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Surface growth during random and irreversible multilayer deposition of straight semirigid rods
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Surface growth properties during irreversible multilayer deposition of straight semirigid rods on linear and
square lattices have been studied by Monte Carlo simulations and analytical considerations. The filling of the
lattice is carried out following a generalized random sequential adsorption mechanism where the depositing
objects can be adsorbed on the surface forming multilayers. The results of our simulations show that the
roughness evolves in time following two different behaviors: an “homogeneous growth regime” at initial times,
where the heights of the columns homogeneously increase, and a “segmented growth regime” at long times,
where the adsorbed phase is segmented in actively growing columns and inactive nongrowing sites. Under these
conditions, the surface growth generated by the deposition of particles of different sizes is studied. At long
times, the roughness of the systems increases linearly with time, with growth exponent β = 1, at variance with
a random deposition of monomers which presents a sublinear behavior (β = 1/2). The linear behavior is due to
the segmented growth process, as we show using a simple analytical model.
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I. INTRODUCTION

Deposition is a process of great importance due to its
application in the chemical industry and experimentation
[1,2]. In statistical mechanics, adsorption models on regular
lattices, both in and out of equilibrium, have been useful
to study physical adsorption [3–8]. In contrast to reversible
adsorption within thermodynamic equilibrium, random se-
quential adsorption (RSA) models assume that the occupancy
state of the lattice sites changes irreversibly from empty to
full, providing a useful tool to study irreversible adsorption
processes [9–11].

RSA models consists of randomly placing an object on
a substrate with the restriction that it does not overlap on
previously deposited objects. If a single site changes its oc-
cupancy state in an adsorption event from empty to occupied
(0→1), then we refer to this as monomer filling. It is also
possible to allow pairs of adjacent sites to change (00→11)
corresponding to dimer filling, or larger sets of adjacent sites
corresponding to k-site filling, in that sense we are talking
about an adsorbed k-mer (extended object occupying k ad-
jacent lattice sites) [9]. In most of deposition models, the
objects are randomly and irreversibly deposited forming a
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single monolayer. The final state generated by RSA is a dis-
ordered state (known as jamming state), in which no more
objects can be deposited due to the absence of free space of
appropriate size and shape. Recent studies show that the size
and shape of the deposited objects play an important role in
the adsorption kinetics and the final structure of the adsorbed
monolayer [12–26].

Most of the studies are devoted to the monolayer adsorp-
tion. However, multilayer adsorption is an experimentally as
well as theoretically relevant field of surface science owing to
its importance for the characterization of solid surfaces [27].
Moreover, several experiments on adhesion of colloidal parti-
cles on solid substrates have reported formation of multilayer
deposits in essentially irreversible deposition processes from
unstable or marginally stable colloid suspensions [28,29].

In the case of irreversible multilayer adsorption, the in-
herent complexity of the system still represents a major
difficulty to the development of approximate and numerical
solutions. However, several attempts were done in the past
to solve the k-mers irreversible multilayer adsorption prob-
lem. Among them, Bartelt and Privman [30] formulated a
model of irreversible multilayer adsorption on homogeneous
one-dimensional (1D) substrates. In Refs. [31,32], some other
variants of the problem were explored: effect of diffusional
relaxation, different deposition mechanisms, continuum depo-
sition, etc.
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Recently, extensive numerical simulations, supplemented
by finite-size scaling theory, were used to study the jamming
and percolation properties of the irreversible deposition of
semirigid k-mers in one and two dimensions [33,34]. In one
dimension the formation of multiple layers was allowed [33],
and as the k-mer size and number of layers increase, the ad-
sorption process occurs via an in-registry adsorption process,
where each incoming k-mer tends to be adsorbed exactly onto
an already adsorbed one. The resulting (1 + 1)-dimensional
adsorbed phase consists of “towers” (or columns) of width k,
separated by valleys of empty sites. In the two-dimensional
(2D) case, only two-layers deposition were allowed [34]. The
differences between the results obtained from bilayer and
monolayer phases were explained on the basis of the transver-
sal overlaps between rods occurring in the bilayer system.
This so-called “cross-linking effect,” its consequences on the
filling kinetics, and its implications in the field of conductivity
of composites filled with elongated particles (or fibers) were
discussed in details.

The possibility to form multilayers during the deposition
processes opens new opportunities to complement studies
which focus in jamming and percolation properties. In partic-
ular, a study of the growth properties of the generated surface
can shed light on the underlying deposition mechanisms. In-
teresting quantities to discuss in a multilayer growth model
are the surface roughness and growth rate in nonequilibrium
conditions, which has attracted considerable interest due to
its wide application [35]. Simple and multiple occupational
growth models have been studied over 1D and 2D substrates
[36–38]. The simplest case is the random deposition (RD)
of monomers (k-mers with k = 1). Due to the nature of the
RD model, the surface grows independently on each site and
then the growth properties do not depend on the dimension
of the system (it is invariant in one or two dimensions).
However, when multiple occupancy occurs the deposition of k
consecutive sites generates a correlation between the heights
of neighboring columns (the height of each column does not
grow independently), which results in compelling growth and
roughness properties. Interestingly, while RD of k-mers in
1D can be characterized by a growth exponent, defining how
the roughness of the growing surface evolves with time, not
depending on the size of the deposited particle [36], RD in
2D shows that the growth exponent depend on the size of the
particle [38]. In addition, wetting and rigid cluster deposition
models were studied in Ref. [37]. The simulation results show
two different behaviors in time, with the initial growth not cor-
related (as in RD growth) and a subsequent growth presenting
a roughness increasing with a growth exponent smaller than
in the RD case.

