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Conundrum of weak-noise limit for diffusion in a tilted periodic potential
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The weak-noise limit of dissipative dynamical systems is often the most fascinating one. In such a case
fluctuations can interact with a rich complexity, frequently hidden in deterministic systems, to give rise to
phenomena that are absent for both noiseless and strong fluctuations regimes. Unfortunately, this limit is also
notoriously hard to approach analytically or numerically. We reinvestigate in this context the paradigmatic
model of nonequilibrium statistical physics consisting of inertial Brownian particles diffusing in a tilted periodic
potential by exploiting state-of-the-art computer simulations of an extremely long timescale. In contrast to
previous results on this longstanding problem, we draw an inference that in the parameter regime for which
the particle velocity is bistable the lifetime of ballistic diffusion diverges to infinity when the thermal noise
intensity tends to zero, i.e., an everlasting ballistic diffusion emerges. As a consequence, the diffusion coefficient
does not reach its stationary constant value.
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I. INTRODUCTION

Deterministic nonlinear dynamical systems are of
paramount importance due to their vast applications in a
broad spectrum of scientific disciplines [1]. Their nonlinear
nature allows for a rich complexity which is not present in
linear systems. One of the reasons behind it is the validity
of the superposition principle for linear systems, which
states that the response caused by two or more perturbations
is the sum of the reactions that would have been induced
by each stimulus individually. Nonlinear setups are known
to exhibit unusual behavior such as chaos, in which the
deterministic nature of a system does not make it predictable
[2]; multistability, when two or more stable states are present
in the setup dynamics [3]; limit cycles, the existence of
asymptotic periodic orbits to which a perturbed system is
attracted [1]; and solitons, self-reinforcing wave packets [4],
to name only a few.

On the other hand, in the past four decades it has been
understood that noise can produce qualitative changes in the
properties of a deterministic system [5]. Random fluctua-
tions acting upon a nonlinear setup out of equilibrium may
have particularly far-reaching consequences. This is due to
the fact that equilibrium is ruled by various thermodynamic
laws and symmetries, e.g., detailed balance, which generally
lose their validity out of equilibrium. There are two main
ways in which noise can interact with nonlinearity to render
counterintuitive behavior. First, fluctuations can help a mul-
tistable system cross a potential barrier separating different
stable states. If, for a finite dose of noise, the random crossing
times statistically match a deterministic timescale of the sys-
tem, a more regular behavior may emerge, e.g., in the form
of (quasi)periodicity. This is the basic mechanism standing
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behind phenomena such as stochastic resonance [6,7] and
coherence resonance [8,9]. Second, fluctuations can destabi-
lize stationary states existing in the nonlinear dynamics and
induce new states which could correspond to qualitatively and
quantitatively different evolution. The latter observation is the
modus operandi of phenomena like noise-induced transport
[10,11], negative mobility [12–15], or recently discovered
fluctuation-induced dynamical localization [16,17] causing
anomalous diffusion [18] in systems which at the first glance
cannot react in this way.

In this context, particularly interesting is a limiting situa-
tion of weak noise interacting with a deterministic nonlinear
system. When the intensity of fluctuations is too high they
usually smear the dynamics too much so that the impact
of deterministic evolution is barely visible if not completely
irrelevant. In this way a rich complexity often hidden in
a noiseless nonlinear system is destroyed. Unfortunately,
the weak-noise limit is also notoriously hard to approach.
Dynamical systems under the influence of fluctuations are
often successfully modeled by the Fokker-Plank equation [19]
whose time-independent solutions corresponding to the steady
states are the most relevant. Mathematically, the weak-noise
limit of the time-independent solutions of the Fokker-Planck
equation is the most problematic one. The reason is that then
actually two limits are involved: Time tends to infinity, in
which the steady state is approached, and the weak-noise limit
must be carried out after the limit t → ∞.

In this paper we reinvestigate the paradigmatic model
of nonequilibrium statistical physics, namely, underdamped
Brownian motion in a biased periodic potential to analyze dif-
fusion in the weak-noise limit. This setup is isomorphic with
many important physical systems [19] such as the Josephson
junction [20], dipoles rotating in external fields [21], supe-
rionic conductors [22], charge density waves [23], and cold
atoms dwelling in optical lattices [24], to mention only a few.
In view of the above discussion, it is not surprising that the
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asymptotic analytical methods have not yet been elaborated
for this system and one needs to rely solely on numerical
results. Consequently, there are many mutually contradictory
results in the literature concerning the conundrum of the
weak-noise limit for diffusion in a tilted periodic potential.
Here we exploit the state-of-the-art computer simulations of
an extremely long timescale to draw an inference about this
longstanding problem.

