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Sherrington-Kirkpatrick model for spin glasses: Solution via the distributional zeta function method
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We discuss the Sherrington-Kirkpatrick mean-field version of a spin glass within the distributional zeta
function method (DZFM). In the DZFM, since the dominant contribution to the average free energy is written
as a series of moments of the partition function of the model, the spin-glass multivalley structure is obtained.
Also, an exact expression for the saddle points corresponding to each valley and a global critical temperature
showing the existence of many stables or at least metastable equilibrium states is presented. Near the critical
point, we obtain analytical expressions of the order parameters that are in agreement with phenomenological
results. We evaluate the linear and nonlinear susceptibility and we find the expected singular behavior at the
spin-glass critical temperature. Furthermore, we obtain a positive definite expression for the entropy and we
show that ground-state entropy tends to zero as the temperature goes to zero. We show that our solution is stable
for each term in the expansion. Finally, we analyze the behavior of the overlap distribution, where we find a
general expression for each moment of the partition function.
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I. INTRODUCTION

In statistical mechanics, we define critical points as the
points where the thermodynamic free energy or its derivative
are singular [1–4]. The simplest nontrivial model that presents
a phase transition, from paramagnetic to ferromagnetic phase,
is the Ising model [5,6]. In order to describe physical systems
with antiferromagnetic and ferromagnetic interactions, the
concept of spin glass was introduced [7,8]. One of the main
characteristics of such systems is that the order parameter
at low temperatures has a random spatial structure [9–12].
Another special characteristic is the multivalley structure in
the free-energy landscape [13]. To achieve a reasonable de-
scription of the rich topography of the energy surface, a wide
vartiety of methods have been proposed, such as dynamical
methods [14,15], replica methods, and others.

Furthermore, by using density functional theory [16], mode
coupling theory [17], and purely thermodynamical method,
the metastable states in the equilibrium free-energy land-
scape in any glassy system are investigated. It is shown that
near a critical point, an exponential number of spin-glass-like
metastable states appear in the free-energy landscape, leading
to a complete dynamical freezing of the system [18].
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The Edwards and Anderson (EA) Hamiltonian of spin
glasses is defined as

H = −
∑
〈i, j〉

Ji jSiS j, (1)

where 〈i, j〉 represents nearest neighbors of a lattice and Ji j

satisfies some probability distribution P(Ji j ), as for exam-
ple, a Gaussian probability distribution P(Ji j ) ∼ exp[−(Ji j −
J0)/2J2], where J0 is the mean and variance J2.

The infinite-range version of the model was solved in
Ref. [19], where the mean-field approximation is exact. Using
the ansatz of replica symmetry, a problem of negative entropy
at low temperatures appears; see, for example, Ref. [20].
Almeida and Thouless showed that the stability condition of
the replica-symmetric solution is not satisfied in the region
below a line, called the Almeida-Thouless (AT) line [21].

The solution of the Sherrington-Kirkpatrick (SK) model
was obtained by Parisi [22–25]. Parisi suggested replica
symmetry breaking (RSB) as a consistent scheme to break
the permutational symmetry of fictitious copies of the sys-
tem introduced by the replica method where E[ln Z] =
limn→0(E[Zn] − 1)/n. The RSB in disordered spin systems
has a physical interpretation related to the emergence of a
spin-glass phase characterized by many pure states organized
in an ultrametric structure [26–28]. Although the equations of
the RSB-Parisi ansatz were rigorously proven to be exact [29],
other methods and solutions have been explored in regimes
for T = 0 or near the critical point [30–38]. Extensions of the
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RSB scheme on random graphs and neural networks are pre-
sented in Refs. [39–41] and [42–45], respectively. However,
within all those approaches there are open questions related to
the order parameters and spin-glass systems [46].

Recently, an alternative method has been proposed to av-
erage the disorder-dependent free energy in statistical field
theory, called the distributional zetafunction method (DZFM)
[47]. Within this approach, the dominant contribution to the
average free energy is expressed as a series of the integer
moments of the partition function of the model [48–53].

The aim of this paper is to explore the complexity of the
free-energy landscape of the SK model using the DZFM.
Since we have an expansion of free energy where all the
integer moments of partition function are contributing, we
are able to investigate the multivalley structure each by each
minimum. We show that the Parisi results can be recovered
using this formalism. We examine the connection between
the DZFM and the phenomenological characterization of the
spin-glass phase. We obtain an order parameter qk and mk

for each moment of the partition function. Furthermore, we
analyze the low-temperature regime and the behavior near the
critical point where we obtain an expression of the critical
temperature for each minimum in the series representation
of the averaged free energy. Afterward, we examine the local
magnetization in the regime mk > 0 and J0 > 0. We find the
critical temperatures where the magnetization is not null and
we extract the behavior of the linear susceptibility χ0 and the
nonlinear susceptibility χ2. Keeping the terms of O(m2

k ) and
O(qkmk ), we show that our solutions are compatible with the
results that have been obtained by phenomenological models
and experiments. Finally, we analyze the stability due to the
order parameter and show that our solution is stable for each
term in the expansion. We also study the overlap distributions
and show different statistics with respect to the induced ultra-
metricity in the RSB.

The organization of the paper is as follows: In Sec. II, we
review the SK model, present the DZFM approach to this
model, and examine our solution proposed to the order pa-
rameters, beside a regularization procedure. Furthermore, we
also obtain the ground-state entropy and we show that tends
to zero as T → 0. In Sec. III, we present our main result. The
order parameters of the SK model derived from the DZFM are
presented and we explore its behavior for low temperatures
and near the critical point. We perform the calculus of the
magnetization (main and local) and the susceptibilities. We
study the properties of the stability. Conclusions are presented
in Sec. IV. In Appendix A, we review the replica method in
order to compare with own. In Appendix B, we review the
derivation of the configurational average free energy from the
distributional zeta function. Finally, in Appendix C, we study
the overlap distribution.