With the aim of complementing the study of surface ad-
sorption of semirigid k-mers, we address here the study of
the associated multilayer surface growth process. We present
a generalization of the deposition growth model where semi-
rigid rods (k consecutive nearest-neighbor sites) are deposited
in multilayers in one and two dimensions. The kinetic growth
is studied by dynamic scaling theory and compared with the
case of random deposition of monomers. The growth expo-
nent is determined by numerical simulations in one and two
dimensions, obtaining a value consistent with a linear increase
of the roughness. Using a simple analytical argument we

show that the linear increase of the roughness is due to a
fragmentation of the system during the growth process. Our
results show that multisite deposition processes can result in
nontrivial surface growth properties.

This paper is organized as follows. The multilayer growth
model and simulation scheme are presented and discussed in
Sec. II. The dynamic growth exponent and correlations in 1D
and 2D cases are analyzed in Sec. III. This section includes
also the basis of an analytical approach for predicting the
growth properties of the studied system, which is presented
in Sec. IV. Finally, some conclusions are drawn in Sec. V.

II. MODEL AND BASIC DEFINITIONS

A. Deposition model and simulation scheme

An irreversible multilayer adsorption model in one and two
dimensions has been considered. In the 1D system, semirigid
k-mers are deposited on a linear lattice of size L. This al-
lows us later to pile up further layers, building up a “wall”
of deposited objects, growing in a vertical direction [(1 +
1)-dimensional growth process]. In the 2D system, semirigid
k-mers are deposited on a L × L square substrate leading to a
(2 + 1)-dimensional growth process.

As mentioned in the previous paragraph, semirigid k-mers
are deposited forming (1 + 1)- and (2 + 1)-dimensional
structures. Accordingly, the positions available for adsorption
will be indicated by two indices (i, h). The index i denotes
the location in the lattice (1 � i � L for the 1D case and
1 � i � L2 for the 2D case) and h is the layer number (or
height): h = 1 for the layer 1 and h = n for the nth layer.

Then, starting from an initially empty lattice, the k-mers
are vertically sent toward the surface (similar to a rain of hor-
izontal rods, see Fig. 1). The deposition procedure is carried
out following a generalized RSA process [9]. It consists of
three steps, namely, (1) one of the ξ possible lattice directions
is randomly selected (ξ = 1 for the 1D case and ξ = 2 for
the 2D case); (2) a set of k consecutive nearest-neighbor sites
aligned along the direction selected in step (1) is randomly
chosen; (3) the deposition attempt will be successful (one
k-mer will be deposited) if the difference between the vertical
coordinates of two consecutive sites selected in step (2) is at
most equal to 1 (|�h| = 1 or |�h| = 0). Otherwise, the at-
tempt is rejected. One unit time in the deposition procedure in
D dimensions corresponds to LD repetitions of steps (1)–(3).
The deposition procedure is performed with periodic bound-
ary conditions, so that all sites are statistically equivalent.
Typical configurations obtained by the 1D and 2D deposition
schemes are shown in Figs. 1(a) and 1(b), respectively.

According to the deposition rules introduced in the last
paragraph (and as shown in Fig. 1): (i) particles do not shrink,
so each monomer belonging to a k-mer has its own horizontal
coordinate; (ii) particles can partially stretch. Thus, the k-
mers can bend to accommodate themselves to the roughness
of the interface (substrate and/or previous layers) as far as
stretching between consecutive particles does not go over

√
2

interparticle distances, allowing for up to a difference of one
vertical position between consecutive monomers belonging to
a k-mer; (iii) a k-mer is accepted for deposition only if it is in
full contact with the substrate or lower layers without leaving
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FIG. 1. Schematic representation of tetramers (k = 4) deposited
(a) on a linear lattice with L = 22 and (b) along a line in the y
direction of a square lattice with L = 22. In both cases, periodic
boundary conditions have been applied. As the k-mers are semirigid,
they can deform to find adjacent empty sites between layers (but
always linear). Open squares joined by lines correspond to tetramers
previously deposited onto the lattice. Gray-filled squares joined
by lines represent particles attempting to deposit on the substrate.
Green-solid squares and red-crossed squares represent allowed and
forbidden deposition states, respectively. Forbidden configurations
do not satisfy the deposition rules (|�h| > 1) and, consequently, are
discarded. In panel (b), the units of the transverse k-mers (adsorbed
along the x-direction) located at the crossing sites are indicated by
black-solid squares.

empty spaces underneath (bridges or cantilevers with two or
more empty spaces below are forbidden); and (iv) in the 2D
case, although the k-mers are aligned along one of the two
axes of the lattice, they can deform to find adjacent empty sites
between the first, second, third, fourth..... layer, but always in
the same direction. Relaxation is allowed only in the z axis
(height) (see Fig. 1).