The paper is organized as follows. In Sec. II we recall
the formulation of the model and introduce the dimensionless
quantities. In Sec. III we describe the basic features of the
deterministic dynamics. In Sec. IV we introduce the diffusion
quantifiers and discuss the state of the art of the weak-noise
limit. In Sec. V we first comment on the everlasting anoma-
lous diffusion occurring in this system. Next we debate the
weak-ergodicity breaking and the relation between the diffu-
sion coefficient and the residence probabilities in two states of
the velocity dynamics. In Sec. VI we discuss the finite-time
measurements of the diffusion coefficient that is important
from an experimental point of view. Section VII provides a
summary and conclusions.

II. MODEL

In this paper we revisit the problem of diffusion in a tilted
periodic (also named washboard) potential. We consider a
classical Brownian particle of mass M, moving in a spatially
periodic and symmetric potential U (x) = U (x + L) of period
L and subjected to a constant biasing force F . The dynamics
of this system can be described by the Langevin equation

Mẍ + �ẋ = −U ′(x) + F +
√

2�kBT ξ (t ), (1)

where the overdot and the prime denote differentiation with
respect to time t and the particle coordinate x, respectively.
The parameter � is the friction coefficient and kB is the
Boltzmann constant. The spatially periodic potential U (x) is
assumed to be in one of the simplest forms, namely,

U (x) = −�U sin

(
2π

L
x

)
, (2)

where �U is half of the barrier height and L is the spatial
period. Thermal fluctuations due to the coupling of the par-
ticle with the thermal bath of temperature T are modeled by
δ-correlated Gaussian white noise ξ (t ) of zero mean and unit
intensity, i.e.,

〈ξ (t )〉 = 0, 〈ξ (t )ξ (s)〉 = δ(t − s). (3)

The noise intensity factor 2�kBT in Eq. (1) follows from the
fluctuation-dissipation theorem [25], which ensures that the
equilibrium counterpart of the system given by Eq. (1) obeys
the canonical Gibbs statistics.

In physics only the relations between scales of time, length,
and energy appearing in physical laws but not their absolute
values play a crucial role in determining the progress of ob-
served phenomena. Therefore, as the first step we transform
Eq. (1) into its dimensionless form. This aim can be achieved
in several ways depending on the choice of the timescale
[26]. Here we define the dimensionless coordinate x̂ and

dimensionless time t̂ in the following manner:

x̂ = 2π

L
x, t̂ = t

t1
, t1 = L

2π

√
M

�U
. (4)

The characteristic time t1 is the inverse of frequency of small
oscillations in the well of the potential U (x).

Under the above scaling, Eq. (1) is transformed to the form

¨̂x + γ ˙̂x = cos x̂ + f +
√

2γ θξ̂ (t̂ ), (5)

where now the overdot denotes differentiation with respect to
dimensionless time t̂ . We note that the dimensionless mass is
m = 1 and the remaining rescaled parameters are

γ = t1
t2

= 1

2π

L√
M�U

�, f = 1

2π

L

�U
F. (6)

The second characteristic time is t2 = M/�, which for a free
Brownian particle defines the velocity relaxation time. The
rescaled temperature θ is given by the ratio of thermal energy
kBT to half of the activation energy the particle needs to
overcome the original potential barrier �U , i.e.,

θ = kBT

�U
. (7)

The dimensionless thermal noise ξ̂ (t̂ ) assumes the same sta-
tistical properties as ξ (t ), namely, it is a Gaussian stochastic
process with vanishing mean 〈ξ̂ (t̂ )〉 = 0 and the correlation
function 〈ξ̂ (t̂ )ξ̂ (ŝ)〉 = δ(t̂ − ŝ). From now on we will use only
the dimensionless variables and will omit the hat in all quan-
tities appearing in the Langevin equation (5).

