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Monte Carlo renormalization-group calculation for the d = 3 Ising model
using a modified transformation
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We present a simple approach to high-accuracy calculations of critical properties for the three-dimensional
Ising model, without prior knowledge of the critical temperature. The iterative method uses a modified block-spin
transformation with a tunable parameter to improve convergence in the Monte Carlo renormalization group
trajectory. We found experimentally that the iterative method enables the calculation of the critical temperature
simultaneously with a critical exponent.
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I. INTRODUCTION

The Monte Carlo renormalization group (MCRG) method
is a systematic procedure for computing critical properties of
lattice spin models [1,2]. It is particularly flexible and can
be applied to almost all lattice models, including percolation.
MCRG is capable of excellent accuracy over a variety of
models [3–12].

An important test case is the three-dimensional Ising
model [13,14]. There are other methods that are capable of
greater accuracy than MCRG for this model, but they are not
as easily extended to treat more general models. The existence
of these more specialized methods allows MCRG results to be
tested against a true standard.

The three-dimensional Ising model is a particularly inter-
esting test case. While the MCRG for the two-dimensional
Ising model converges very rapidly, it has proved exception-
ally difficult to achieve good results in three dimensions. A
normal application of majority-rule RG transformation con-
verges extremely slowly.

The key breakthrough was made by Blöte et al. [15] who
used a three-parameter approximation to the fixed point, along
with a modified majority rule for the RG transformation
and showed dramatically improved convergence. Following
this idea, we tuned the parameter involved in this modified
rule more carefully and differently for different critical expo-
nents [16].

All MCRG simulations start at a critical point (or, at least,
at a good approximation of it), which is, unfortunately, not
known for a general model nor for the three-dimensional Ising
model. In this paper, we demonstrate a method for finding the
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critical coupling and a critical exponent simultaneously from
a single simulation, without such a prior knowledge.

In the following section we recall the MCRG method. In
Sec. III we review the tunable RG transformation. In Sec. IV
we present our approach along with the results for the simulta-
neous calculations of the critical coupling and for yH1. Finally,
we present our conclusions and discuss future work.

II. MCRG COMPUTATIONS

The MCRG has often been reviewed [1,2,4,17], and here
we only briefly outline the method. We consider the three-
dimensional Ising model on a simple periodic cubic lattice, of
size N × N × N . The Hamiltonian is given by

H = K
∑
〈 j,k〉

σ jσk, (1)

where σ j = ±1, and the sum is over all nearest-neighbor
pairs. The dimensionless coupling constant K has been de-
fined to include the inverse temperature β = 1/kBT , so as to
make the Boltzmann factor eH .

The model was simulated using the Wolff algorithm [18] to
generate a set of configurations characterizing the equilibrium
distribution.

The renormalized configurations are obtained from these
sets. For each configuration, the lattice is divided up into
cubes, each containing eight sites, so that the scaling factor
b = 2. A value of plus or minus 1 is assigned to each renor-
malized spin to represent the original spins in each cube in a
way described below.

It is convenient to write the starting Hamiltonian (original
simulated system) Eq. (1) in its most general form:

H (n) =
∑

α

K (n)
α S(n)

α , (2)

where the interactions S are combinations of the spins and the
K’s are the corresponding coupling constants. The sum is over
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all possible interactions that exist on a lattice of a given size.
The subscript α denotes the type of interaction or coupling
(nearest-neighbor, next-nearest-neighbor, four-spin, etc.). The
superscript n is the number of applied renormalization steps.
Since we have just described the first iteration of the renormal-
ization transformation, n = 1. The nearest-neighbor coupling
constant K defined earlier in Eq. (1), will also be denoted by
K (0)

nn . All other coupling constants at level n = 0 vanish.
To determine the critical exponents, we then need to cal-

culate the matrix of derivatives of the couplings at level n + 1
with respect to the couplings at level n.

T (n+1,n)
α,β = ∂K (n+1)

α

∂K (n)
β

. (3)

This matrix of derivatives is then given by the solution of the
equation

∂
〈
S(n+1)

γ

〉

∂K (n)
β

=
∑

α

∂
〈
S(n+1)

γ

〉

∂K (n+1)
α

∂K (n+1)
α

∂K (n)
β

, (4)

where

∂
〈
S(n+1)

γ

〉

∂K (n)
β

= 〈
S(n+1)

γ S(n)
β

〉 − 〈
S(n+1)

γ

〉 〈
S(n)

β

〉
(5)

and

∂
〈
S(n+1)

γ

〉

∂K (n+1)
α

= 〈
S(n+1)

γ S(n+1)
α

〉 − 〈
S(n+1)

γ

〉 〈
S(n+1)

α

〉
. (6)

For our calculations we have included No = 20 odd inter-
actions. We have followed [17], who calculated all 53 even
and 46 odd interactions that fit in either a 3 × 3 square or a
2 × 2 × 2 cube of spins, and used their first 20 odd interac-
tions. The eigenvalues of the T matrix in Eq. (3) are found
separately for the even and odd interactions. The largest odd
eigenvalue exponent yH1 calculated below is then obtained
from the largest eigenvalue of the odd T matrix by yH1 =
lnλ/ln2, as b = 2.