The main difference between 1D and 2D systems is the
occurrence of the “cross-linking effect” in the 2D case. This
effect is called as cross-linking effect due the fact that a k-mer
adsorbed along the x[y] direction, with one of its units located
in a given position (i, h[h + 1]) is connected (or linked) to a
perpendicular k-mer deposited along the y[x] direction, with
one of its units located in the position (i, h + 1[h]). The link
occurs through the formation of a pair of nearest-neighbor
occupied sites in the positions (i, h) and (i, h + 1). Illustrative
examples of the occurrence of this “cross-linking effect” are
shown in Fig. 1(b). The units of the tranversal k-mers located
in the crossing sites are indicated by black-solid squares.

B. Kinetic and growth properties

To characterize the growth of a deposited film, it is useful
to define the mean height of the multilayer at time t , h(t ), and

the roughness of the interface at time t , w(t ) [35]. Thus,

h(t ) = 1

LD

LD∑
i=1

hi(t ), (1)

where hi(t ) is the height of the column (at time t) placed in
the position i of the lattice and LD is the total number of sites
in each layer on a D-dimensional substrate. In general, the
mean height increases linearly with time. In our simulations,
the dimensionless MC time variable t is defined by having one
deposition attempt per lattice site in the unit time step �t = 1.
Thus, for a L-lattice, the time step �t = 1 corresponds to LD

attempts according to the deposition mechanism described in
Sec. II A. Then, time unit is given by the number of attempts
η to deposit a particle, t = η/LD.

The choice of the time step was done based on previous
work by Forgerini and Figueiredo [36,38], which motivated
the present study. In this scheme, depending on the size
of the particle, many trials of depositions are not successful
in the unit of time. Other possible strategies consist in using
average height or coverage (amount of mass deposited per
unit substrate length) as the time step unit, to remove the
dependence on the rate of failures [39]. Since the mean height
grows linearly with time, the main results shown below (such
as the value of the growth exponent) do not depend on the
choice of time step.

The roughness of the interface at time t can be written as

w2(L, t ) = 1

LD

LD∑
i=1

[hi(t ) − h(t )]2 = h2(t ) − h(t )
2
. (2)

The typical behavior of w(L, t ) as a function of t is described
below. At time zero, the interface is flat and the roughness is
nil. As time increases, the interface gradually becomes rough
and two different regimes separated by a crossover time tx can
be typically expected: (i) growth regime: in which w increases
as a power of time according to the power law:

w(L, t ) ∼ tβ, for t � tx, (3)

where β is the growth exponent that characterizes the growth
dynamics and roughness; and (ii) saturation regime: during
which w reaches a saturation value, wsat, which depends on
the lattice size of the system according to the following power
law:

wsat (L) ∼ Lα for t � tx, (4)

where α is the roughness exponent. The crossover or satura-
tion time tx also depends on the system size,

tx ∼ Lz, (5)

where z is the dynamics exponent. The exponents presented
in Eqs. (3)–(5) are not independent, α, β, and z being linked
by the scaling law:

z = α

β
. (6)

The general picture just presented is valid when a corre-
lation length develops in the system, meaning that the height
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at one site depends on how the rest of the system is growing.
The correlation length increases with time as t1/z and when it
reaches the size of the system then the roughness saturates
and the roughness exponent α is well defined. In the case
of RD model using monomers growing is not correlated and
saturation of the roughness is not achieved, with the scaling
relation Eq. (6) not applying. Thus, when an interface can
grow indefinitely in time, only the growth exponent is defined
and in this context the roughness exponent α is not defined,
and therefore neither z. Deposition of rigid k-mers induces
correlation between growing site [36–38]. However, as we
shall see below, the semirigid conditions hinder the growing
of the correlation length, segmenting the system in sections
characterized by RD growth.

As discussed in Sec. I, the formation of multilayers during
a deposition process can be also analyzed in terms of the
coverage θ (t ), defined as the ratio of the total number of
occupied lattice sites at time t with respect to the total number
of available sites (the total number of available sites is given
by nt LD, where nt is the total number of layers forming the
multilayer at time t). By comparing the definitions of mean
height h(t ) and coverage θ (t ), it is straightforward that θ (t ) =
h(t )/hmax, where hmax is the maximum height (or total number
of layers nt = hmax). For the rest of the paper, we will focus
our attention on the time-dependent roughness and associated
quantities.

III. MONTE CARLO SIMULATIONS RESULTS

The complexity of the irreversible multilayer adsorption
problem presents a major difficulty to the development of
accurate analytical solutions for h(t ) and w(t ). So, computer
simulations appear as a very important tool for investigating
this subject, and will be used in the present section.