III. DETERMINISTIC DYNAMICS

We recall the basic transport properties of the deterministic
counterpart of the system, i.e., when θ = 0. For sufficiently
large friction coefficient, we can neglect the inertial effects,
namely, omit the ẍ term in Eq. (5). Then in the deterministic
limit the particle performs a creeping motion. If the tilted
potential U (x) = − sin x − f x exhibits minima, the particle
is pinned in the local minimum at large time and its average
velocity is E[v] = 0, where

E[v] = lim
t→∞

1

t

∫ t

0
ds ẋ(s) (8)

stands for a time-averaged velocity for a single trajectory of
the system. This solution is termed the locked state. If the
bias f is large enough and minima cease to exist, the particle
slides down the tilted potential U (x) and its average velocity
is nonzero E[v] > 0. Such a solution is termed the running
state. For a smaller friction coefficient inertial effects become
significant. If the potential U (x) minima exist in this regime,
the locked solution may emerge. Moreover, because of
inertia, the Brownian particle may overcome the potential bar-
riers if the damping is small enough and the running solutions
can occur. Such a regime is called bistable and the occurrence
of the locked or running state depends on the particle’s initial
state. This effect is well known since the work of Vollmer
and Risken [27]. To observe average velocity bistability, for
a given friction coefficient the constant force must be in the
range f1(γ ) < f < f3 = 1, where f1 is the minimal value for
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FIG. 1. Phase diagram for the occurrence of the velocity bista-
bility phenomenon in the deterministic system presented in the
dimensionless parameter plane (γ , f ). Due to this effect, in the
gray area, the ballistic diffusion emerges in the deterministic limit
of vanishing temperature. The dashed horizontal and vertical lines
correspond to f = 0.9 and γ = 0.66, respectively. This regime is
analyzed in the paper.

which the running state starts to appear for the deterministic
system [19]. In Fig. 1 we reproduce the phase diagram for
the occurrence of the average velocity bistability phenomenon
in the dimensionless parameter plane (γ , f ). This effect is
observed only if the bias f lies in the gray area.

IV. OVERVIEW OF DIFFUSION IN
A WASHBOARD POTENTIAL

A. Diffusion quantifiers

The most fundamental quantity characterizing the diffusion
process is the mean square deviation (variance) of the particle
coordinate x(t ), namely [19],

〈�x2(t )〉 = 〈[x(t ) − 〈x(t )〉]2〉 = 〈x2(t )〉 − 〈x(t )〉2, (9)

where 〈·〉 indicates averaging over all thermal noise realiza-
tions as well as over initial conditions for the position x(0)
and velocity v(0) = ẋ(0) of the Brownian particle. In the
long-time limit the variance typically becomes an increasing
function of the elapsing time [18]

〈�x2(t )〉 ∼ tα. (10)

The exponent α specifies the diffusion process. Normal dif-
fusion is observed for α = 1. The case 0 < α < 1 is termed
subdiffusion, while α > 1 describes superdiffusion [18].

One can also define the time-dependent diffusion coeffi-
cient D(t ) as [28]

D(t ) = 〈�x2(t )〉
2t

. (11)

Note that the time-decreasing D(t ) corresponds to subdif-
fusion, whereas superdiffusion occurs when D(t ) increases.
When the exponent α approaches unity D(t ) = const and we
deal with normal diffusion [28], i.e.,

D = lim
t→∞ D(t ) < ∞. (12)

As a result, the diffusive behavior of the system is fully char-
acterized only by specifying both the power exponent α and
the diffusion coefficient D(t ).
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FIG. 2. Diffusion coefficient D versus bias f for different values
of temperature θ of the system. The gray shaded region shows the
interval [ f1, f3] where, in the deterministic system, the bistability of
the velocity dynamics occurs. The orange regions shows the critical
bias f range [ fgd,−, fgd,+] for which, according to the two-state
theory presented in [50], the diffusion coefficient tends to infinity
D → ∞ when temperature vanishes θ → 0. The dimensionless fric-
tion coefficient is γ = 0.66.

B. Riddle of weak-noise limit

The study of various aspects of Brownian motion in a
washboard potential has a long history (see, e.g., [19]). This
system constitutes a beautiful paradigm of a simple nonlinear
system exhibiting interesting classical and quantum phenom-
ena and still remains a vibrant topic of current research
[29–40]. The reason behind it is its underlying complexity,
which at the first glance is unnoticeable. Remember that the
Fokker-Planck equation for the particle probability distribu-
tion P(x, v, t ) corresponding to Eq. (5) is a second-order
partial differential equation of a parabolic type whose param-
eter space is three dimensional {γ , f , θ} and exact solutions
are generally unattainable. Nevertheless, some interesting
asymptotic and/or limiting cases have been investigated and
analytically solved (see, e.g., [19,41–46]).

