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Probability distribution for heat exchange in plastic deformation
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Fluctuation theorems allow one to obtain equilibrium information from nonequilibrium experiments. The
probability distribution function of the relevant magnitude measured along the irreversible nonequilibrium
trajectories is an essential ingredient of fluctuation theorems. In small systems, where fluctuations can be larger
than average values, probability distribution functions often deviate from being Gaussian, showing long tails,
mostly exponential, and usually strongly asymmetric. Recently, the probability distribution function of the van
Hove correlation function of the relevant magnitude was calculated, instead of that of the magnitude itself. The
resulting probability distribution function is highly symmetric, obscuring the application of fluctuation theorems.
Here, the discussion is illustrated with the help of results for the heat exchanged during plastic deformation of
aluminum nanowires, obtained from molecular dynamics calculations. We find that the probability distribution
function for the heat exchanged is centrally Gaussian, with asymmetric exponential tails further out. By
calculating the symmetry function we show that this distribution is consistent with fluctuation theorems relating
the differences between two equilibrium states to an infinite number of nonequilibrium paths connecting those
two states.
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Classical thermodynamics has facilitated a thorough under-
standing of the behavior of macroscopic systems. Its success,
however, has not been restricted to the field of physics. Addi-
tionally, it has contributed to the development of chemistry
and biology. Most systems of interest in these fields are
in nonequilibrium steady states. Such states require one or
various external agents to sustain them. These agents, or pa-
rameters, are the source of noise that in macroscopic systems
leads to observed magnitudes that obey the central limit the-
orem (CLT), i.e., they take values distributed according to a
Gaussian. The CLT is one of the most important theorems in
statistics and is remarkably robust, applying to most natural
and artificial systems with some degree of randomness, i.e.,
practically all systems. In the last 50 years the impressive de-
velopment of experimental techniques has allowed us to work
on and utilize very small systems well into the nanoscale. At
these scales, fluctuations have amplitudes as large as average
values, and thus it is unlikely that a classical approach will
work.

Recently, several fluctuations theorems (FTs) have been
developed [1], all having in common the possibility of cal-
culating the difference in free energy of two equilibrium
states in terms of the irreversible work done by the system
over the infinite nonequilibrium trajectories connecting those
states. The first serious attempt to open this door was the
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so-called Jarzynski equality proposed by Jarzynski in 1997
[2]. Two years later, Crooks [3] presented a generalization of
the Jarzynski equality, while its usefulness was soon demon-
strated experimentally [4,5]. Most fluctuation theorems can be
written as [6]

P(+F )

P(−F )
= exp

F

kB
. (1)

F has the dimensions of an entropy that may represent heat
and/or work produced during a given time interval, and
P(+F ) and P(−F ) correspond to the probability distribution
functions (PDFs) of F in the forward and reverse processes,
respectively. In general, those probability distributions deviate
from a Gaussian showing tails that most commonly are ex-
ponentials. Non-Gaussian tails have been observed in a wide
variety of systems. The ratio of those two PDFs [left-hand side
of Eq. (1)] can be referred to as the symmetry function,

S(F ) = P(+F )

P(−F )
. (2)

The following works are only an illustration of the rich
phenomenology already available: nonequilibrium fluctua-
tions in a resistor [7], scalar turbulence [8] and turbulence
[9–11], active gels [12], Brownian motion [13], DNA un-
zipping [14], disorder in the distribution of the interaction
force between vortices in type II superconductors [15], non-
Gaussian tails in financial economics [16], plastic deformation
of metallic nanowires [17,18], and spontaneous heat exchange

2470-0045/2021/104(3)/034101(5) 034101-1 ©2021 American Physical Society

https://orcid.org/0000-0003-0972-7911
https://orcid.org/0000-0002-4809-6553
https://orcid.org/0000-0002-3653-4616
https://orcid.org/0000-0001-7688-4840
https://orcid.org/0000-0001-8631-0189
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.034101&domain=pdf&date_stamp=2021-09-01
https://doi.org/10.1103/PhysRevE.104.034101