III. TUNABLE BLOCK-SPIN TRANSFORMATION

In [16], we showed that the usual majority rule, which
performs well for the two-dimensional Ising model, converges
very slowly for the three-dimensional Ising model.

So, instead of using the usual majority rule, the renor-
malized spin σ ′

� = ±1, associated with �, a 2 × 2 × 2 cube
of spins, was assigned a value according to the following
probability [15]:

P(σ ′
�) = exp(wσ ′

�

∑
j∈� σ j )

exp(w
∑

j∈� σ j ) + exp(−w
∑

j∈� σ j )
. (7)

For w → ∞, this tends to the majority rule.
A special feature of this calculation is that the convergence

of the RG transformation in Eq. (7) can be enhanced by opti-
mizing the parameter w separately for each exponent. In [16],
we determined the optimal value of w for the calculation of
yT 1 and yH1 much more carefully than in earlier work and
showed its fast convergence compared with that of the major-
ity rule. We found w(yT 1) = 0.4314 and w(yH1) = 0.555. The
determination of w for yT 2 and yH2 turned out to need much

more statistics. We observed that using the w obtained for yT 1

(yH1) also for the calculation of yT 2 (yH2), looked promising,
but we believe that accuracy can still be enhanced.

The value of w was adjusted so that the sequence of cal-
culated exponents would converge as fast as possible. That is,
one may aim at vanishing differences dn+1,n = 0,

dn+1,n = exponent(n+1) − exponent(n) = 0, (8)

where n denotes the number of RG iterations. Our final results
showed little dependence of the exponent estimates on the
number of RG iterations, and the very small fluctuations that
remained did not appear to be systematic. We decided that an
attempt to further reduce the errors was not promising.

It is important to note that there is nothing special in
the form of Eq. (7) and thus it is possible to choose other
parametrizations. An example is presented in the Appendix.

IV. TUNING THE BLOCK-SPIN TRANSFORMATION
ALONG WITH THE INVERSE CRITICAL

TEMPERATURE Kc

In [16], we used a known approximation to the critical
inverse temperature Kc = 0.221 654 4 and showed that upon
tuning the block-spin transformation parameter w, a faster
convergence to the fixed point value of the critical exponent
was achieved and hence better estimations for the critical
exponent were obtained. Since for a general model the inverse
temperature is usually unknown, we want to present a method
in which both parameters, i.e., Kc and the optimal w, can be
simultaneously calculated, thus enabling the fast extraction of
the largest odd eigenvalue exponent yH1. First, instead of using
w [Eq. (7)], we use

u = 1

[1 + exp(−4w)]
, (9)

which behaves somewhat more linear than w as Kc is ap-
proached. We assume yH1 is a function of both Kc and u, i.e.,

yH1 = au + bu2 + cKc + duKc + eu2Kc + f . (10)

We observed that while finding an optimal w, namely, a
w for which dn,n−1 = 0 [see Eq. (8)], for the largest n we
used, the value of dn−1,n−2 at that w, was also very small. This
was the case only when the known critical value of Kc was
used. We experimentally show below that the two conditions
dn,n−1 = dn−1,n−2 = 0 may jointly be used for determining Kc

and u (and hence w), at least with very good accuracy. For
large enough grids, more such conditions may be minimized
by using least-square calculations as well as using a better
approximation, such as

yH1 = au + bu2 + cKc + duKc + eu2Kc + f + gK2
c . (11)

We applied this approach to lattices 1283 and 2563. From
six cases shown on the first six lines of Table I, we may cal-
culate the six coefficients appearing in Eq. (10) separately for
each n = 2, 3, 4, and 5. (The reliability of the six coefficients
could, of course, be enhanced by least-square fitting to more
than just six cases.) Then by demanding d3,2 = d4,3 = d5,4 =
0, a new pair of Kc and u (and hence w) is obtained by the
Newton-Raphson method. See line 7 in Table I for lattice
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TABLE I. The odd eigenvalue exponent yH1 calculated on lattice 1283 by using the Wolff algorithm [18] with different values of K and u.
n denotes the number of RG iterations.

K w u n = 5 n = 4 n = 3 n = 2

1 0.2216 0.5 0.8808 2.44676(12) 2.47269(7) 2.48294(3) 2.49179(2)
2 0.2216 0.6 0.9168 2.44690(14) 2.47009(6) 2.47648(3) 2.47887(2)
3 0.2216 0.7 0.9427 2.44725(14) 2.46895(6) 2.47335(3) 2.47158(2)
4 0.2217 0.5 0.8808 2.51531(13) 2.49572(6) 2.49065(2) 2.49430(2)
5 0.2217 0.6 0.9168 2.51190(15) 2.49178(5) 2.48378(2) 2.48133(1)
6 0.2217 0.7 0.9427 2.51031(14) 2.48999(5) 2.48041(2) 2.47397(2)
7 0.22165322 0.58819 0.9132 2.48122(10) 2.48181(4) 2.48096(2) 2.48131(1)
8 0.221654013 0.58674 0.912692 2.48167(10) 2.48199(4) 2.48110(2) 2.48147(1)
9 0.22165417 0.58628 0.912546

size 1283. Two additional iterations are shown in line 8 (9),
where we used Eq. (11) for the first six lines together with
line 7 (8, respectively). The resulting approximation for Kc

is Kc = 0.221 654 1(1) along with our estimation for yH1 =
2.4819(1).