Despite many years of active research on this system, one
problem still remains unsolved: the weak-noise limit for dif-
fusion in a tilted periodic potential. Amplification of diffusion
D by orders of magnitude over the bare diffusion coefficient
D0 = θ/γ of a free particle was first observed over 20 years
ago in [47]. The authors attributed it to bistability of the veloc-
ity dynamics and reported the bell-shaped dependence of the
diffusion coefficient on the constant force. In Ref. [48] it was
suggested that the maximal diffusion coefficient Dmax grows
with inverse temperature like a power law Dmax ∼ T −3.5 and
that the force range of diffusion enhancement shrinks to zero
when approaching zero temperature θ → 0. It was disputed
in [49], where it was argued that the increase of D follows
rather an exponential dependence on the inverse temperature
Dmax ∼ T 2/3exp(ε/kBT ), where ε is an effective barrier for
the bistable velocity dynamics. Moreover, the authors reported
that when temperature decreases to zero the diffusion coef-
ficient D tends to zero as well (strong-damping regime) or
it increases (weak-damping regime). In Ref. [50] a two-state
theory was used to determine, for all values of the friction
coefficient γ , the range of forces [ fgd,−, fgd,+] (cf. Fig. 2)
in which the diffusion coefficient increases to infinity as
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temperature decreases to zero, Dmax ∼ T 0.22exp(ε/kBT ). The
authors also indicated that, outside this interval, D possesses
a pronounced maximum as a function of temperature and it
goes exponentially to zero for θ → 0. The width of the orange
region of giant enhancement of diffusion was found to be a
nonmonotonic function of the friction coefficient γ possessing
a distinct maximum. The last claim was discussed later in
[51,52], where the dependence of D on various parameters
of the model was discussed and it was suggested that the
width of this interval decreases linearly with γ . Finally, very
recently we [53] followed a different approach and focused on
moderate- to high-temperature regimes to construct a phase
diagram for the occurrence of the nonmonotonic temperature
dependence of the diffusion coefficient. The latter result ex-
tends the predictions contained in [50]; however, it barely
touches the weak-thermal-noise limit. Finally, in Ref. [54] we
show that the real-time velocity dynamics in this system is not
bistable but rather multistable.

The above brief discussion illustrates that the conundrum
of a zero-temperature limit for diffusion in a tilted periodic
potential has still not been satisfactorily resolved and there
are many mutually contradictory results in the literature. The
reason behind it probably lies in the fact that transitions be-
tween the velocity states are driven by thermal noise whose
intensity is γ θ . Therefore, regimes of low damping γ and/or
temperature θ require exponentially larger simulation times
to sample the state space of the system reliably. Preferably,
asymptotic analytical methods should be employed; however,
these have not yet been developed. In this paper we want to
debate the longstanding issue of the weak-thermal-noise limit
by exploiting the state-of-the-art computer simulations of an
extremely long timescale (discussed below).

V. RESULTS

Since we cannot solve analytically the Fokker-Planck
equation corresponding to Eq. (5) we had to resort to com-
prehensive numerical simulations. All numerical calculations
have been done by the use of a compute unified device ar-
chitecture environment implemented on a modern desktop
graphics processing unit (GPU). This procedure allowed for
a speedup of a factor of the order of 103 times as compared
to the present-day central processing unit method [55]. The
quantities characterizing the diffusive behavior of the sys-
tem were averaged over the ensemble of 105 trajectories,
each starting with different initial condition x(0) and v(0)
distributed uniformly over the intervals [0, 2π ] and [−2, 2],
respectively.

The Langevin equation (5) was integrated using a second-
order predictor-corrector scheme [56] with the time step h =
10−2. Since we are interested not only in a short time be-
havior of the system, but also its asymptotic state, numerical
stability is an extremely important problem to obtain reliable
results. Hopefully, the predictor-corrector algorithm is simi-
lar to implicit methods but does not require the solution of
an algebraic equation at each step. It offers good numerical
stability, which it inherits from the implicit counterpart of its
corrector.