W. DEDNAM et al. PHYSICAL REVIEW E 104, 034101 (2021)

processes between quenched glasses and a heat bath [19].
Examples of power-law tails are sizes of the metastable inter-
mediates in unzipped DNA exhibiting tails that follow a power
law with a superexponential cutoff [14], Cauchy-Lorentz
power-law distribution of out-of-plane jumps of carbon atoms
in graphene [20], transitions from Gaussian to non-Gaussian
velocity distribution functions in a vibrated granular bed [21],
and fluctuations of the global velocity computed at various
length scales during the intermittent mode-I propagation of
a crack front [22]. In addition, several excellent reviews are
available [6,23,24].

In the following we shall concentrate on tails having an
exponential character. Although such tails may be the result
of rare events, they can dominate the physics of soft matter
systems [13]. Specifically, we explore the appearance of these
tails in nanoscale metallic systems at low temperature. Before
proceeding it is mandatory to note that many authors, instead
of calculating the PDF of the protocol parameter, say, for in-
stance, the exchanged heat Q, computed the ensemble average
of the so-called van Hove correlation function [8,12,17],

�Q = Q(t ) − Q(t + τ ), (3)

where τ is an arbitrary parameter, usually the time. It is
worth noting that �Q is in most cases quite different from
the standard correlation function [25],

δQ = Q(t )Q(t + τ ). (4)

However, both P(�Q) and P(δQ) are usually more symmetric
and deviate less from a Gaussian than P(Q), even though
Eq. (3) [rather than Eq. (4)] is thought to be the more ap-
propriate measure of correlation when the amplitude of the
fluctuation is of the same order as that of the average itself
[25].

To capture the asymmetry in P(Q), and because deviations
from a Gaussian can be of various kinds, we have tried to fit
the numerical results for a PDF with the function

P(±Q) = P(a)

[
ω exp

(Q − a)2

−2b2
+ (1 − ω) exp

(Q − a)

∓λ±

]
.

(5)

Parameter a accounts for the fact that the most probable value
of the protocol parameter is not always zero. Decaying of the
Gaussian and the exponential terms is controlled by param-
eters b and λ±, where the ± sign accounts for the fact that
tails may be different in forward + (Q � 0) and reverse −
(Q < 0) processes [1,10,14,19]. In most cases we will divide
the results for the PDF by its most probable value, and thus
P(Q = a) = 1.

In the following we shall illustrate these ideas with the
help of numerical results for the heat exchanged during the
plastic deformation of aluminum nanowires, obtained from
an ensemble of molecular dynamics (MD) calculations. De-
tails of the MD calculations can be found in Ref. [17] and
a brief summary is included in the Appendix. As an aside,
we note that the fluctuation theorems, as expressed through
Jarzynski’s equality, also apply to our simulations, which obey
Nosé-Hoover dynamics [26–28].

Figure 1 shows the PDF of the heat exchanged during
stretching of the aluminum wire (black symbols) and that of

FIG. 1. Probability distribution function of heat exchanged in an
aluminum wire stretched at constant speed (black line). The green
curve corresponds to the van Hove correlation function Q(t ) − Q(t +
τ ) (the data depicted in the figure were obtained with τ = 10 molec-
ular dynamics steps—see the Appendix), where τ is an arbitrary
parameter. The thin blue and red lines are Gaussians fitted only to
the numerical data close to Q = 0.

the van Hove correlation function of the heat data (green sym-
bols). The two PDFs differ significantly. While the PDF of
the heat is highly asymmetric showing a tail for Q > 0 much
longer than that for Q < 0, the PDF of the correlation function
is substantially more symmetric. Albeit most authors report
asymmetric PDFs [4,7,10,11,19,22], a significant amount of
work has been done using the van Hove correlation function
[8,12,15,17] or even the standard correlation function [13,20].
In both cases symmetric PDFs are reported. There are also
a few works presenting symmetric PDFs without specifying
how they were obtained [16]. The present work shows results
for both PDFs. Moreover, P(+Q) and P(−Q) would seem
to correspond to different experimental realizations, but in
practice they correspond in most cases to the same experiment
and heat given or taken by the sample. For example, some
authors measure Q for folding and unfolding (zipping or un-
zipping) processes [5] but analyze the data as corresponding
to different experiments. In the present case, the forward and
reverse processes are very dissimilar and such an analysis of
the data is thus not feasible.