II. DZFM APPROACH TO SHERRINGTON-
KIRKPATRICK MODEL

The Sherrington-Kirkpatrick (SK) is defined by the Hamil-
tonian

H = −
∑
i< j

Ji jSiS j − h
∑

i

Si. (2)

The first sum on the right-hand side runs over all distinct
pairs of spins, N (N − 1)/2 of them. The interaction Ji j is a
quenched variable with the Gaussian distribution function

P(Ji j ) = 1

J

√
N

2π
exp

{
− N

2J2

(
Ji j − J0

N

)2}
. (3)

The mean and variance of this distribution are both propor-
tional to 1/N :

E[Ji j] = J0

N
, E

[
(�Ji j )

2
] = J2

N
. (4)

The partition function of this system for a given configura-
tion of J yields

ZJ = Tr exp(−βH ) = Tr exp

(
β
∑
i< j

Ji jSiS j + βh
∑

i

Si

)
.

(5)

With this definition, we have that the free energy per spin
is given by

fN,J = 1

βN
ln ZJ . (6)

The configurational averaged free energy is

fN = E[ fN,J ], (7)

where E[· · · ] denotes the configurational average over the
distribution (3). In the thermodynamic limit, we have

f = − lim
N→∞

1

βN

∫ (∏
i< j

d (Ji j )P(Ji j )

)
ln Z (Ji j ). (8)

When the volume of the system tends to infinity, thanks
to the self-averaging property, the free energy of the single
sample (6) (specific realization of the disorder) is given by
the average over the disorder of the J-dependent free energy;
namely, we have

lim
N→∞

fN,J = f = lim
N→∞

E[ fN,J ]. (9)

To calculate the average of the free energy, we use the
DZFM. The main characteristic of the method is that all inte-
ger moments of the partition function contribute in this series
representation. We use the definition of the distributional zeta
function �(s) inspired by the spectral zeta function given by

�(s) =
∫

d[Ji j]P(Ji j )
1

Z (Ji j )s
(10)

for s ∈ C, where this function is defined in the region where
the above integral converges. The average free energy can be
written as

f = lim
N→∞

1

βN

d

ds
�(s)

∣∣∣∣
s=0+

, Re(s) � 0, (11)

where (10) is well defined. After some algebraic steps, the
average free energy can be represented by

f = lim
N→∞

1

βN

{ ∞∑
k=1

(−1)kak

k!k
E[Zk] + ln a + γe + R(a)

}
,

(12)
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where a is a dimensionless parameter, γe is the Euler’s con-
stant, and the contribution of R(a) can be made as small as
desired, taking a that is large enough; under certain conditions
R(a) is bounded as |R(a)| � (Zca)−1 exp(−Zca) where Zc is
the partition function of a system where P(Ji j ) = c, with c ∈
R being a constant (see Appendix B for further details). On
the other hand, the configurational average of the kth power
of the partition function E[Zk] is

E[Zk] =
∫ (∏

i< j

d (Ji j )P(Ji j )

)
Zk, (13)

with

Zk = Tr exp

(
β
∑
i< j

Ji j

k∑
α=1

Sα
i Sα

j + βh
N∑

i=1

k∑
α=1

Sα
i

)
, (14)

where α ∈ N. Since we are using Greek letters for summed
moment indices, let us write a subindex k to stand for each k,
and the moment indices run from 1 to k. Performing the in-
tegral over Ji j and rewriting the sums over i < j and moment
index, we have, for sufficiently large N ,

E[Zk] = exp

(
Nβ2J2k

4

)
Tr exp

{
β2J2

2N

∑
αk<γk

(∑
i

Sαk
i Sγk

i

)2

+ βJ0

2N

∑
αk

(∑
i

Sαk
i

)2

+ βh
∑

i

∑
αk

Sαk
i

}
. (15)

The trace over Sαk
i can be carried out independently each site in (15) if the quantities in the exponent were linear in the spin

variables. Those squared quantities can be linearized by Gaussian integrals with integration variables qαkγk for (
∑

i Sαk
i Sγk

i )2 and
mαk for (

∑
i Sαk

i )2 as follows:

E[Zk] = exp

(
Nβ2J2k

4

)∫
D
[
qαkγk

] ∫
D
[
mαk

]
exp

(
−Nβ2J2

2

∑
αk<γk

q2
αkγk

− NβJ0

2

∑
αk

m2
αk

+ N ln Tr eLk

)
, (16)

where

D
[
qαkγk

] =
∏

αk<γk

dqαkγk , D
[
mαk

] =
∏
αk

dmαk . (17)

In Eq. (16),

exp(N ln Tr eLk ) =
{

Tr exp

(
β2J2

∑
αk<γk

qαkγk Sαk Sγk + β
∑
αk

(J0mαk + h)Sαk

)}N

(18)

and

Lk = β2J2
∑

αk<γk

qαkγk Sαk Sγk + β
∑
αk

(
J0mαk + h

)
Sαk . (19)

Since the exponent of the above integrand is proportional to N , it is possible to evaluate the integral by steepest descent such
that (16) yields

E[Zk] ≈ exp

(
−Nβ2J2

2

∑
αk<γk

q2
αkγk

− NβJ0

2

∑
αk

m2
αk

+ N ln Tr eLk + N

4
β2J2k

)
, (20)

where the qαkγk are the saddle points and can be defined by

qαkγk = 1

N

N∑
i=1

Sαk
i Sγk

i (21)

and qαkγk ∈ [0, 1]. From (20), the extreme condition
δ(β f )/δqαkγk = 0 gives us an expression for the order param-
eter in terms of the average of spins ensemble

qαkγk = Tr[Sαk Sγk eLk ]

Tr[eLk ]
= 〈〈Sαk Sγk 〉〉, (22)

where 〈〈· · · 〉〉 denotes the average with respect the weight eLk .
The condition δ(β f )/δmαk = 0 defines a local magnetization
as

mαk = 〈〈Sαk 〉〉. (23)

With these quantities, we can express the total magnetiza-
tion as

m = lim
N→∞

∞∑
k=1

(−1)k+1ak

k!k
E[Zk]

∑
αk

mαk , (24)

and the linear susceptibility χ0 as

χ0

β
= lim

N→∞

∞∑
k=1

(−1)k+1ak (N − 1)

k!k
E[Zk]

[∑
αk

mαk

]2

− q,

(25)

where we define the weighted spin-glass order parameter as

q = lim
N→∞

∞∑
k=1

(−1)kak

k!k
E[Zk]

∑
αk<γk

qαkγk . (26)
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In the replica method, the replica symmetric ansatz is deter-
mined by qαkγk = qrsa and the RSB yields qαkγk = q(x). Here
we propose the following solution qαkγk = qk and mαk = mk ,
for the order parameters (22) and (23), respectively. After tak-
ing the limit N → ∞ for the last terms, and for a sufficiently
large a, the dominant contribution of (12), yields

β f = lim
N→∞

∞∑
k=1

(−1)kak

Nk!k
ekNςk , (27)

with

ςk = −1

4
(k − 1)β2J2q2

k − 1

2
βJ0m2

k + 1

k
ln Ik + 1

4
β2J2.

