OUTLOOK

In this article, we have explored the “crowding effect” of
the reservoir on the attached TASEP within a simple model,
that to our knowledge has previously not been investigated.
To this end, we have studied the nonequilibrium steady states

of a TASEP connected at both its ends to a reservoir without
any internal dynamics. Both the effective entry and exit rates
to and from the TASEP, respectively, depend on the reservoir
occupation number, that in turn creates a dynamical coupling
between the two rates, a key ingredient of our model. The
dynamically controlled effective rates ensure that a rising
reservoir occupation can hinder flow of particles from TASEP
back to the reservoir, but facilitates particle flow into TASEP
and vice versa, a property that we have named the “crowding
effect” of the reservoir. We have focused on how the total par-
ticle number conservation conspires with the crowding effect
to ultimately control the steady-state density profiles and the
phase diagram of the TASEP. This model generically shows
a static or pinned domain wall or a single LDW, unlike for
an open TASEP. Furthermore, the shock phase, where such an
LDW is expected to be observed, is no longer a single line as
for an open TASEP, but rather covers a region in the parameter
space spanned by the two entry and exit rate parameters. As
a result, all the transitions in this model are second order in
nature. The LDW, rather unexpectedly, does not show any
tendency to delocalize even for large resources, in contrast to
the results of Ref. [14]. This is explained as a consequence
of the form of the dynamic coupling between the entry and
exit rate. While it is naïvely expected that in the limit of a
very large particle number, this model should reduce to an
open TASEP, for in that limit, the effects of particle number
conservation should not be relevant, and we show that it does
not happen: the large density limit of this model is distinct
from an open TASEP, as it still allows only an LDW and not a
DDW. This is primarily a consequence of the crowding effect,
as argued here, which is never present in an open TASEP. We
have used analytical MFT and MCS studies for our work and
find very good agreement between the MFT and MCS results,
which lends credence to our MFT.

The precise forms of the phase boundaries that we obtained
do depend upon the choices of the specific forms for the func-
tions f and g that we have chosen to work with; see Eq. (2)
together with Eqs. (3) and (4). It behooves us to discuss the
degree of generality of our results. We notice that in a variant
of this model, if the sum f + g is any positive number k �= 1,
it can be reduced to our model by appropriately rescaling
f and g, together with α and β. Thus, the structure of the
phase diagrams will remain unchanged when considered in
terms of rescaled α and β. One could additionally conceive
other more drastic variants of the model, where (2) is replaced
by nonlinear relations between f and g, while maintaining
the general properties of f and g of being increasing and
decreasing functions of the instantaneous reservoir popula-
tion. While the mathematical forms of the phase boundaries
would change, depending upon the precise nonlinear analog
of (2), we expect the general qualitative features of the results
from our model should continue to hold. For instance, all four
phases of our model should be present in some regions of the
phase space. We also expect to have only LD or SP phases
for very low μ, whereas for very high μ, no delocalization of
domain walls is expected. The MFT that we have developed
here can be straightforwardly extended to study the effects of
various nonlinear variants of (2). Our model may be gener-
alized by changing the precise dependence of αe and βe on
the reservoir occupation; one could study the sensitivity of
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the phase diagram on these dependences. Again, we expect
the general conclusions drawn here to hold qualitatively, so
long as the monotonic dependences of f and g on N are
maintained. It would also be interesting to study the effects
of using a different value for the scale N∗. We have used
a simple mean-field description to build the broad physical
picture of the properties of this model. Applications of more
sophisticated analytical methods, e.g., matrix product ansatz
[24] or Bethe ansatz [25], successfully applied elsewhere,
should be considered in the future.

It would be interesting to introduce diffusive exchanges
or Langmuir kinetics between the reservoir and the bulk of
the TASEP that do not violate the global conservation of
particles, but break it locally in the bulk of the TASEP, and
see whether the phase diagram can be changed significantly
or new phases can emerge. We have assumed the reservoir to
be a point, devoid of any spatial extent and internal dynamics.

While this makes the ensuing calculations simple and analyt-
ically tractable, this makes it an idealization of more complex
situations where internal reservoir dynamics is generically
expected. This may be incorporated by using and suitably
modifying some of the models studied in Ref. [14]. In addi-
tion, multiple TASEP lanes and multiple species of particles
along with reactions between them would be an interesting
future study that couples driven reactions with overall particle
number conservation and crowding effects.
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change in μ to μ′ would result in the system moving to the
LD [if αe(μ′) < βe(μ′)] or HD [if αe(μ′) > βe(μ′)] phases
completely. This necessarily leads to a rise in the steady state
current. On the other hand, with possibility (iii) all the excess or
deficit particles are accommodated by shifting the domain wall
position xw keeping the height � intact (and also keeping the
reservoir occupation N intact). This ensures that the current is

unchanged, independent of μ within the SP phase. Thus, within
a minimum steady state current principle, possibility (iii) is the
acceptable solution.
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