Figure 2 depicts the fitting of P(±Q) by means of Eq. (5).
The most remarkable result is the large difference between the
decaying length of the exponentials for negative and positive
Q, almost an order of magnitude difference in Fig. 2(a) for
the small system containing a few hundred atoms. The much
longer exponential tail for Q > 0 occurs because a large re-
arrangement of atoms due to a plastic deformation reduces
the potential energy and converts it into kinetic energy that is
absorbed by the heat reservoir. As the system size increases to
a few thousand atoms, the exponential tails become relatively
shorter, as one might expect. Such shortening can be seen
clearly by comparing Figs. 2(a) and 2(b). The van Hove corre-
lation function, Eq. (3), is necessarily symmetric because the
rising kinetic energy is forced down every time the thermostat
is applied.
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FIG. 2. (a) Fitting of P(Q) in Fig. 1 with Eq. (5) and the follow-
ing parameters: ω = 0.984, a = 0, b = 0.000 721, λ− = 0.000 955,
and λ+ = 0.005 08. (b) Fitting of P(Q) with Eq. (5) for a system
containing several thousand atoms and using the following parame-
ters: ω = 0.996, a = 0, b = 0.003 11, λ− = 5.95 × 10−7, and λ+ =
0.009 56.

In Fig. 3 we show the results corresponding to the symme-
try function S(Q), given by Eq. (2), for the same data set as in
Fig. 2(a). As expected, S(Q) = 1 for the region near Q = 0,
corresponding to the symmetric Gaussian part of the PDF. On
the other hand, further out, in the spontaneous region, i.e.,
where the exponential tails show up, the symmetry function
increases exponentially (blue fitted line), consistent with FTs
having the form of Eq. (1).

In summary, we have performed a large ensemble of
molecular dynamics simulations of the plastic deformation of
aluminum nanowires at low temperature. Within the canonical
ensemble, we computed the heat evolved during the stretch-
ing of the nanowires between applications of a thermostat
every ten time steps. The resulting probability distribution
of the heat evolved between the yield point and fracture of
the nanowires can be fitted to a sum of a Gaussian function
centered on zero, and two exponential tails which extend
asymmetrically on either side of the Gaussian. Our calcu-
lations show that the van Hove correlations are distributed

FIG. 3. Symmetry function S(Q) as derived either directly from
the numerical results of Fig. 2 or from the curve fitted to those data
using Eq. (5). For comparison, the numerical data in only the tail
region were fitted with an exponential function (blue line).

according to highly symmetric probability distribution func-
tions. The PDFs of the undressed quantities, on the other
hand, depend on the magnitudes of the quantities themselves,
giving rise to the asymmetric PDF. Our simulation results
dramatically support this conclusion.

The large deviation from Gaussian behavior appears to be
indicative of strongly correlated disorder in the nanowires
during plastic deformation processes that likely involve the
nucleation of dislocations or the displacement of planes of
atoms to accommodate the induced deformation. As such
processes are inherently not stochastic, they do not follow a
Gaussian distribution and are only observed at low tempera-
tures when thermal fluctuations are very small. The fact that
they are exponential may be related to an activation energy
needed to generate a dislocation, or for planes of atoms to slip
past each other.