(28)

In Eqs. (27) and (28),

Ik =
∫

Dz exp

[
k ln 2cosh(βψk ) − 1

2
kβ2J2qk

]
, (29)

where

ψk = J
√

qkz + J0mk + h (30)

and

Dz = dz√
2π

exp

(
− z2

2

)
. (31)

The extreme condition with respect to qk , δ f /δqk = 0,
gives us the following condition:

−1

2
k(k − 1)β2J2qk +

[
−1

2
kβ2J2

+ δ

δqk
ln
∫

Dzcoshk (βψk )

]
= 0.

The functional equation for the order parameter qk

qk = 1

(k − 1)βJ
√

qk

∫
Dz z coshk (βψk )tanh(βψk )∫

Dz coshk (βψk )
− 1

k − 1
.

Partial integration yields

qk =
∫

Dz coshk (βψk )tanh2(βψk )∫
Dz coshk (βψk )

. (32)

In the same way, the condition δ f /δmk = 0 gives the fol-
lowing relation for the order parameter mk:

mk =
∫

Dz coshk (βψk )tanh(βψk )∫
Dz coshk (βψk )

. (33)

Notice the structural similarity of Eqs. (32) and (33) with
respect to the results of the replica symmetric ansatz (A3)
and (A4) and the 1RSB (A8), (A9), and (A7). In Fig. 1, we
depict the numerical solutions of the equations system (32)
and (33) for recovering kB, J/kBT = 1, J0/kBT = 0.1, h = 0,
and different k. We may evidence that the index k would be
assumed as an order parameter to explore the metastable states
in the multivalley structure of free energy.

To obtain the ground-state entropy under the DZFM, from
the free energy (27), we first derive the low-temperature form
of the spin glass parameter qk for J0 = h = 0 and β → ∞

1 10 20 30 40
k

0.0

0.25

0.5

0.75

1.0

qk

mk

FIG. 1. Numerical solutions of (32) and (33) for J/kBT = 1,
J0/kBT = 0.1, h = 0, and different k. The continuum blue curve
describes the behavior of qk and the dashed red curve describes mk .
We have a transition in these parameters for a given k.

(T → 0). According to (32), we can rewrite that expression
as follows:

qk = 1 −
∫

Dz coshk−2(βJ
√

qkz)∫
Dz coshk (βJ

√
qkz)

. (34)

Thus, for low temperatures,∫
Dz coshk (βJ

√
qkz) ≈ 1

2k

∫
Dz

1 + ke−2βJ
√

kqz

e−kβJ
√

qkz

= 1

2k

[
ek2β2J2qk/2 + ke(k−2)2β2J2qk/2

]
.

Then, for low temperatures, the spin glass parameter q
yields

qk = 1 − 4e�k (k−1)[1 − ke�k (k−1)][1 + (k − 2)e�k (k−3)],

(35)

being �k = −2β2J2qk . After this manipulations, from (35)
we have that qk → 1 as T → 0. Furthermore, by implicit
derivation ∂qk/∂T → 0 as T → 0. Within these considera-
tions, the ground-state entropy has the following form:

S = lim
N→∞

∞∑
k=1

(−1)k+1ak2kN sk (36)

where

sk = e− 1
4 Nk2β2J2

[∫
Dz coshk (βJz)

]N

gk (β, J ) (37)

with

gk (β, J ) = 1

Nk!k
+ β2J2

k!

(
−k

2
+ (k − 1)ιk (β, J )

)
, (38)

where

ιk (β, J ) =
∫

Dz coshk−2(βJz)∫
Dz coshk (βJz)

. (39)
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1 5 10 15 20

k

−200

−150

−100

−50

0

g k

FIG. 2. Behavior of (38) for different k, kBT/J 
 1, and large N .

Notice that when we have a symmetric distribution, i.e.,
J0 = 0, only the values k = 2n will contribute. Then, in this
case (−1)k+1 will be always −1. Thus, the entropy (36) will
be positive if gk (β, J ) � 0 for all k. By simple inspection, we
have that this condition is accomplished if

∫
Dz coshk (βJz) �

[2(k − 1)/k]
∫

Dz coshk−2(βJz), which is satisfied for all k �
0. In Fig. 2, we depict the behavior of (38) where we can
evidence that for all k it will be always negative. With this
in mind, we have thus that each contribution in (36) will
be positive. Furthermore, we can observe that with the form
(36), S → 0 as β → ∞ (T → 0). Here we have obtained
with an exact analytical expression the desired limit for the
ground-state entropy. In order to obtain high-degree analytical
expressions, we can use the parameter a to regularize our
quantities of interest.

A. Regularized quantities

Since a is an arbitrary dimensionless parameter (see
Appendix B), we can use the quantity ln a to regularize the
expression (27), such that we can rewrite (27) as follows:

fr = 1

β

∞∑
k=1

(−1)k

k!
ςk . (40)

Notice that (40) and the subsequent quantities are valid on
regions where ςk < 0. With this form, the total magnetization
of the system is

mr =
∞∑

k=1

(−1)k

2k!
μk, (41)

where

μk = β2J2ηk[(k − 1)qk + 1] − 2mk�k (42)

with

ηk = (k − 2)uk + 2mk − kmkqk, (43)

�k = 1 − βJ0[(k − 1)qk − km2
k + 1], (44)

and

uk =
∫

Dz coshk (βψ )tanh3(βψk )∫
Dz coshk (βψk )

. (45)

While the linear susceptibility is given, in analogy with
(24) and (26), by

χ0r =
∞∑

k=1

(−1)kβ

2k!
μ2

k − qr, (46)

where the spin-glass order parameter qr within the aforemen-
tioned regularization is defined as

qr =
∞∑

k=1

(−1)kβ

2k!

{
β4J4η4

k [(k − 1)qk + 1]2

−β2J2bk[(k − 1)qk + 1] + ck
}
, (47)

with

bk = 4ηkmk�k + �k (48)

and

ck = 4m2
k�

2
k − β2J2(k − 1)η2

k − 2mkλk + 2�k

βJ0
(1 − �k ).