Each trajectory of the system was associated with its own
random number generator, which guaranteed independence

of the noise term between different realizations. Initial ran-
dom number generator seeds were chosen randomly using
a standard integer random generator available on the host.
On the GPU we implemented an XOR-shift random number
generator that allowed for a particularly efficient execution
requiring a very small code and state. Its parameters were
chosen carefully in order to achieve a period 264 − 1, which is
more than enough for this type of task.

A. Everlasting anomalous diffusion

The deterministic counterpart of the setup exhibits the
bistable velocity dynamics if for a given friction γ the bias is
in the range f1(γ ) < f < f3 = 1. When f < f1(γ ) only the
locked solution emerges, while for f > f3 the running state
occurs exclusively. Therefore, for these regions there exists
only one class of trajectories 〈x(t )〉 ∼ E[v]t , with E[v] = 0
or E[v] > 0, respectively. Consequently, there is no spread of
trajectories and the diffusion coefficient must vanish outside
the gray region in Fig. 1, i.e., D = 0 when θ = 0 and like-
wise D → 0 if θ → 0. In the bistable region (inside the gray
area) the diffusion is ballistic in the deterministic regime. The
contribution comes from the spread between the locked and
running trajectories and formally D = ∞ in Eq. (12). If the
temperature is nonzero, the diffusion coefficient D is nonzero
and finite in all three intervals of the bias f < f1, f ∈ [ f1, f3],
and f > f3. In the rest of the paper we limit our study to the
interval [ f1, f3], where the bistability of the velocity dynamics
occurs and for which there is no consensus on the weak-noise
limit.

In Fig. 3 we present the most basic characteristics de-
scribing the diffusive behavior of the system, namely, the
time-dependent diffusion coefficient D(t ) defined in Eq. (11),
which surprisingly has been missed in most of the recent
studies concerning this issue. It is depicted there for the
fixed representative friction γ = 0.66 (cf. Fig. 1) and differ-
ent values of the dimensionless temperature θ of the system
coded via the corresponding color. In Fig. 3(a) we show this
characteristic for the subcritical bias f = 0.85 ∈ [ f1, fgd,−],
in Fig. 3(b) the force taken from the critical region f =
0.9 ∈ [ fgd,−, fgd,+], and in Fig. 3(c) the supercritical bias
f = 0.94 ∈ [ fgd,+, f3] (cf. Fig. 2). We note that the timescale
of the presented evolution spans nine orders of magnitude of
the characteristic unit of time. One can observe there two
distinct regimes. The first one is visible in Fig. 3(b), i.e.,
for the bias f = 0.9 (see Fig. 1) lying in the critical interval
[ fgd,−, fgd,+]. In this regime D(t ) monotonically tends to its
time-independent stationary value D. First there is an initial
stage (0, τ1) of ballistic diffusion when the diffusion coef-
ficient increases linearly (note that the scale is logarithmic
for both axes) and next, for t > τ1, normal diffusion is ap-
proached. On the other hand, the second regime is observed
for the sub- and supercritical biases f [cf. Figs. 3(a) and 3(c)],
where, except at high temperature θ , the diffusion coefficient
D(t ) displays nonmonotonic relaxation towards its stationary
value. In the initial interval (0, τ1) the diffusion coefficient
D(t ) grows with time in a ballistic manner; next there is
an extended window (τ1, τ2) when it decreases, indicating
subdiffusion; and for t > τ2 it finally it reaches its steady
state. For sufficiently high temperature the relaxation pattern
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FIG. 3. Trajectory of the diffusion coefficient D(t ) depicted for
different (color-coded) values of the dimensionless temperature θ of
the system, with (a) subcritical force f = 0.85 ∈ [ f1, fgd,−], (b) crit-
ical bias f = 0.9 ∈ [ fgd,−, fgd,+], and (c) supercritical force f =
0.94 ∈ [ fgd,+, f3] (cf. Fig. 2). The friction coefficient is γ = 0.66.

of D(t ) is monotonic and the same as in the critical bias range
[ fgd,−, fgd,+].