We focus our calculations on the estimate of the scal-
ing exponents for 1D and 2D substrates. For this purpose,
extensive computer simulations were developed for k =
1, 2, 3, 4, 6, 8, 12, 16 and different lattice sizes: 1D lat-
tices with L = 1024, 2048, 3072, 4096, 5120; and 2D L × L
square lattices with L = 96, 192, 384, 512, 576, 768. In all
cases, the displayed results represent averages considering 105

different samples.
From the numerical simulations, the mean height as a func-

tion of time, h(t ), increases linearly with time, regardless of
the value of k and the dimensionality considered (these curves
are not shown for simplicity). Next, the surface roughness as
a function of time was studied. Typical curves of w(t ) are
shown in Fig. 2 (in log-log scale). The results correspond to
1D lattices with L = 5120 [Fig. 2(a)] and 2D lattices with
L = 512 [Fig. 2(b)] for different values of k as indicated.
In the case of k = 1 (solid squares), the expected behavior
for the RD model is found: β = 1/2 in any spatial dimen-
sion and no saturation regime is observed [35]. The situation
changes drastically for k � 2, where the roughness varies in
time following two different regimes. At the initial times,
the growth exhibits a transitory nonlinear behavior. Then, at
long times, the interface roughness grows faster, with another
growth exponent β ≈ 1, which is not in the same universality
class of the k = 1 RD model. In addition, no saturation regime

FIG. 2. Surface roughness as a function of time (in log-log scale)
for 1D lattices with L = 5120 [panel (a)] and 2D lattices with L =
512 [panel (b)]. The different curves correspond to different values
of k, as indicated in the key. The growth exponent keeps consistency
with the case of RD monomers, whose exact solution is (β = 1/2)
[35]. Two growth regimes are observed for k � 2, with β = 1 the
growth exponent for long times.

is reached for k � 2 and, accordingly, the exponent α is not
defined.

The procedure in Fig. 2 was repeated for all values of L and
k. The obtained values of β are compiled in Table I (second
column, 1D system; third column, 2D system). For each k, the
value informed of β represents an average over all the studied
lattice sizes in one and two dimensions. The phenomenology
is identical comparing the 1D and 2D cases.

The two regimes characterizing the growth rate of the sur-
face can be explained as follows. Once the growth process
begins, the occupancy of the sites increases with a homo-
geneous probability, but after a certain time, the greatest
probability of sticking is over the previously deposited k-mers.
Then, while some columns grow, other columns stop growing
due to not satisfying the condition |�h| � 1(see Sec. II A).
Thus, at long times, the resulting structure of the adsorbed
phase consists of columns of width k, separated by valleys of
empty sites.

TABLE I. The growth exponents for different rods sizes in
one and two-dimensional lattices. For each k, the value in-
formed of β represents an average over all studied lattice
sizes: L = 1024, 2048, 3072, 4096, 5120 (1D system); and L =
96, 192, 384, 512, 576, 768 (2D system).

k size β (1D system) β (2D system)

1 0.50 ± 0.01 0.49 ± 0.02
2 1.00 ± 0.01 0.98 ± 0.02
3 1.00 ± 0.01 0.99 ± 0.02
4 0.99 ± 0.02 0.99 ± 0.02
6 0.99 ± 0.02 0.99 ± 0.02
8 1.00 ± 0.02 0.99 ± 0.02
12 0.99 ± 0.02 0.99 ± 0.02
16 0.99 ± 0.02 0.99 ± 0.02
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FIG. 3. Typical configurations of the adsorbed phase in the SGR.
Two cases are shown in the figure: (a) 1D system with k = 2; and
(b) 2D system with k = 3. Solid squares [panel (a)] and solid cubes
[panel (b)] represent k-mer units. As time t increases, the k-mer units
tend to form islands of length k in each layer.

We call the first regime (at initial time) as “homogeneous
growth regime” (HGR), due to the homogeneous increase in
the height of the columns. However, we call the second regime
(at long times) as “segmented growth regime” (SGR), since
the adsorbed phase is segmented in growing and not-growing
columns. These concepts will be reviewed in detail in the next
section.

To illustrate the behavior of the system at long times, Fig. 3
shows two typical configurations of the adsorbed phase in
the SGR. Figure 3(a) corresponds to 1D system with k = 2,
and Fig. 3(b) corresponds to 2D system with k = 3. As it can
be observed from the figures, k-mers in the nth layer adsorb
in-registry with the adsorbed k-mers in the (n − 1)th layer,
forming columns of width k separated by low columns (whose
difference in height with neighboring columns is greater than
one, |�h| � 1). These findings demonstrate that the relaxation
condition |�h| � 1 is the cause of the segmentation observed
in the system.