(49)

In the above equation,

�k = (k − 2)υk + (2 − kqk )
1 − �k

J0
− kmkηk, (50)

λk = (k − 1)βJ0ηk − 2kmk (1 − �k ), (51)

and

υk = (k − 3)rk + 3qk − kmkuk, (52)

where

rk =
∫

Dz coshk (βψk )tanh4(βψk )∫
Dz coshk (βψk )

. (53)

In order to explore the advantages of the functional expres-
sions (32) and (33) and study its implications on the quantities
of interest (40), (41), and (46), in the next section, we shall
explore the properties of these new objects near critical points
and at the limit T → 0.

III. NEAR THE CRITICAL POINT

The behavior of the solution of the equations of state (32)
and (33) is determined by the parameters β, J and J0. First,
we shall focus on the case without external field h = 0 and
symmetric distribution of Ji j (J0 = 0). In this case, we have
ψk = J

√
qkz such that tanh(βψk ) is an odd function. Then

the magnetization vanishes (mk = 0 for all k) and there is
no ferromagnetic phase. Afterward, we explore the solutions
where J0 > 0, mk >, and qk > 0.

To investigate the properties of the system near the
critical point where the spin glass order parameter qk

is small, we expand the right-hand side of (32), and
up to O(q3

k ) for qk → 0, we have coshk (βJ
√

qkz) ≈
1 + 1

2 kβ2J2qkz2 + (− 1
12 kβ4J4z4 + 1

8β4J4k2z4)q2
k + O(q3

k )
and tanh2(βJ

√
qkz) ≈ β2J2qkz2 − 2

3β4J4q2
k z4 + O(q3

k ).
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0.90 0.92 0.94 0.96 0.98 1.00
kBT/J

0.0

0.1

0.2

0.3

0.4

0.5

0.6

q k

k = 1
k = 2
k = 3
k = 4
k = 5
k = 6
k = 7

FIG. 3. Numerical solutions up to O(β2) for (32) near the critical
point for different values of k. We can identify the critical tempera-
ture at βJ = 1.

Replacing the above expansions in (32), we obtain the
behavior of the numerical solutions for qk depicted in Figs. 3
and 4, where we can identify the critical temperature given
when β2J2 becomes one for J0 = 0. In Fig. 3, we show the
behavior with a lower degree expansions, near the critical
point βJ = 1. In Fig. 4, we depict the numerical solutions for
the complete aforementioned expansions [up to O(q3

k )]. As
we can observe, qk → θ , with θ 
 1, as we are approaching
to the critical point and k → ∞. Notice that it is a parallel
situation to the Parisi scheme where, in the limit of k → 0
one has (1/k)

∑
α �=β ql

αβ → − ∫ 1
0 ql (x)dx, and then the

order parameter is defined by (A13). An advantage of this
expansion is that on the interval [0, 1] we have a similar
behavior presented in Ref. [20], i.e., q(x) → 0 as x → 0,
where the parameter x has a relationship with the parameter
kbT/J (see the complete discussion of Subsec. 3.3.2 in

0.0 0.2 0.4 0.6 0.8 1.0
kBT/J

0.000

0.025

0.050

0.075

0.100

0.125

q k

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

k = 7

0.95 1.00 1.05
kBT/J

−0.05

0.00

0.05

q k

FIG. 4. Numerical solutions for (32) and for the complete expan-
sion. We can identify the critical temperature at βJ = 1. Inset shows
the behavior with this expansion near and beyond the point βJ = 1.
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FIG. 5. Entropy for the numerical solutions for (32) and fixed
J 
 1.

Ref. [20]). In Fig. 4, the inset shows the behavior with this
expansion near and beyond the point βJ = 1.

Furthermore, using this numerical solution for a J 
 1
(inside a region where ςk < 0 in this regime), we are able
to reproduce the aforementioned result for the ground-state
entropy when T → 0. In Fig. 5, we depict the behavior of this
ground-state entropy given by

s =
∞∑

k=1

(−1)k+1

k!
s0k, (54)

where

s0k = β2J2

(
1

4
(k − 1)q2

k + 1

2
qk − 1

4

)

+ 1

2
β3J2 ∂qk

∂β
[(k − 1)qk + 1]

+ ln 2 + 1

k
ln
∫

Dz coshk (βJ
√

qkz)

−β2J2

(
1

2
β

∂qk

∂β
+ qk

)
[(k − 1)qk + 1]. (55)

Now, if J0 �= 0 we will have four kind of solutions: (i) qk =
0 and mk = 0; (ii) qk > 0 and mk = 0; (iii) qk > 0 and mk >

0; and (iv) qk > 0 and mk < 0. To explore the regime where
J0 > 0 and mk > 0, we expand (32) and (33) for small qk and
mk . If we neglect terms of O(qkmk ) and keep with O(qk ) and
O(m2

k ), we obtain expressions of the form

qk = 2(βJ0 − 1)

kβJ0
, (56)

mk =
[

2(βJ0 − β2J2)(βJ0 − 1)

kβ3J3
0

]1/2

. (57)

Observe that we have, as expected, the points of transition
determined by βJ0 = 1 or TC = J0 and βJ2/J0 = 1. In Fig. 6,
we depict the behavior of (57) for different temperatures and
values of J0. Note that the interval where it is well defined is
[J/J0, J0/J]. We can evidence the appearance of a maximum

034102-6



SHERRINGTON-KIRKPATRICK MODEL FOR SPIN … PHYSICAL REVIEW E 104, 034102 (2021)

0.50 0.75 1.00 1.25 1.50 1.75 2.00
J/kBT

0.0

0.1

0.2

0.3

0.4

0.5

m
k

(a)

1 2 3 4
J/kBT

0.0

0.2

0.4

0.6

m
k

(b)

0 2 4 6 8
J/kBT

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
k

(c)

0.0 2.5 5.0 7.5 10.0 12.5 15.0
J/kBT

0.0

0.1

0.2

0.3

0.4

0.5
m

k

(d)

FIG. 6. Behaviors of (57) for (a) J0/J = 2, (b) J0/J = 4, and (c) J0/J = 8, and (16) for J0/J = 16. Each curve correspond to k = 1 (indigo,
dashed line), k = 2 (blue, x marker), k = 3 (dark cyan, diamond marker), k = 4 (green, left-triangle marker), k = 5 (yellow, dashed line, circle
marker), k = 6 (orange, -down-triangle marker), and k = 7 (red, dashed line, star marker).

for a given value of J/kBT and k. Each curve corresponds to
different values of k. Similar behaviors are obtained experi-
mentally (see Refs. [13,54–57]).

