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Based on a continuous internal energy state variable, we propose an explicit, fully nonlinear Boltzmann
collision operator for the evolution of the distribution function describing a polyatomic gas with a constant
heat capacity. The particle interaction is a polyatomic generalization of the variable hard-sphere model, used
in a recent rigorous mathematical analysis, and includes frozen collisions. The model is consistent with the
monatomic case and allows easy evaluations for moment equations and the Chapman-Enskog expansion. Using a
publicly available computer algebra code we can explicitly compute nonlinear production terms for macroscopic
systems of moments. The range of Prandtl number values recovers the Eucken formula for a specific choice of
frozen collisions.
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I. INTRODUCTION

Nonequilibrium processes in gas flows are the focus of
collisional kinetic theory and the Boltzmann equation [1].
They are relevant as soon as there are not enough gas particle
collisions to maintain local equilibrium, and classical fluid dy-
namic models, such as the laws of Navier-Stokes and Fourier,
lose validity. Insufficient collisions may occur either due to
a microscopic or rarefied setting, typically characterized by a
large Knudsen number, which is given by the ratio between
the mean free path and an observation length scale. The
Boltzmann equation is known to describe the whole regime
of the Knudsen number, but also serves as the starting point
to derive improved continuum models [2]. While originally
derived and studied for the description of monatomic gas par-
ticle collisions, nowadays the proper modeling of collisions of
polyatomic particles is a highly active field of research [3–5],
especially because it is highly relevant in applications to step
out from the monatomic framework.

The aim of this paper is to establish a concrete binary
collision model for the Boltzmann equation describing a sin-
gle polyatomic gas which is explicit and consistent with the
monatomic case and to provide an easy evaluation technique
of the collision operator based on polynomial expansions. For
simplicity, we restrict this paper to polyatomic gases with con-
stant heat capacity, in the literature known also as polytropic
or calorically perfect gases [6].

We choose to work in the so-called continuous inter-
nal energy approach investigated in Refs. [7–9], which is
more accessible mathematically and computationally than
the semiclassical approach [3,4,10], yet reproduces physi-
cal requirements. The accessibility of the continuous model
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comes from the Borgnakke-Larsen procedure [11], used to
parametrize the collision process. One of the main improve-
ments in this paper is the inclusion of frozen collisions in
a consistent way into a complete collision operator. Frozen
collisions do not change the internal energies of the particles
and, as a consequence, the Borgnakke-Larsen procedure is
not applicable. Such a consideration is often the basis for
Bhatnagar-Gross-Krook (BGK) relaxation operators [12,13].
For the complete polyatomic collision operator we propose
a convex combination of frozen and purely polyatomic (non-
frozen) collisions. We also impose consistency conditions for
the collision frequency, which leads to the proper monatomic
limit of the model, by extending the approach of Ref. [14]
written in the BGK context. Moreover, our approach uses
recent mathematical results [15] for the transition proba-
bilities of the collisions which also ensures mathematical
well-posedness of the collision operator. We enrich this transi-
tion probability with a set of parameters that can successfully
model physical properties, as, for instance, they allow us to
match the temperature dependence of viscosity and, at the
same time, offer a wide range for the Prandtl number that
includes the Eucken formula. To facilitate the practical use
of this operator, we also provide a computer algebra code [16]
for its explicit evaluation.

II. POLYATOMIC COLLISIONS

A. Distribution function

Next to the particle velocity c ∈ R3, we use an internal
state variable J ∈ R+ such that for the internal energy I ∈ R+
of a particle we have I = I0(J/J0)2/δ with a constant degener-
acy level δ, related to the internal degrees of freedom or the
adiabatic coefficient γ through [7,9,12]

γ = 5 + δ

3 + δ
, (1)
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and a reference internal phase space volume J0 with energy I0.
We can work with either a distribution function g � 0 defined
on the phase space (c, J ) or with a distribution f � 0 defined
on (c, I ) such that

g(x, t, c, J )dcdJ = f (x, t, c, I )dcdI (2)

is the number density of particles at space point x and time
t with velocity c and internal state J , or internal energy I ,
respectively. Similarly as in Ref. [17], the phase space can be
redefined from (c, J ) to (c, I ) and vice versa, such that

dcdJ = ϕ(I )dcdI with ϕ(I ) = J0

Iδ/2
0

δ

2
I

δ
2 −1, (3)

which together with (2) yields

f (c, I ) = ϕ(I )g(c, J (I )). (4)

Accordingly, we will use I and J in an essentially equivalent
manner.