To characterize the state of the system in the SGR, let us
consider that the entire adsorbed phase can be studied as a

set of overlapping linear lattices, each one corresponding to
one of the n layers [41]. Then, the Hoshen and Kopelman
algorithm [40] has been used to obtain the number of islands
of length λ in each layer. The occurrence frequency of an
island of size λ in the nth layer is denoted as fn(λ), where
fn(λ) is the ratio between the total number of islands of size
λ in the nth layer and the total number of islands in the nth
layer. The coverage in the nth layer θn was also calculated. θn

is defined as the ratio between the number of occupied sites
on the nth layer and the total number of sites in each layer
(LD).

The analysis of fn(λ) for different values of k shows that,
for relatively small values of n (4 � n � 8), the structure of
the adsorption state is mainly composed of islands of sizes k
and 2k. As n is increased (n � 8), islands of size k dominate
the adsorption state. The effect is even more marked as the
size k is increased. In the case of the coverage in the nth layer
for large n (long times), θn increases with increasing k and, ac-
cordingly, the space of empty sites in the nth layer diminishes
with k. The results obtained for fn(λ) and θn indicate that only
columns of width k “survives” in the SGR. These columns
are separated by valleys of empty sites. As k increases, the
separation distance between columns diminishes. This general
phenomenology associated with the SGR is also captured
by the mean towers density, as we will show in the next
section.

The occurrence of two growth regimes has already been
reported for RD of linear objects of different lengths on 1D
[36] and 2D [38] substrates. In these cases a fully rigid object
is deposited if around a randomly selected site, corresponding
to the midpoint of the linear object, there is enough horizontal
space to accommodate it. This mechanism, at variance with
our model, generates voids in the growing surface. In con-
trast with the present data, a saturation regime is observed in
Refs. [36,38]. The saturation regime is also found in Ref. [37]
for the case of fully flexible clusters of particles deposited in a
1D lattice. In this case the linear cluster adapts its form to the
surface at a random place, without leaving empty spaces and
generating a compact surface growth.

The results presented here complement previous works
[36–38], showing how the segmentation of the interface
causes the surface roughness to not saturate and grow in-
definitely with time, but with a growth exponent different
to the one corresponding to the monomer RD model. Our
model exhibits a short-time regime with a nonlinear growth
followed by linear roughness growth with an exponent β = 1,
independently of the dimensionality of the system. The results
in Refs. [36,38] show a typical RD behavior with an expo-
nent β1 = 0.5 at short-times followed by a growth exponent
β2 < 0.5 in the 1D case [36] and a β2 > 0.5 in the 2D case
[38]. In addition, while the exponents β we found here and
β2 in Ref. [36] remain constant no matter the size of the
objects used in the simulations, the exponent β2 in Ref. [38]
shows a nonuniversal behavior, being strongly dependent on
the particle size.

In the next section, an analytical approach is set up to
describe the evolution of the roughness as a function of time.
This approximation will allow us to better understand the
behavior of the system, and the main characteristics of the
SGR.
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IV. THEORETICAL MODEL FOR
THE SURFACE ROUGHNESS

Hereafter, we present a theoretical analysis that sheds light
on the underlying physics of the observed time dependence
of the surface roughness w(t ). We first briefly derive the
time-evolution of the roughness for the random deposition of
monomers, which permit us to describe the procedure we use
to later obtain the roughness for the segmented growth regime.

Let us start with the case of classical RD of monomers (k =
1). A discrete system of finite size LD is considered in which
each site grows independently. The probability that a particle
will be deposited at the i site is p = 1/LD. As introduced in
Sec. II B, the unit of time is given by the number of attempts η

to deposit a particle, t = η/LD. The probability that the height
of the i site is hi after η attempts is

P(hi, η) =
(

η

hi

)
phi (1 − p)η−hi , 0 � p � 1, (7)

with mean value 〈hi〉 = ηp and mean-squared value 〈h2
i 〉 =

ηp(1 − p) + η2 p2. In addition, since the growth is indepen-
dent on each site, it results that h(t ) = 〈hi(t )〉 and h2(t ) =
〈h2

i (t )〉. Finally, by using Eq. (2), the surface roughness can
be written as

w2(L, t ) = h2(t ) − h(t )
2 = 〈

h2
i (t )

〉 − 〈hi(t )〉2

= ηp(1 − p) = t

(
1 − 1

LD

)
. (8)

For large systems (L → ∞), w2 = t and the growth exponent
is β = 1/2.

Let us now consider the case of k-mers deposited in a
D-dimensional lattice of linear size L in the SGR, i.e., when
the system is segmented and independently growing on each
tower. Under these conditions, the system is segmented into
active sites and inactive sites. Neglecting cross-linking effects
in the SGR, the active sites are those that make up the towers
of size k, where growth can continue (because the depositing
objects are k-mers). If there are m towers, then there are
km active sites. We call A the set of active sites. In the
inactive sites it is no longer possible to grow (in the SGR)
and the average height of the inactive sites will be saturated.
The probability that a k-mer will be deposited with one end
at the i site is p = (ξLD)−1. Note that in the particular case
of linear and square lattices ξ = D. It is important to remark
that the difference in height between two nearest-neighbor
active sites is �h � 1. Thus, the active sites do not necessarily
belong to the same layer.