Moreover, there are other similarities which are presented
in Fig. 4, where we depict the influence of temperature θ on
the crossover times τ1 and τ2 of the ballistic motion and subd-
iffusion, respectively. If the temperature decreases θ → 0 the
time interval of ballistic diffusion rapidly increases and tends
to infinity τ1 → ∞ regardless of the magnitude of the bias f .
This picture is consistent with the deterministic limit θ = 0,
where in the entire interval [ f1, f3] the velocity bistability
effect occurs, which serves as the backbone of the persistent
ballistic diffusion D(t ) → ∞. However, as it is displayed in
the figure, the crossover time τ1 depends on the static force
f . In the critical interval [ fgd,−, fgd,+] it is much larger than
outside it, e.g., for temperature θ = 0.006 the lifetime of

102

103

104

105

106

107

108

109

0.001 0.01 0.1

τ

θ

f=0.85

f=0.9

f=0.94

FIG. 4. Crossover times τ1 (solid lines) and τ2 (dashed lines) of
the ballistic motion and subdiffusion, respectively, versus the temper-
ature θ of the system for the subcritical f = 0.85, critical f = 0.9,
and supercritical f = 0.94 biases.

ballistic diffusion is τ1 ≈ 107 for the critical bias f = 0.9 ∈
[ fgd,−, fgd,+] and τ1 ≈ 104 for both the subcritical f = 0.85 ∈
[ f1, fgd,−] and the supercritical f = 0.94 ∈ [ fgd,+, f3] force.
We note that the crossover time τ1 is similar for the subcritical
and supercritical bias values. The time span of our com-
puter simulations allowed us to estimate even the crossover
time τ2 of subdiffusion occurring outside the critical interval
[ fgd,−, fgd,+]. For instance, for temperature θ = 0.01 the life-
time of ballistic diffusion is τ1 ≈ 103, whereas the crossover
time of subdiffusion is τ2 ≈ 107. Therefore, the duration of the
observed transient anomalous diffusive behavior is extremely
sensitive to temperature variation. Unfortunately, even though
our state-of-the-art computational method allowed us to ex-
plore an exceptionally long timescale of the system evolution,
we are still far from the truly low-temperature regimes. Our
results reveal that already for moderate thermal noise inten-
sity θ ≈ 0.001 the lifetime of the ballistic diffusion τ1 > 109.
However, certainly they are sufficient to draw an inference
about the conundrum of the weak-thermal-noise limit for dif-
fusion in a tilted periodic potential.

One can note that the everlasting anomalous diffusion and
the lifetime τ1 of superdiffusion can be explained in terms
of eigenvalues of the Fokker-Planck equation corresponding
to the Langevin equation (1). In Fig. 11.43(a) in Ref. [19],
the two lowest eigenvalues (say, λ0 and λ1) are depicted
in dependence on the bias f . The eigenvalues correspond
to characteristic times of the system and determine the rate
of approaching the stationary state and various stationary
expectation values. The crucial feature is that inside of the
bistability region, λ0 decreases to zero when temperature de-
creases to zero and λ1 approaches a nonzero value. This means
that the characteristic time τ0 = 1/λ0 → ∞ when θ → 0.
This time can be identified with the lifetime τ1 of superdif-
fusion, i.e., τ1 ∼ 1/λ0. It should be pointed out that in the
case of overdamped dynamics, the behavior of eigenvalues as
a function of the bias f is different (cf. Fig. 3 in Ref. [39]).

The results shown in Fig. 3 suggest that the time-dependent
diffusion coefficient D(t ) could be described by the relation

D(t ) ∼ D + E (t ), (13)
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where D is a steady-state constant diffusion coefficient defined
by Eq. (12). The function E (t ) has the following properties: (i)
E (t ) → 0 when t → ∞ for any θ �= 0 and (ii) its maximum
Emax = E (τ1) → ∞ and τ1 → ∞ when θ → 0, where τ1 is
the lifetime of ballistic diffusion. Even if for f ∈ [ fgd,−, fgd,+]
the diffusion coefficient D = D(θ ) → ∞ when θ → 0 and for
f ∈ [ f1, fgd,−] or f ∈ [ fgd,+, f3] the diffusion coefficient D =
D(θ ) → 0 when θ → 0, the function D(t ) → ∞ as θ → 0
and in practice it does not make sense to ask about the value
of D in the limit θ → 0 because then D is not well defined.