With the peculiar velocity C = c − v based on the fluid ve-
locity v, we define temperature θ (in units of specific energy)
through the energy density

ρ
3 + δ

2
θ =

∫∫
R3×R+

(m

2
C2 + I

)
f dcdI, (5)

which gives the adiabatic coefficient (1) and the equilibrium
distribution

feq(c, I ) =
ρ

m I
δ
2 −1 e−

m
2 C2+I

mθ

(2πθ )3/2(mθ )δ/2�( δ
2 )

. (6)

This can be written as geq(c, J ) using (4). In the monatomic
limit δ → 0 the distribution feq becomes a Dirac function at
I → 0, while geq gives nonzero only for values of J < J0.
Consequently, all particles are placed in an internal state
within 0 � J < J0 and will have zero internal energy, because
(J/J0)2/δ → 0.

For future reference we also define

ρ
3

2
θtr =

∫
m

2
C2 f dcdI, ρ

δ

2
θint =

∫
I f dcdI (7)

as the translational and internal temperature. Additionally, we
define a dynamic pressure by

	 = ρ(θtr − θ ) = − δ

3
ρ(θint − θ ) = δ

δ + 3
ρ(θtr − θint ), (8)

which vanishes in equilibrium, where we have θtr = θint = θ .

B. Polyatomic collision operator and its weak form

In a binary collision the states (c, I ) and (c
, I
) of two par-
ticles are converted to postcollisional states (c′, I ′) and (c′


, I ′

)

under the constraint of the conservation laws of momen-
tum and total (translational+internal) energy. The collision
is parametrized using the Borgnakke-Larsen procedure [11],
which is based on the repartition of the total energy E =
m
4 |u|2 + I + I
 in the center-of-mass reference frame defined
by u = c − c
 and h = (c + c
)/2, and performed using the
collision parameters σ ∈ S2 (unit sphere in R3) and (r, R) ∈

[0, 1]2, such that

c′ = h + |u′|
2

σ, c′

 = h − |u′|

2
σ,

m

4
|u′|2 = RE ,

I ′ = r(1 − R)E , I ′

 = (1 − r)(1 − R)E .

(9)

Note that in this setting, the scattering angle χ satisfies

cos χ = σ · u
|u| . (10)

The corresponding Boltzmann equation has its easiest form in
the state phase space (c, J ),

∂t g + ci∂xi g = Q̃(g, g), (11)

where the operator reads

Q̃(g, g)(x, t, c, J )

=
∫

· · ·
∫

(c
, J
 ) ∈ R3 × R+
(σ, r, R) ∈ S2 × [0, 1]2

(g′g′

 − gg
)B dσdrdRdc
dJ
, (12)

with the usual notation for pre- and postcollisional evalu-
ations, e.g., g′ := g(x, t, c′, J′), and a transition probability
B := B(c, c
, I (J ), I
(J∗), r, R, σ ) � 0 supposed to satisfy mi-
croreversibility assumptions to be explained below. In the
energy phase space, the Boltzmann equation is based on f
and uses a transformed operator Q( f , f ) which is based on a
different measure according to (4),

Q( f , f )(x, t, c, I ) = Q̃(g, g)(x, t, c, J )ϕ(I )

=
∫

· · ·
∫

c

(
f ′ f ′




ϕϕ


ϕ′ϕ′



− f f


)
× B dσdrdRdc
dI
. (13)

Here, we abbreviated the integral limits that have been used in
(12) by c.