With these results, we are able to recover the typical phase
diagram with the regularized order parameters (41) and (47).
Furthermore, keeping now the terms of O(qkmk ) to observe
other phenomena, the local susceptibility from (33) yields

χ0k = −kβm2
k + (k − 1)βqk + β, (58)

while the nonlinear susceptibility reads

χ2k = −2kβχ2
0k + β2χ0k[(k − 1)(2 − kqk ) − 4k2mk]

+ k(k − 1)βmk[(k − 2)uk + mk (2 − kqk )]

+ (k − 1)(k − 2)β3[(k − 3)rk + 3qk − kmkuk].

(59)

We depict the behavior of (58) in the function of kBT/J
for different values of J0/J in Figs. 7 and 8. Notice that
we obtain the expected discontinuity of the linear suscep-
tibility at the spin-glass critical temperature extracted from
phenomenological models and experimental results [13,58–
61]. Also note that each k (continuous, dot-dashed, and dashed
lines) is depicting behavior similar as those occurring with
the other quantities. Furthermore, the inset shows (59). We
recover the typical behavior of the nonlinear susceptibility.
However, each k contribution is showing a local behavior
of each term of the principal expansion. In order to obtain
the total critical temperature for obtaining numerical values
to compare with the experimental ones, we have to use the
regularized quantities and to find experimental arrays which
are in regimes where our regularization procedure is valid.
Within our regularized quantities, we can carry out a more
complete characterization by obtaining quantities beside the
regularized total magenetization (41), such as the regularized
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FIG. 7. Behavior of (58) for J0/J = 3 and k = 3 (dot-dashed
line), k = 4 (dashed line), and k = 5 (continuous line) as functions
of kBT/J . Note the appearance of the discontinuity at the spin-glass
critical temperature. Inset shows the typical behavior of the nonlinear
susceptibility (59).

magnetic susceptibility [62,63]

χr (ω) = χrs + χ0r − χrs

1 + (iωτC )1−α
, (60)

where τc is the characteristic relaxation time while the param-
eter α ranges from 0 to 1, χ0r is given by (46), and χrs, the
regularized adiabatic susceptibility, reads

χrs = χ0r −
(

∂mr

∂T

)2(
∂sr

∂T

)−1

, (61)
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kBT/J

0.8

1.0
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FIG. 8. Behavior of (58) for J0/J = 4 (lime, circle), J0/J = 5
(orange, star), and J0/J = 6 (red, x) and k = 3 (dot-dashed line),
k = 4 (dashed line), and k = 5 (continuous line) in functions of
kBT/J . Note the appearance of the discontinuity at the spin-glass
critical temperature. Inset shows the typical behavior of the nonlinear
susceptibility (59).

which can be used to derive χ ′
r (ω) and χ ′′

r (ω) as follows:

χ ′
r (ω) = χrs + χ0r − χrs

1 + ω2τ 2
C

(62)

and

χ ′′
r (ω) = ωτC

χ0r − χrs

1 + ω2τ 2
C

. (63)

We can obtain too the specific heat

Cf = −T
∂2 fr

∂T 2
(64)

and other quantities that usually are studied in the laboratory
[13,58–61,64,65]. However, this surpasses the scope of this
paper and it will be treated in a future work.

To characterize the aforementioned kind of regimes, we
can use the expressions (57) and (56) and explore the regions
where (28) is negative. Near the critical point in Fig. 9 we
depict the regions of validity of our regularized quantities.
We can evidence that the region is increasing as the disorder
becomes stronger (increasing value of J). With this result, now
we shall study the stability of our solution qαkγk = qk .

A. Stability

For the analysis of the stability, let us explore the Hessian
matrix for each term in the series expansion of free energy,
for h = 0. Thus, for each k the Hessian evaluated in qk =
〈〈Sαk Sβk 〉〉 is

δ2(β f )

δqαkβk δqμkνk

= (−1)k+1ak

k!k
ewk

δ2wk

δqαkβk δqμkνk

, (65)

where

wk = β2J2
∑

αk<γk

q2
αkγk

Sαk Sγk + βJ0

∑
αk

mαk Sαk (66)

and

δ2wk

δqαkβk δqμkνk

= β2J2δ(αkβk ),(μkνk ) − β4J4[〈〈Sαk Sβk Sμk Sνk 〉〉

− 〈〈Sαk Sβk 〉〉〈〈Sμk Sνk 〉〉]. (67)

Following the standard procedure [35,66], we have three
kind of contributions in (65):

δ2(β f )

δqαkβk δqμkνk

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

H(k)
1 if (αkβk ) = (μkνk )

H(k)
2 if αk = μk, βk �= νk

H(k)
2 if αk �= μk, βk = νk

H(k)
3 if αk �= μk, βk �= νk

, (68)

where each contribution is given by

H(k)
1 = (−1)k+1ak

k!k
ewk
[
β2J2 − β4J4

(
1 − q2

k

)]
,

H(k)
2 = (−1)k+1ak

k!k
ewk
[− β4J4

(
qk − q2

k

)]
, (69)

H(k)
3 = (−1)k+1ak

k!k
ewk
[− β4J4

(
rk − q2

k

)]
,

with rk defined by (53).
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FIG. 9. Regions of validity of regularized free energy (40) and subsequent regularized quantities for (a) J = 1, (b) J = 2, (c) J = 3, and
(d) J = 4.

We proceed to study the eigenvalues of (65). The subspace
spanned by the vector with all equal components is a good
eigenspace, called longitudinal (scalar) space, which at the
same time can be can be divided into two other orthogonal
eigenspaces called, respectively, anomalous (vectorial) and
replicon (tensorial).