If we define the lth tower (with l = 1, 2, ..., m) as the one
that occupies the sites i, i + 1, . . . , i + k − 1, and since the
individual towers grow independently of each other, then it
results (as in the case of k = 1): 〈hl〉 = ηp and 〈h2

l 〉 = ηp(1 −
p) + η2 p2, where hl is the height of all the columns in the lth
tower. In addition, we consider that the height is constant and
equal to hin for all inactive sites.

In the SGR, the mean height of the system will be

h(t ) = 1

LD

[∑
i∈A

hi(t ) +
∑
i/∈A

hi(t )

]
. (9)

Considering that the towers grow independently, and that
all sites in the same tower grow simultaneously, we can write
hi(t ) = 〈hl (t )〉 for the active sites in tower l and hi(t ) = hin

for the inactive sites. Thus,

h(t ) = 1

LD

[∑
i∈A

〈hl (t )〉 +
∑
i/∈A

hin

]

= mk

LD
〈hl (t )〉 + (LD − mk)

LD
hin. (10)

Now, by using 〈hl〉 = ηp and by defining θa = mk/LD as the
fraction of active sites, Eq. (10) can be written as

h(t ) = θaηp + (1 − θa)hin. (11)

In the same way,

h2(t ) = 1

LD

[∑
i∈A

h2
i (t ) +

∑
i/∈A

h2
i (t )

]

= 1

LD

[∑
i∈A

〈
h2

l (t )
〉 + ∑

i/∈A

h2
in

]
= θa[ηp(1 − p) + η2 p2] + (1 − θa)h2

in. (12)

By using Eqs. (11), (12), and p = (ξLD)−1, we can write the
surface roughness as a function of time t = η/LD as:

w2(L, t ) = h2(t ) − h(t )
2 = θa(1 − θa)

(
t

ξ
− hin

)2

+ θa

(
1 − 1

ξLD

)
t

ξ
. (13)

For large systems (L → ∞), long times (t → ∞) and be-
cause θa < 1 in the SGR, Eq. (13) reduces to w2 = θa(1 −
θa)t2/ξ 2. Accordingly, β = 1 as obtained by MC simulations.
The terms proportional to (ηp)2 are not canceled in the SGR
and therefore the trend t2 survives. In other words, the value
of the growth exponent β = 1 is the result of the segmen-
tation of the adsorbed phase. Note that, if θa = 1, then the
case k = 1 (classical RD of monomers) is recovered, where
w2 = (1 − 1/LD)t and β = 1/2.

It is interesting to extend the analysis of Eq. (13) in the
limit of t → ∞, namely,

log w(t ) = 1
2 log[θa(1 − θa)] − log ξ + log t = ρ + β log t,

(14)

where β = 1 and

ρ = 1
2 log[θa(1 − θa)] − log ξ = 1

2 log 
a − log ξ,

(15)

where 
a = θa(1 − θa). The parameter ρ is of practical
interest because it represents the intercept of the log-log re-
lationship between surface roughness w and time t in the
long-time limit.

The theoretical predictions from Eq. (14) can be corrobo-
rated with the help of the simulation data in Fig. 2. Thus, for
k > 1 and fixed ξ (in our case, ξ = 1 for 1D lattices and ξ = 2
for 2D square lattices), the value of ρ does not depend on the
particle size k. Independently of the size k, all 1D(2D) curves

034103-6



SURFACE GROWTH DURING RANDOM AND IRREVERSIBLE … PHYSICAL REVIEW E 104, 034103 (2021)

FIG. 4. (a) Time dependence of the scaled roughness wξ . In
the long-time limit, 1D and 2D results collapse to the same lin-
ear behavior in logarithmic scale. The dashed line corresponds to
1/2 log 
̃a + log t , where 
̃a = 0.238. (b) Towers density m/LD as
a function of k for 1D and 2D lattices. Symbols represent simulation
data with L = 5120 (1D case, solid squares) and L = 512 (2D case,
solid circles). Dashed lines correspond to the functions θa,1D/k (1D
case, θa,1D = 0.61) and θa,2D/k (2D case, θa,2D = 0.39). The results
confirm the analytically predicted values of the fraction of active
sites.

collapse in a unique curve in the SGR [all 1D(2D) curves
have the same intercept ρ on the vertical axis]. See Figs. 2(a)
and 2(b).

However, and as can be seen from Eq. (15), the value of ρ

depends on the dimensionality of the system through the num-
ber of possible lattice directions ξ and the fraction of active
sites θa. The values of ρ can be obtained by fitting the long-
time regimes in Fig. 2, resulting in ρ1D = −0.311 ± 0.002
(1D system, ξ = 1) and ρ2D = −0.614 ± 0.003 (2D system,
ξ = 2).