To derive the conservative weak form of the colli-
sion operator we consider the transformation of precolli-
sional variables (σ, c
, c, r, R, J
, J ) into a postcollisional
state (σ ′, c′


, c′, r′, R′, J ′

, J ′) by using (9) and the additional

definitions

R′ = m

4 E
|u|2, r′ = I

I + I

, σ ′ = u

|u| . (14)

The measure dσdrdRdc
dJ
dcdJ on the complete domain
of definition  = R3 × R+ × c of the integrand of Q̃(g, g)
becomes invariant when multiplied with the function

Hδ (r, R) := [r(1 − r)]
δ
2 −1(1 − R)δ−1R1/2. (15)

If the transition probability B := B(c, c
, I, I∗, r, R, σ ) in (13)
satisfies the microreversibility according to

B′/H ′
δ = B/Hδ, (16)

it will be possible that the microscopic conservation properties
of the collisions imply conservation laws of the Boltzmann
collision operator. In fact, we can transform the weak form of
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the collision operator (12) for a test function ψ (c, J ), namely

Q(ψ ) =
∫

· · ·
∫



ψ (c, J )Q̃(g, g)dcdJ, (17)

into the conservative form

Q(ψ ) =
∫

· · ·
∫



(ψ − ψ ′) f f
B dσdrdRdc
dI
dcdI, (18)

where we switched to the energy-based formulation by replac-
ing gdJ = f dI and g
dJ
 = f
dI
. The conservative weak
form ensures that the operator (12) satisfies conservation laws
and the H theorem [18] consistent with the microscopic colli-
sion laws and implies the equilibrium distribution (6), which is
independent of the underlying phase space. It is also a building
block for the collision operator evaluation to be presented in
Sec. III.

C. Consistency

Because the microreversibility is different, it is impossible
to choose a simple model for the transition probability B as
in the monatomic case [10]. Additionally, we also require that
the results of the collision operator reduce to the monatomic
case for the limit δ → 0. We first construct a consistent ansatz
by matching the collision frequencies. A concrete model will
be formulated in Sec. II F.

Following the microreversibility (16) we will use the ansatz

B = Kδ Hδ (r, R)B̂ (19)

with a yet to be specified invariant part satisfying B̂ = B̂′.
The prefactor Kδ will be used to achieve consistency for the
simplest invariant expression B̂ = B̂(0) = const. In particular,
this transition probability has no dependency on relative ve-
locity, as Maxwell molecules, defined as the monatomic-gas
interaction potential 1/rs−1 with s = 5 and yielding ∂|u|B = 0,
and also no dependence on the scattering angle (10), as a
variable-hard-sphere model ∂χB = 0. In the present setting,
we require that the total collision frequency

νtot = m

ρ

∫
· · ·

∫


f f
B dσdrdRdc
dI
dcdI (20)

matches the monatomic value νtot = ρ

m B̂(0). We obtain

νtot = ρ

m
B̂(0)

∫∫
(r,R)∈[0,1]2

Kδ Hδ (r, R)drdR, (21)

where for consistency we set the integral to unity, yielding the
constant Kδ in the form

Kδ = 2�
(
δ + 3

2

)
√

π �
(

δ
2

)2 . (22)

We will see below that this gives consistency also for more
general transition probabilities. Note that Ref. [18] also in-
tegrates out the energies of the collision partners in the
transition probability in order to arrive at a consistent total
cross section.

D. Frozen internal states

Inspired by typical relaxation models [19,20], we assume
that a fraction of collisions will not change the internal

energy, i.e., I ′ = I and I ′

 = I
, which implies nonchanging

internal states and consequently |u′| = |u|. In this case, the
Borgnakke-Larsen procedure cannot be applied and the usual
parametrization with the direction σ ∈ S2 is used instead,

c′ = h + |u|
2

σ, c′

 = h − |u|

2
σ. (23)

The resulting collision operator would have the form

Q(frozen)( f , f )(x, t, c, I )

=
∫

. . .

∫
(c
, I
 ) ∈ R3 × R+

σ ∈ S2

(
f ′ f ′


| I ′ = I
I ′

 = I


− f f


)
B dσdc
dI
, (24)

where B := B(c, c
, I, I
, σ ) is the transition probability
for a frozen collision, that satisfies monatomiclike mi-
croreversibility, i.e., B(c, c
, I, I
, σ ) = B(c′, c′


, I, I
, σ ′) =
B(c
, c, I
, I,−σ ).