Table II shows similar results for lattice 2563, where we
also used n = 6 and the additional demand d6,5 = 0 and ob-
tained Kc = 0.221 654 7(1) and yH1 = 2.4824(1).

Note that both tables show, as was demanded, smaller dif-
ferences dn,n−1, from one iteration to the other, for the relevant
used values of n, supporting the stability and reliability of the
calculation.

V. SUMMARY AND FUTURE WORK

The result of our computation for yH1 and a comparison
with other works are shown in Table III. The agreement be-
tween the various methods is generally good, although some
differences exist. Since we do not have estimates of the sys-
tematic errors in our results, we cannot really say what the
source of the differences are. We presume that the differ-
ence between the current result for yH1 = 2.4824(1) and our
previous one yH1 = 2.4829(2) [16], stems from the fact that
different values for Kc were used in the two simulations. The
most reliable of the estimates shown in Table III is that of
Kos et al. [21], which uses the conformal bootstrap and the
one calculated by Hasenbusch [19], which was a very care-
ful Monte Carlo finite-size study that included many effects
of corrections to scaling to provide limits on the systematic
errors.

Our obtained estimate for Kc = 0.221 654 7(1) is
in agreement with Kc = 0.221 654 4(3) [22], with
0.221 654 63(8) [19], and with 0.221 654 626(5) [23].

The main future work should of course be to extend the
current method to fast calculation of critical properties of
other models. As the Wolff algorithm is not general enough,
we would like to develop an algorithm which would be based
on the inverse RG simulations, which only involve simple
Monte Carlo as presented in [10] and [11].

APPENDIX: OTHER PARAMETRIZATION

We present an example of a renormalization transformation
which is not of the form of Eq. (7). For instance, one can
parametrize P(σ ′

�) by

P(σ ′
� = +1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if
∑

j∈� σ j � 4

w′ if
∑

j∈� σ j = 2

0.5 if
∑

j∈� σ j = 0

1 − w′ if
∑

j∈� σ j = −2

0 if
∑

j∈� σ j � −4.

(A1)

Just to demonstrate this point, we did some tuning of the
parameter w′ for lattice size 1283 at Kc = 0.221 654 4 [22].
We got for the odd eigenvalue exponent yH1 similar results to
those obtained by using Eq. (7) as introduced in [16], e.g., the
exponent we obtained for No = 20 after two renormalizations
using w′ = 0.88 was 2.4828(1), compared with 2.4829(2)
there.

TABLE II. The odd eigenvalue exponent yH1 calculated on lattice 2563 by using the Wolff algorithm [18] with different values of K and u.
n denotes the number of RG iterations.

K w u n = 6 n = 5 n = 4 n = 3 n = 2

1 0.2216 0.5 0.8808 2.37353(20) 2.44672(10) 2.47271(5) 2.48299(3) 2.4974(2)
2 0.2216 0.59 0.9137 2.37940(19) 2.44699(9) 2.47025(4) 2.47696(2) 2.7979(2)
3 0.2216 0.7 0.9427 2.38191(19) 2.44766(9) 2.46893(4) 2.47333(2) 2.47156(1)
4 0.2217 0.5 0.8808 2.57931(17) 2.51560(6) 2.49560(3) 2.49061(1) 2.49431(1)
5 0.2217 0.59 0.9137 2.57317(17) 2.51244(7) 2.49193(3) 2.48424(1) 2.48229(1)
6 0.2217 0.7 0.9427 2.56978(17) 2.51039(6) 2.49003(3) 2.48036(1) 2.47398(1)
7 0.221652674 0.58870 0.91331 2.47834(14) 2.48115(5) 2.48166(3) 2.48087(1) 2.48127(1)
8 0.221654712 0.58411 0.91185 2.48225(14) 2.48253(6) 2.48225(3) 2.48127(1) 2.48180(1)
9 0.221654781 0.58371 0.91172
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TABLE III. Estimates of the odd eigenvalue exponent yH1 from several sources. Values that are boldfaced are calculated to be consistent
with the published exponents in the same source.

This work Ref. [16] Ref. [15] Ref. [19] Ref. [20] Ref. [20] Ref. [21]
MCRG MCRG MCRG MC ε-expansion d = 3 Conformal bootstrap

2.4824(1) 2.4829(2) 2.481(1) 2.4819(1) 2.4820(25) 2.4833(13) 2.481851(1)
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