B. Weak-ergodicity breaking

For any nonzero temperature θ > 0 the system (5) is er-
godic, although the ergodicity is nontrivial since it is driven
by a degenerate noise [45]. At very low temperature the
whole phase space is still accessible because of thermally
activated escape events connecting coexisting deterministic
disjoint attractors; however, the time after it is fully sampled
is extremely long. If temperature tends to zero θ ∝ T → 0
the crossover time of superdiffusion monotonically increases
to infinity τ1 → ∞ and ergodicity is broken. In experiments
there is not much difference whether the system is nonergodic
or ergodic but exhibiting an unusually slow relaxation towards
its steady state. The latter situation occurring here is often cap-
tured as weak-ergodicity breaking [57]. It can be characterized
by the Deborah number De [58],

De = τ

T , (14)

which is the ratio of a relaxation time τ of a given observable
and the time of observation T . In the case of weak-ergodicity
breaking it diverges De → ∞. This can happen not only be-
cause T is short but also because τ is enormously long. In
our case the system behaves as weakly nonergodic for the
mean square deviation of the particle coordinate when the
superdiffusion lifetime τ = τ1 ∼ 1/λ0 is sufficiently large. As
we demonstrate in Fig. 4, this condition is quickly satisfied
when temperature θ goes down to zero.

C. Residence probabilities

The properties of the diffusion coefficient D shown in
Fig. 2 can be reformulated in terms of the stationary probabil-
ities pl and pr of finding the particle in the locked (E[v] = 0)
and running (E[v] > 0) states, respectively. Let us define the
quantifier Q = 1 − |pl − pr |, which, roughly speaking, char-
acterizes the difference between the number of locked and
running trajectories. We note that when Q �= 0 the locked and
running solutions coexist. If pl = pr , i.e., when both trajecto-
ries are equiprobable, then Q attains its maximal value Q = 1.

For the bistable velocity dynamics and any fixed nonzero
temperature θ there are three contributions to the spread of
trajectories of the system around its mean path and conse-
quently to the diffusion coefficient D. The first, which is the
leading one, is associated with the spread coming from the
relative distance between the locked and running solutions.
The second and third contributions are related to thermal-
noise-induced spread of trajectories following the locked and
running trajectories, respectively. The diffusion coefficient
D is maximal when the share of the first contribution is
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FIG. 5. Difference Q = 1 − |pl − pr | between the stationary
probability pl and pr of finding the particle in the locked (E[v] = 0)
and running (E[v] > 0) states, respectively, versus the bias f for
different values of the temperature θ of the system. The gray shaded
region shows the interval [ f1, f3] where, in the deterministic system,
the bistability of the velocity dynamics occurs. The orange region
shows the critical bias f range [ fgd,−, fgd,+] for which, according
to the two-state theory presented in [50], the diffusion coefficient
tends to infinity D → ∞ when temperature vanishes θ → 0. The
dimensionless friction coefficient is γ = 0.66.

peaked. This is the case for the equiprobable locked and
running trajectories, i.e., when Q = 1. We note that in the
zero-temperature limit θ → 0 the second and third contribu-
tions die out and only the first survives. Consequently, the
diffusion is ballistic. We exemplify the above observations
in Fig. 5 for θ = 0.01 by the vertical dashed line pointing
at f = 0.894, where the corresponding curve D( f ) in Fig. 2
is maximal. The resonancelike shape of the quantifier Q
provides an elegant yet insightful explanation for the giant
diffusion effect which has been overlooked in the literature.
Moreover, we pay attention to the fact that the bias f region
where the velocity bistability occurs is significantly modified
by temperature θ . When θ → 0 it tends to [ f1, f3] and not
to [ fgd,−, fgd,+]. We observe that for vanishing thermal noise
intensity the number of locked and running trajectories in
[ f1, f3] is of the same order and |pl − pr | is relatively small.
Consequently, 〈x(t )〉 ∼ 〈v〉t , the leading term in the mean
square displacement, is 〈�x2(t )〉 ∼ t2 and one observes the
persistent ballistic diffusion with D(t ) → ∞. Its constancy
is guaranteed via the strong-ergodicity breaking [54,57], i.e.,
there are two mutually inaccessible attractors for the average
velocity of the particle in the phase space of the system.