A frozen collision is also equivalent to choosing the pa-
rameter values r = r′ and R = R′ with the definitions (14) as
can be seen from (9). Hence, this can be included into the full
operator (13) by replacing the transition probability B by

B(frozen)(c, c
, I, I
, r, R, σ ) = B δr−r′δR−R′ , (25)

with Dirac δ functions at zero, such that the procedure (9)
reduces to the frozen case. For a constant B = B

(0)
the total

collision frequency now reduces to ν (frozen) = ρ

m B
(0)

which is
also consistent with the monatomic case.

E. The Boltzmann equation

For the evolution of the distribution function f :=
f (x, t, c, I ) � 0 defined in the phase space dcdI describ-
ing a polyatomic gas, we propose the following Boltzmann
equation,

∂t f + ci∂xi f = ωQ( f , f ) + (1 − ω)Q(frozen)( f , f ), (26)

where the collision operator convexly combines the pure poly-
atomic operator (13) and the frozen one (24) with a weight
0 � ω � 1.

Alternatively, one may view the Boltzmann equation
(26) as the usual polyatomic one (13) with the transition
probability

B = ω Kδ H (r, R)B̂ + (1 − ω)δr−r′δR−R′B (27)

that encompasses a nonfrozen and frozen transition
probability.

F. Collision model

Mathematical analysis reveals that only very few, specific
functional dependences of the transition probability will yield
well-posedness of the resulting Boltzmann equation with a
pure polyatomic operator. Recent results [9,15] rely on the
multiplicative splitting

B = b(cos χ )B̃(|u|, I, I
, r, R), (28)

where the function b takes care of the dependency on the
scattering angle (10) and B̃ includes the influence of trans-
lational and internal energy of the collision. For the energy
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part it is known that a standard variable-hard-sphere ansatz
proportional to |u|ζ is insufficient to match experimental data
[21] and does not satisfy the assumptions from the mathemat-
ical analysis [15]. A mathematically feasible dependency of
the transition probability is E ζ with the total energy of the
collision E , however, this model does not show enough flex-
ibility in terms of free parameters. An additive combination
of relative speed and internal energy is possible [15] as a
geometric means of pre- and postcollisional quantities scaled
by total energy E . We suggest to use the dependency

Bζ ,η = b(cos χ )

( |u′|ζ |u|ζ
( 4

m E )ζ/2
+ η

(I ′I )ζ/2 + (I ′

I
)ζ/2

(mE )ζ/2

)
(29)

with the constant parameters ζ � 0 and η � 0, and |u′|, I ′, I ′
∗

from (9). The contributions from internal energies are scaled
such that η = 1 resembles a splitting of the total energy, but
other values of η � 0 are also allowed, according to (16).

In this paper, we propose to use (29) both as the nonfrozen
probability B̂ and frozen probability B in (27), with the same
exponent ζ but different parameters η and ηf such that we have

B = ω Kδ H (r, R)Bζ ,η + (1 − ω)δr−r′δR−R′ Bζ ,ηf |I ′ = I
I ′

 = I


(30)

with a weight 0 � ω � 1. The dimensionless parameters η �
0 and ηf � 0 control the influence of the internal energies,
while the exponent ζ will determine the temperature depen-
dency of viscosity. The function b is assumed to be constant
in this paper, i.e., we set

b(cos χ ) = B = const, (31)

following the variable-hard-sphere (VHS) model [19]. The
factor B is constant but with the dimension volume

time×velocityζ . Using
a reference temperature θR and density ρR we can define a
reference collision frequency νR = (ρR/m)θζ/2

R B of the poly-
atomic VHS gas (pVHS). Note that due to consistency, the
limit δ → 0 of the weak form (18) will result in the weak form
of a monatomic VHS gas with B = B|u|ζ independently of the
values of ω, η, and ηf.