Let us study the condition of stability for each eigenspace.
First, for the longitudinal space, the eigenvalue is given by

λ
(k)
L = H(k)

1 + 2(k − 2)H(k)
2 + (k − 2)(k − 3)

2
H(k)

3 . (70)

We must divide the study in two cases: the first one when
k + 1 = 2n with n ∈ N and the second one when k + 1 =
2n + 1 with n ∈ N. For the first case, in the spin-glass phase,
the stability condition is given by q2n−1 > (2n − 3)/(n2 +
(n/2) − 1), which is valid for all n > 1. On the other hand,
when k + 1 = 2n + 1, we have q2n > (n − 1)/n(n − 1/2),
which is valid for all n > 1 too. In the limit T → 0, we have
stability for all k + 1 = 2n. Near the critical point 1 > β2J2.

For the anomalous space, the eigenvalue is

λ
(k)
A = H(k)

1 + (k − 4)H(k)
2 − (k − 3)H(k)

3 . (71)

To go further, we discuss two situations. For k + 1 = 2n,
with n ∈ N, in the spin-glass phase, the stability condition is

given for all n > 2.5. On the other hand, when k + 1 = 2n +
1, we have that the solution is stable for all n > 2. In the limit
T → 0, we have stability for all k + 1 = 2n. Near the critical
point, 1 > β2J2.

Finally, the eigenvalue of the replicon space yields

λ
(k)
R = H(k)

1 − 2H(k)
2 + H(k)

3 , (72)

which gives us our version for the AT line of stability, that is,
for k + 1 = 2n, in the spin-glass phase(T

J

)2

>

∫
Dz cosh2n−5(βψ )∫
Dz cosh2n−1(βψ )

, (73)

and for k + 1 = 2n + 1(T

J

)2

<

∫
Dz cosh2n−4(βψ )∫
Dz cosh2n(βψ )

. (74)

Here, near the critical point the solution is stable if 1 >

β2J2. In the limit T → 0, we have stability for all k. In Fig. 10,
we depict numerical solutions of (32) when we can observe
the behavior in the regions of stability, near the critical point,
and for low fields and temperatures for k = 0, 1, 2, 3, 4, 5.
Note that the discontinuity near the critical point is getting
sharp as k increases.
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FIG. 10. Numerical solutions of (32) for (a) k = 0 (replica symmetric ansatz), (b) k = 1, (c) k = 2, (d) k = 3, (e) k = 4, and (f) k = 5.
Here, the curves projected on each plane are level curves used to delimit the stability regions.

IV. CONCLUSIONS

Afterward, the Parisi RSB scheme was consolidated as a
solution to avoid unphysical scenarios obtained by the replica
ansatz in the replica method. A wide set of results explor-
ing each step of the scheme discovered new physics of the

Sherrington-Kirkpatrick model for spin glasses. Within this
framework, great theoretical and numerical efforts were carry
out to study the physics of the complex free-energy landscape
and order parameters under different domains. In this paper,
we adopt the distributional zeta function method (DZFM), a

034102-10



SHERRINGTON-KIRKPATRICK MODEL FOR SPIN … PHYSICAL REVIEW E 104, 034102 (2021)

series representation of the average free energy where all of
the moments of the partition function contribute.

Within the DZFM, we obtain the multivalley structure of
the average free energy. We obtained the self-consistent in-
tegral equations for each order parameter qk and mk , which
have similar structures presented in the replica symmetric
ansatz and for the first steps of the Parisi RSB. We perform
a study of this parameter near the critical point and in the
low-temperature regime. For the critical point, we obtained
a critical temperature for each k. Since we are dealing with
a series representation, an asymptotic analysis was made to
recover the known result TC = J . In the evaluation of the
local magnetizations and linear susceptibilities, we have found
similar behaviors described in phenomenological models and
experimental results. In particular, we obtain the behavior of
reentrant phase in the local magnetization given by two criti-
cal temperatures determined by J and J0. On the other hand,
with an upper order expansion, keeping terms of order O(m2

k )
and O(qkmk ), we have obtained the typical discontinuity of
the linear susceptibility at the spin-glass critical temperature.
Furthermore, with numerical solutions of the integral equa-
tions, we were able to recover the behavior of the continuum
limit of the Parisi RSB.

For the low-temperature regime, we have shown that for
each k the limit result for qk is 1 as has been investigated in
the literature. Furthermore, before taking the limit β → ∞,
we have obtained a composed expression for each k. The main
result in this regime is the construction of a positive definite
series representation of the ground-state entropy. We show
that the ground-state entropy goes to zero as temperature tends
to zero; that is, in the low-temperature regime, β → ∞, we
obtain S → 0.

In the stability analysis of our results, we obtained a gen-
eral expressions for the elements of the Hessian matrix of
the free energy. We study the structure of the longitudinal
(scalar) space, which at the same time can be divided into two
other orthogonal eigenspaces called, respectively, the anoma-
lous (vectorial) and replicon (tensorial), for each k. From this
structure, we obtained our generalized version for the AT
conditions for stability. Finally, we studied the distribution
of the overlaps. We obtained for each k a structure similar
(but not equal) to the ultrametricity extracted from the Parisi
solution in the continuum limit. However, we have that as
k → ∞ the overlaps become statistically independent. As we
have shown, that distribution has no implications for the free-
energy landscape because we are recovering its complexity,
thanks to the series expansion; i.e., we have a minimum within
each term. In other words, we do not need to have states
which are organized in a ultrametric fashion to obtain the
multivalley topography of the free energy. The expression
(C12), as expected, is showing us that we do not have a ultra-
metric structure since we do not have a RSB that constructs a
hierarchy between the parameters extracted in each step [28].
In addition, the obtained distribution is valid for k > 2.

In conclusion, we have obtained analytical results that are
able to access the complex free-energy landscape, its rich
topography of metastable states, broken ergodicity, and mul-
tivalley structure. Possible extensions of this work are the
study of these effects over random graphs, for example, to
give new insights over the finite-size effects [67–69], critical

phenomena [70,71], and random-link matching problems on
random regular graphs [72]. On the other hand, we can use the
DZFM on multiplex networks to investigate critical phenom-
ena and collective behavior [73] and finally use our formalism
to enlarge the set of statistical field theory toolbox that is been
currently used for simplicial complex [74,75]. These issues
are under investigation by the authors.
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APPENDIX A: REPLICA METHOD

To study the properties and phase structure of the SK
model, it is necessary to compute the configurational averaged
free energy defined by (8). To bypass the average of the
logarithm, the replica method is usually employed. After the
construction of Zk , the expected value of the partition func-
tion’s kth power E[Zk (Ji j )] is evaluated by integrating over the
disorder field on the new model (collection of replicas). Notice
that in Zk , integration over quenched random couplings yields
a system defined by k replicas which are no more statistically
independent.