From Eq. (15), we can write that

ρ1D − ρ2D = 1

2
log

(

a,1D


a,2D

)
+ log 2. (16)

Then, by using the measured values of ρ1D and ρ2D in
Fig. 2, we get that ρ1D − ρ2D = 0.303 ± 0.005, which is
consistent, within statistical errors, with ρ2D − ρ1D = log 2 =
0.30102999 . . . . This finding indicates that: (1) 
a,1D ≈

a,2D, meaning that 
a does not depend on the dimension
of the substrate [from Figs. 2(a) and 2(b), we obtain 
a,1D =
0.239 ± 0.001 and 
a,2D = 0.237 ± 0.003, respectively]; and
(2) the relation between the fractions of active sites in 1D and
2D is either θa,1D = θa,2D or θa,1D = 1 − θa,2D.

The results discussed in the last paragraph are confirmed
in Fig. 4. In Fig. 4(a), 1D and 2D simulation data collapse
in the SGR by plotting the scaled roughness wξ against t .
The curves grow linearly in logarithmic scale, log(wξ ) =
1/2 log 
a + log t , with the same ordinate value. The dashed
line in the figure corresponds to 1/2 log 
̃a + log t , where

̃a = (
a,1D + 
a,2D)/2 = 0.238 ± 0.002. The value of the
concentration of active sites θa can be calculated from the
obtained value of 
̃a using θa(1 − θa) = 
̃a [see Eq. (15)].

The equation has two solutions, with θa1 = 0.39 ± 0.01 and
θa2 = 0.61 ± 0.01, where θa1 + θa2 = 1.

The obtained values for the fraction of active sites, θa1

and θa2, are based on the value of 
̃a, which depends on
measured values of ρ1D and ρ2D. Therefore, θa1 and θa2 were
obtained in terms of information coming from the dynamics
of the underlying growth process. We can compare this result
with a static measure of the tower density at very long times,
m/LD = θa/k, which should decrease when k increases.
Figure 4(b) shows this trend for one and two dimensions,
directly measuring m/LD from MC results at long times.
Simulation data (solid symbols) are compared with analytical
curves (dashed lines) for 1D case (θa,1D/k with θa,1D = 0.61)
and 2D case (θa,2D/k with θa,2D = 0.39). A good agreement
is obtained between MC and theoretical results, validating the
methodology developed in this section.

The analytical description presented here provides a simple
basis to interpret the numerical results. It shows how the
segmentation of the system in active and inactive growing
regions is responsible of the β = 1 behavior at long times
and without presenting a saturation of the roughness. Besides,
simple arguments quantitatively relate the measured ρ values
with the tower density at long times.

V. CONCLUSIONS

In this paper, a surface growth model has been studied,
where semirigid linear objects (k-mers) of different sizes are
deposited on linear (1D) and square (2D) lattices. The main
deposition rules are the following: (i) the particles are de-
posited parallel to the substrate, so each monomer belonging
to a k-mer has its own horizontal coordinate; (ii) the k-mers
can bend to accommodate themselves to the roughness of
the interface, allowing for up to a difference of one vertical
position between consecutive monomers belonging to a k-
mer; and (iii) the k-mers are deposited in full contact with
the substrate or lower layers without leaving empty spaces
underneath.

By means of Monte Carlo simulations, the evolution of the
surface roughness with time was investigated. In the case of
k = 1 (monomers), the expected behavior for the RD model
is found: w(t ) ∝ tβ with β = 1/2 in any spatial dimension,
and no saturation regime is observed [35].

The phenomenology changes drastically for multisite de-
position (k � 2), where the roughness varies in time following
two different regimes. At the initial times, the growth exhibits
a transitory nonlinear behavior, characterized by a homoge-
neous increase in the height of the columns. This first regime
was called as “homogeneous growth regime” (HGR). Then, at
long times, the greatest probability of sticking is over the pre-
viously deposited k-mers. Under these conditions, due to the
semirigid character of the k-mers, while some columns grow,
other columns stop growing due to not satisfying the condition
|�h| � 1. The resulting structure of the interface is segmented
in growing (or active) columns of width k, separated by val-
leys of not-growing columns. In this second regime [called
as “segmented growth regime” (SGR)], the surface roughness
exhibits a linear dependence on time, with a growth exponent
β = 1, which is not in the same universality class of the
k = 1 RD model. The long-time behavior, w(t ) ∝ t , is found
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to be independent of k-mer size and dimensionality of the
substrate.

In addition, and as a consequence of the segmentation
that occurs in the adsorbed phase, the active columns grow
independently of each other and the surface roughness does
not saturate and grows indefinitely with time. This find-
ing contrasts with previous studies on growth by deposition
of k-mers, where a saturation regime is reached [36–38].
With respect to the time evolution of surface roughness, two
regimes were also found in Refs. [36,38]. However, there
are some differences between the results presented here and
those in Refs. [36,38]. Namely, while our model exhibits a
nonlinear growth at the initial stage, Refs. [36,38] show a
typical RD behavior with an exponent β1 = 0.5. In the sec-
ond regime, while in our model the surface roughness grows
with an exponent β = 1, independently of the particle size
(k � 2) and dimensionality of the system, a growth expo-
nent β2 < 0.5 was found in 1D [36] and a β2 > 0.5 in 2D
[38]. In the case of 2D square lattices, the exponent β2 > 0.5
is nonuniversal, depending on the length of the deposited
particles [38]. These differences are due to the semirigid
quality of the deposited k-mers, which was not considered in
Refs. [36–38].