Finally, in accordance with fluctuation theorems, near Q =
0, the symmetry function S = 1. Barring a small amount of
noise, for large Q, the symmetric function S follows an expo-
nential trend. These two limiting extremes are well matched
where S starts to deviate from one and reflect the great
achievement of fluctuation theorems in relating differences
between two equilibrium states to millions of nonequilib-
rium paths connecting those two states. Information on the
nonequilibrium paths themselves can, in turn, be obtained
experimentally or from ad hoc simulations.
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FIG. 4. A typical instance of a single-crystal aluminum nanowire
consisting of 375 centrally located atoms (white) that are free to
evolve dynamically and 178 atoms (red) on either end, which are
constrained internally but are moved rigidly as a group in order to
stretch the wire.

were performed on the high-performance computing facility
of the University of South Africa.

APPENDIX: MOLECULAR DYNAMICS CALCULATIONS

Molecular dynamics (MD) simulations of single-crystal
aluminum nanowires, containing ∼1000–5000 atoms, were
performed. Figure 4 shows a typical instance of a wire con-
sisting of N = 731 atoms. Notice that the cross section of
the wire reduces towards its midsection to facilitate breaking.
The large-scale atomic/molecular massively parallel simu-
lator (LAMMPS) [29,30] was used for this purpose and the
interatomic potential to describe the interactions between the
atoms was taken from Ref. [31]. The nanowires were stretched
along the [001] direction at a constant speed of ∼1.0 m s−1.
Not all the atoms move freely and a few layers at the ends
of the nanowire are frozen internally and moved rigidly as a
group to stretch the nanowire (red atoms in Fig. 4). As initial
conditions we took fixed atomic positions and the velocity at
each “free” atom randomly distributed according to Maxwell
distribution.

Before stretching, however, the energy of the wires was
equilibrated for several tens of picoseconds within the mi-
crocanonical ensemble. Thereafter, simulations were done
keeping the nanowire at a constant temperature of 0.5 K,
which amounts to assuming perfect thermal contact with a
bath large enough to absorb all heat generated, an assump-
tion that is justified in systems as small as those investigated
here. This assumption was implemented in the simulations by
thermostatting every ten MD steps all atom velocities using
the Nosé-Hoover thermostat [26,27], known to be consistent

FIG. 5. Stress (GPa) vs strain curves (red lines) of an ensemble
of rupture simulations and a cubic spline fit to the data (thick green
line) showing the region of plastic deformations after the yield point,
which occurs at a strain of roughly 0.05.

with the canonical ensemble even in the presence of external
forces [32,33].

In this work, the heat (Q) data used to calculate the prob-
ability distribution functions (PDFs) shown in Figs. 1 and 2
of the main text are taken to be the difference between, on
one hand, the kinetic energy just before thermostatting every
ten MD time steps and, on the other hand, the target kinetic
energy 3NkBT/2, where N is the number of “free” atoms, i.e.,
not in the frozen layers that are moved rigidly to stretch the
wire, kB is Boltzmann’s constant, and T = 0.5 K. Averaging
is done over a large number of realizations (initial conditions)
that is varied in order to check the convergence of the results.
Subsequently, the heat exchanged during the large number
of realizations is extracted from the simulations for those
deformations in the stress-strain curve, calculated in LAMMPS

based on the virial theorem, beyond the yield point and before
breaking. In this region, the curves show steps composed by
elastic regimes where the nanowire is stretched, followed by
plastic deformation, where atomic rearrangements occur (see
Fig. 5). Thus, the heat PDF was derived from the stress-strain
curves as follows. First, it was checked that the yield point oc-
curred at an extension that was similar for all realizations, near
a strain of +0.05 and a stress of ∼2.5 GPa in Fig. 5. Breaking
in most cases occurred for extensions within a narrow range,
but some samples broke either much earlier or much later.
Then, only those realizations leading to extensions within that
range were used (for strains between 0.075 and 0.3 in Fig. 5,
or equivalently, all overlapping heat data between time step
300 000 and 1 200 000 in the ensemble of simulations). For the
nanowires and testing conditions described above, the number
of points in the stress-strain curves used to produce the PDFs
varied in the range 800–1000, which gives a total of over
100 000 points as in most cases the number of realizations
was 200.
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