The average value in the presence of the quenched disorder
is then obtained in the limit of a zero-component field theory
taking the limit k → 0 due to the following identity:

E[ln Z (Ji j )] = lim
k→0

E[Zk (Ji j )] − 1

k
(A1)

or

E[ln Z (Ji j )] = lim
k→0

∂

∂k
E[Zk (Ji j )]. (A2)

The standard ansatz restricts the search for a minimum to a
qαkγk invariant under a subgroup of the permutation group of
k elements. In the Parisi’s RSB scheme, if Pk is the group of
permutations of k elements, we can consider the chain

Pk ⊃ (Pm1

)k/m1 ⊗ Pk/m1 , Pm1 ⊃ (Pm2

)m1/m2 ⊗ Pm1/m2 ,

and so on. For instance, in the first step of replica symmetry
breaking (1RSB), an invariant 6 × 6 qαkγk is⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 q1 q1 q0 q0 q0

q1 0 q1 q0 q0 q0

q1 q1 0 q0 q0 q0

q0 q0 q0 0 q1 q1

q0 q0 q0 q1 0 q1

q0 q0 q0 q1 q1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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An 8 × 8 qαkγk matrix invariant under (P2)4 ⊗ (P4/2)2 ⊗
P8/4 is ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 q0 q1 q1 q2 q2 q2 q2

q0 0 q1 q1 q2 q2 q2 q2

q1 q1 0 q0 q2 q2 q2 q2

q1 q1 q0 0 q2 q2 q2 q2

q2 q2 q2 q2 0 q0 q1 q1

q2 q2 q2 q2 q0 0 q1 q1

q2 q2 q2 q2 q1 q1 0 q0

q2 q2 q2 q2 q1 q1 q0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The SK solutions correspond to using the replica-
symmetric solution where qαkγk = q and mαk = m. Within the
well-known relation from the replica method (A1), the order
parameters q and m read, respectively,

q = 1 −
∫

Dz sech2(βψ ) =
∫

Dz tanh2(βψ ) (A3)

and

m =
∫

Dz tanh(βψ ), (A4)

where

Dz = dz√
2π

exp

(
− z2

2

)
(A5)

and

ψ = J
√

qz + J0m + h. (A6)

In this scenario, we have the spin-glass transition at T = J
when J0 = m = h = 0. According to (A3), q tends to one as
T → 0. However, the ground-state entropy is −1/2π . In order
to avoid the unphysical results of the replica-symmetric solu-
tion, the replica symmetry breaking (RSB) was introduced.
The variational parameters in the 1RSB are

m =
∫

Du

∫
Dv coshm1� tanh�∫

Dv coshm1�
, (A7)

q0 =
∫

Du

(∫
Dv coshm1� tanh�∫

Dv coshm1�

)2

, (A8)

and

q1 =
∫

Du

∫
Dv coshm1� tanh2�∫

Dv coshm1�
, (A9)

where

� = β(J
√

q0u + J
√

q1 − q0v + J0m + h).

Under this formalism, the entropy per spin at J0 = 0,
T = 0 reduces from −0.16 (= −1/2π ) for the RS solution
to −0.01 for the 1RSB.

In the full RSB solution, one obtains a K → ∞ number of
order parameters defined by∑

αk �=γk

ql
αkγk

= ql
0k2 + (ql

1 − ql
0

)
m2

1
k

m1

+ (ql
2 − ql

1

)
m2

2
m1

m2

k

m1
+ · · · − ql

K k. (A10)

Rewriting the last expression, we get

∑
αk �=γk

ql
αkγk

= k
K∑

j=0

(mj − mj+1)ql
j, (A11)

where l is an arbitrary integer and m0 = k, mK+1 = 1. In the
limit k → 0, we may use the replacement mj − mj+1 → −dx
to find

1

k

∑
αk �=βk

ql
αkβk

→ −
∫ 1

0
ql (x)dx. (A12)

Near the critical point, this parameter has the following
behavior:

q(x) =
{ x

2 if 0 � x � x1 = 2q(1)

q(1) if x1 � x � 1
, (A13)

where

q(1) = |θ | + O(θ2), θ 
 1. (A14)

APPENDIX B: FREE ENERGY FROM DZFM

In this Appendix, we review the alternative approach to
compute the configurational average of the free energy of
disordered systems presented in Refs. [47–49]. We begin with
the definition of the generalized zeta function given by

ζμ, f (s) =
∫

X
f (x)−sdμ(x), (B1)

where the triplet (X,A, μ) is a measure space, f : X →
(0,∞) is measurable, and s ∈ C such that f −s ∈ L1(μ),
where in the above integral f −s = exp(−s ln( f )) is obtained
using the principal branch of the logarithm. In the situation
where f (Ji j ) = Z (Ji j ) and dμ(Ji j ), we obtain the definition of
the distributional zeta function �(s) as

�(s) =
∫

d[Ji j]P(Ji j )
1

Z (Ji j )s
. (B2)

Following the usual steps of the spectral zeta function, the
configurational average free energy can be written as

f = lim
N→∞

1

Nβ

d

ds
�(s)

∣∣∣∣
s=0+

, Re(s) � 0, (B3)

where �(s) is well defined. The procedure use the Euler’s
integral representation of the gamma function

1

Z (Ji j )s
= 1

�(s)

∫ ∞

0
dt t s−1e−Z (Ji j )t , (B4)

for Re(s) � 0. Substituting (B4) into (B2), we have

�(s) = 1

�(s)

∫
d[Ji j]P(Ji j )

∫ ∞

0
dt t s−1e−Z (Ji j )t . (B5)

To proceed, the commutativity of the configurational aver-
age, differentiation, and integration is assumed. Now, we take
a > 0 and write � = �1 + �2 where

�1(s) = 1

�(s)

∫
d[Ji j]P(Ji j )

∫ a

0
dt t s−1e−Z (Ji j )t (B6)
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and

�2(s) = 1

�(s)

∫
d[Ji j]P(Ji j )

∫ ∞

a
dt t s−1e−Z (Ji j )t , (B7)

where a is a dimensionless parameter. The configurational
average free energy can be written as

f = lim
N→∞

1

Nβ

{
d

ds
�1(s)

∣∣∣∣
s=0+

+ d

ds
�2(s)