VI. FINITE-TIME MEASUREMENTS

The timescale of the actual physical experiment is always
limited and therefore in the considered case it is useful to
analyze the finite-time diffusion coefficient D(t = ti ). This
characteristic is depicted in Fig. 6 for ti = 106 as a function
of the temperature θ of the system and the subcritical, critical,
and supercritical forces f . For sufficiently high temperature
θ the Einstein relation D ∝ θ must be recovered, as then
thermal noise dominates the right-hand side of Eq. (5) and
the particle behaves as a free one. Due to the bistability
of the velocity dynamics when temperature θ is lowered,
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FIG. 6. Finite-time diffusion coefficient D(t = ti = 106) versus
the temperature θ of the system for the subcritical, critical, and
supercritical biases f .

we observe a distinctive nonmonotonic temperature depen-
dence of the diffusion coefficient D(ti ). We note that the
number of diffusion extrema is determined by the magni-
tude of the bias f acting on the particle. For the critical tilt
f = 0.9 ∈ [ fgd,−, fgd,+] there is only one minimum, whereas
for the subcritical force f = 0.85 ∈ [ f1, fgd,−] and supercrit-
ical force f = 0.94 ∈ [ fgd,+, f3] both minima and maxima
are attainable. However, when we keep lowering tempera-
ture eventually the diffusion coefficient D(ti ) saturates on
the plateau corresponding to the ballistic diffusion D(ti ) =
Db(ti ) ∼ ti. We conclude that in physics limits are often
noncommutative. This is the case for diffusion in the tilted
periodic potential when the velocity bistability occurs for
f ∈ [ f1(γ ), f3]. Then (i) if temperature goes down to zero
θ → 0 and time tends to infinity t → ∞, the lifetimes of
the superdiffusion τ1 → ∞ and diffusion coefficients diverge
D(t ) → ∞ (cf. Figs. 3 and 4); (ii) when temperature vanishes
θ → 0 but time is fixed t = ti, the diffusion saturates on the
ballistic front D(ti ) → Db(ti) (see Fig. 6); and (iii) if temper-
ature is finite θ = const but time tends to infinity t → ∞, the
diffusion must eventually be normal, i.e., D(t ) = D = const
(cf. Fig. 3).

VII. CONCLUSION

In this work we revisited the problem of diffusion in a tilted
periodic potential to consider the riddle of the weak-thermal-
noise limit in this system. It has been investigated for over
20 years; however, it is still not entirely resolved and there

are many contradictory results in the literature. The reason
behind it lies in the fact that in the low-temperature regime
this system is weakly nonergodic, i.e., it exhibits an extremely
slow relaxation towards its steady state. Therefore, asymptotic
analytical methods should be employed, however, these have
not yet been developed.

We exploited the state-of-the-art computer simulations of a
timescale spanning nine orders of magnitude of the character-
istic unit of time to study behavior of the diffusion coefficient
D(t ) when the temperature of the system goes down to zero
θ → 0. We found that for a given damping γ , if temperature
vanishes, the diffusion coefficient D(t ) in the long-time limit
is divergent D(t ) → ∞ when the constant force is in the range
f1(γ ) < f < f3, i.e., the velocity bistability effect occurs;
otherwise it tends to zero D(t ) → 0. This result is consistent
with the diffusive behavior observed for the deterministic
counterpart of the studied system. In contrast, the statement
that for the subcritical [ f1, fgd,−] and supercritical [ fgd,+, f3]
biases the stationary diffusion coefficient tends to zero D → 0
when temperature vanishes is not compatible with the deter-
ministic dynamics in these regimes. In such a limit the lifetime
of ballistic diffusion diverges to infinity and consequently the
diffusion coefficient does not reach its stationary value.

We showed that the magnitude of the constant bias f
modifies qualitatively the nonmonotonic dependence of the
finite-time diffusion coefficient D(ti ) on temperature θ . In the
critical range [ fgd,−, fgd,+] predicted by a two-state theory
it displays only one minimum, whereas for the subcritical
[ f1(γ ), fgd,−] and supercritical [ fgd,+, f3] areas both local
minima and maxima are attainable. Finally, we demonstrated
that for a given temperature of the system the magnitude of
the stationary diffusion coefficient D as a function of the bias
f is ruled by the relation between the number of locked and
running trajectories. In particular, we identified that the diffu-
sion D is maximal when the locked and running trajectories
are equiprobable, i.e., when the difference Q = 1 − |pl − pr |
attains its maximum Q = 1 (cf. Fig. 5).

Summarizing, our numerical results allowed us to draw
an inference about the conundrum of the weak-thermal-noise
limit for diffusion in a tilted periodic potential. These find-
ings for the paradigmatic model of nonequilibrium statistical
physics can be applied, e.g., to Josephson junctions and cold
atoms dwelling in optical lattices.
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