Finally, a simple analytical model was proposed to describe
the dependence of the surface roughness on time in the SGR,
where log w(t ) = ρ + β log t , with β = 1. The theoretical
predictions corroborate the numerical results, also showing
that the exponent β = 1 and the absence of a saturation regime
can be explained from the segmentation of the system in
active and inactive growing regions. In addition, the analytical
expression obtained for w(t ) allows for a simple relationship
between the measured intercept ρ and the fraction of active
sites θa (size of the active growing region).
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[24] M. Cieśla and P. Karbowniczek, Phys. Rev. E 91, 042404

(2015).
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Colloids Surf. 28, 185 (1987).
[30] M. C. Bartelt and V. Privman, J. Chem. Phys. 93, 6820 (1990).
[31] V. Privman and J.-S. Wang, Phys. Rev. A 45, R2155 (1992).
[32] P. Nielaba, V. Privman, and J.-S. Wang, Berich. Bunsen. Gesell.

98, 451 (1994).
[33] N. De La Cruz Félix, P. M. Centres, A. J. Ramirez-Pastor, E. E.

Vogel, and J. F. Valdés, Phys. Rev. E 102, 012106 (2020).
[34] N. De La Cruz Félix, P. M. Centres, and A. J. Ramirez-Pastor,

Phys. Rev. E 102, 012153 (2020).
[35] A.-L. Barabási and H. E. Stanley, Fractal Concepts in Sur-

face Growth (Cambridge University Press, Cambridge, UK,
1995).

034103-8

https://doi.org/10.1116/6.0000184
https://doi.org/10.1016/j.tsf.2020.138037
https://doi.org/10.1021/ja01269a023
https://doi.org/10.1063/1.1746689
https://doi.org/10.1016/S0360-0564(08)60615-X
https://doi.org/10.1016/S0378-4371(02)00828-2
https://doi.org/10.1016/j.susc.2005.02.058
https://doi.org/10.1063/1.3139301
https://doi.org/10.1103/RevModPhys.65.1281
https://doi.org/10.1088/0953-8984/19/6/065124
https://doi.org/10.1088/1742-5468/2010/02/P02019
https://doi.org/10.1103/PhysRevE.96.022154
https://doi.org/10.1103/PhysRevE.98.062130
https://doi.org/10.1007/s00894-013-1892-y
https://doi.org/10.1088/0305-4470/19/12/020
https://doi.org/10.1103/PhysRevA.43.631
https://doi.org/10.1103/PhysRevB.43.3366
https://doi.org/10.5488/CMP.17.33006
https://doi.org/10.1103/PhysRevE.99.042131
https://doi.org/10.1063/1.459307
https://doi.org/10.1063/1.460109
https://doi.org/10.1103/PhysRevE.90.022402
https://doi.org/10.1103/PhysRevE.91.042404
https://doi.org/10.1039/C5CP03873A
https://doi.org/10.1063/1.4959584
https://doi.org/10.1039/FT9918701377
https://doi.org/10.1016/0166-6622(87)80183-X
https://doi.org/10.1063/1.458952
https://doi.org/10.1103/PhysRevA.45.R2155
https://doi.org/10.1002/bbpc.19940980340
https://doi.org/10.1103/PhysRevE.102.012106
https://doi.org/10.1103/PhysRevE.102.012153


SURFACE GROWTH DURING RANDOM AND IRREVERSIBLE … PHYSICAL REVIEW E 104, 034103 (2021)

[36] F. L. Forgerini and W. Figueiredo, Phys. Rev. E 79, 041602
(2009).

[37] D. A. Mirabella and C. M. Aldao, Surf. Sci. 646, 282
(2016).

[38] F. L. Forgerini and W. Figueiredo, Phys. Rev. E 81, 051603
(2010).

[39] N. Provatas, M. Haataja, J. Asikainen, S. Majaniemi, M. Alava,
and T. Ala-Nissila, Colloids and Surfaces A: Physicochem. Eng.
Aspects 165, 209 (2000).

[40] J. Hoshen and R. Kopelman, Phys. Rev. B 14, 3438 (1976).
[41] We restrict to the 1D case to facilitate the analysis. Similar

results are obtained for 2D substrates.

034103-9

https://doi.org/10.1103/PhysRevE.79.041602
https://doi.org/10.1016/j.susc.2015.09.010
https://doi.org/10.1103/PhysRevE.81.051603
https://doi.org/10.1016/S0927-7757(99)00417-3
https://doi.org/10.1103/PhysRevB.14.3438