∣∣∣∣
s=0+

}
. (B8)

In the innermost integral in �1, the series representation for
the exponential converges uniformly (for each Ji j), so that we
can reverse the order of integration and summation to obtain

�1(s) =
∫

d[Ji j]P(Ji j )
1

�(s)

∞∑
k=0

(−1)kak+s

k!(k + s)
Zk (Ji j ). (B9)

The term k = 0 in (B9) contains a removable singularity at
s = 0 since s�(s) = �(s + 1), so that we can write

�1(s) = as

�(s + 1)
+ 1

�(s)

∞∑
k=0

(−1)kak+s

k!(k + s)
E[Zk]. (B10)

The function �(s) has a pole at s = 0 with residue 1, and
therefore

− d

ds
�1(s)

∣∣∣∣
s=0+

=
∞∑

k=0

(−1)k+1ak

k!k
E[Zk] + f (a), (B11)

where

f (a) = − d

ds

(
as

�(s + 1)

)∣∣∣∣
s=0+

= − ln(a) + γe, (B12)

with γe being the Euler’s constant. The derivative of �2 is
given by

d

ds
�2(s)

∣∣∣∣
s=0+

=
∫

d[Ji j]P(Ji j )
∫ ∞

a

dt

t
e−Z (Ji j )t = R(a).

(B13)

The asymptotic behavior of R(a) is related to the incom-
plete gamma function defined as

�(α, x) =
∫ ∞

x
e−t tα−1 dt . (B14)

The asymptotic representation for |x| → ∞ and −3π/2 <

argx < 3π/2 reads

�(α, x) ∼ xα−1e−x

[
1 + α − 1

x
+ (α − 1)(α − 2)

x2
+ · · ·

]
.

(B15)

Defining Zc as the partition function of a system where
P(Ji j ) = c, where c ∈ R is a constant such that c < Ji j for
all stochastic variable Ji j defined by (3), we have a bound for
R(a) given by |R(a)| � (Zca)−1 exp(−Zca).

APPENDIX C: OVERLAP DISTRIBUTION

For completeness in our analysis, we present the over-
lap distribution under our formalism. In the Parisi RSB, this
distribution is associated with the continuum parameter x of
the order parameter q(x). Furthermore, the joint distribution
shows that the symmetry breaking generates a ultrametric
structure. The explicit calculation of P(Q1, Q2, Q3) gives the
result

P(Q1, Q2, Q3) = 1
2 P(Q1)x(Q1)δ(Q1 − Q2)δ(Q2 − Q3)

+ 1
2 P(Q1)P(Q2)�(Q1 − Q2)δ(Q2 − Q3)

+ 1
2 P(Q2)P(Q3)�(Q2 − Q3)δ(Q3 − Q1)

+ 1
2 P(Q3)P(Q1)�(Q3 − Q1)δ(Q1 − Q2).

(C1)

For any Qc < Qmax, the integrated contributions in the
volume 0 � Qi � QC of all four terms are equal. It follows
that, among all the triangles, 1/4 are equilateral and 3/4 are
isosceles. The relatively large number of equilateral triangles
is a noticeable feature of this kind of ultrametricity. Now let
us show what happens with this quantity under the DZFM.

The thermodynamic average of the site magnetization
could be represented as

〈σi〉 = mi =
∑
αk

wαk mαk
i , (C2)

where the αk’s label the pure states and wαk are their statistical
weights which could be written as

wαk = e−Fαk , (C3)

with Fαk the free energy of the pure state α.
The overlap between two states αk and γk is defined by

Qαkγk = 1

N

N∑
i=1

mαk
i mγk

i . (C4)

We can observe that 0 � |Qαkγk | � 1. To describe the
statistics of the overlaps between all the pairs of pure states, it
is natural to introduce the probability distribution function

PJ (Q) =
∑
αkγk

wαk wγk δ
(
Qαkγk − Q

)
. (C5)

The function PJ (Q) could depend on the concrete realiza-
tion of the quenched interactions Ji j . The average over the
disorder is P(Q) = E[PJ (Q)]. The function P(Q) gives the
probability to find two pure states having mutual overlap equal
to Q. In terms of the entries of the matrix qαkγk , we have

P(Q) = 2

k(k − 1)

∑
αk<γk

δ
(
qαkγk − Q

)
. (C6)

To explore the metric of the space of pure states, we con-
sider the distribution function P(Q1, Q2, Q3), which describes
the joint statistics of the overlaps of arbitrary three pure states.
We have then

P(Q1, Q2, Q3) = 1

k(k − 1)(k − 2)

∑
αk �=γk �=σk

δ
(
qαkγk − Q1

)
δ
(
qαkσk − Q2

)
δ
(
qγkσk − Q3

)
. (C7)
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To perform the calculus, we use the Fourier transform of the function P(Q1, Q2, Q3)

g(y1, y2, y3) =
∫

dQ1dQ2dQ3 P(Q1, Q2, Q3) eiQ1y1+iQ2y2+iQ3y3 . (C8)

Thus, we have

g(y1, y2, y3) = 1

k(k − 1)(k − 2)

∑
αk �=γk �=σk

eiqαk σk y1+iqαk σk y2+iqγk σk y3 = 1

k(k − 1)(k − 2)
Tr[A(y1)A(y2)A(y3)] (C9)

where

Aαkγk (y) =
{

eiqαk γk y if αk �= γk

0 if αk = γk
. (C10)

Applying the fact that qαkγk → qk for each term in the free energy, the trace in (C9) yields

Tr[A(y1)A(y2)A(y3)] = k{1 + (k − 1)[eiqk (y1+y2 ) + eiqk (y1+y3 ) + eiqk (y2+y3 )] + (k − 1)(k − 2)eiqk (y1+y2+y3 )}. (C11)

Finally we obtain

Pk (Q1, Q2, Q3) = 1

8
P(Q1)P(Q2)P(Q3) + 1

4(k − 2)
[P(Q1)P(Q2)δ(Q3) + P(Q1)P(Q3)δ(Q2) + P(Q2)P(Q3)δ(Q1)]

+ 1

(k − 1)(k − 2)
δ(Q1)δ(Q2)δ(Q3). (C12)

As is expected, we do not have a ultrametric structure since we do not have a RSB that constructs a hierarchy between the
parameters extracted in each step [28]. Note that as k → ∞ the overlaps are becoming statistically independent.
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