III. EVALUATION

A. Distribution expansion

The evaluation of the collision operator will be conducted
in the energy phase space. We assume a polynomial expansion
[20,22,23] of order M based on scaled variables ξ = C/θ1/2

and ι = I/(mθ ) and write

fM (c, I )dcdI =
M∑

β=0

wβφβ (ξ, ι) f0(ξ, ι)dξdι, (32)

with

f0(ξ, ι) =
ρ

m

(2π )3/2�
(

δ
2

) ι
δ
2 −1 e− 1

2 ξ 2−ι (33)

the scaled local equilibrium distribution as the kernel. The
coefficients wα follow from projections with suitable dual

polynomials ψα ,

wα =
∫∫

R3×R+
ψα (ξ, ι) fMdcdI, (34)

which can be related to classical moments. Using ψ := ψα in
(18) the weak form can be written

Q(ψα ) =
∑
β1,β2

Q(α)
β1β2

wβ1wβ2 , (35)

with coefficients

Q(α)
β1β2

=
∫

· · ·
∫



(ψα − ψ ′
α )

1

2
(φβ1φ



β2

+ φβ2φ


β1

)

× f0 f 

0 B d (σ, r, R, ξ
, ι
)dξdι. (36)

The evaluation of this integral is easily accessible by computer
algebra software and we provide a publicly available straight-
forward implementation [16,24].

B. Example production terms

We choose polynomials in (32) that represent the gas vari-
ables density ρ, velocity vi, and total temperature θ , as well as
dynamic pressure 	, deviatoric stress tensor σi j , translational
heat flux qi, and internal heat flux si (see also Refs. [12,25]).

When restricted to these variables, the projection over
velocity-internal energy space R3 × R+ of the homogeneous
Boltzmann equation with a quadratic collision operator can be
written in tensor notation as

∂t	 = −ν

(
P(0)

	 	 + P(1)
	

		

ρθ
+ P(2)

	

σi jσi j

ρθ

+ P(3)
	

qiqi

ρθ2
+ P(4)

	

sisi

ρθ2
+ P(5)

	

qisi

ρθ2

)
, (37)

∂tσi j = −ν

(
P(0)

σ σi j + P(1)
σ

	σi j

ρθ
+ P(2)

σ

σk〈i σ j〉k
ρθ

+ P(3)
σ

q〈i q j〉
ρθ2

+ P(4)
σ

s〈i s j〉
ρθ2

+ P(5)
σ

q〈i s j〉
ρθ2

)
, (38)

∂t qi = −ν

(
P(0)

q qi + P(1)
q si + P(2)

q

	qi

ρθ

+ P(3)
q

	si

ρθ
+ P(4)

q

σi jq j

ρθ
+ P(5)

q

σi j s j

ρθ

)
, (39)

∂t si = −ν

(
P(0)

s si + P(1)
s qi + P(2)

s

	si

ρθ

+ P(3)
s

	qi

ρθ
+ P(4)

s

σi j s j

ρθ
+ P(5)

s

σi jq j

ρθ

)
, (40)

where we suppressed the conservation laws and introduced the
collision frequency ν = νR(ρ/ρR)(θ/θR)ζ/2 = (ρ/m)θζ/2B.
Note that angle brackets 〈·, ·〉 around the indices indicate a
symmetric, trace-free tensor [20]. The 24 coefficients can be
easily computed using the code in Ref. [16] and the pVHS
model (30) with (29). Note that for the monatomic limit
δ → 0, we find for the coefficients of stress and translational
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TABLE I. Coefficients for nonlinear production terms in
(37)–(40) evaluated for a pVHS gas with δ = 2 and viscosity ex-
ponent rvisc = 0.75 (ζ = 1/2) corresponding to nitrogen.

P(0)
	

717
649 ηω + 929

876 ω

P(1)
	

149
1124 ω − 383

1981 ηω

P(2)
	

7
990 ω

P(3)
	

3
943 ω

P(4)
	 0

P(5)
	 − 5

943 ω

P(0)
σ

478
649 ηω + 395

569 ηf(1 − ω) − 183
1463 ω + 1

P(1)
σ − 286

2071 ηω − 220
857 ηf(1 − ω) − 121

1010 ω + 11
48

P(2)
σ − 7

484 ηf(1 − ω) − 13
794 ω + 1

21

P(3)
σ − 3

922 ηf(1 − ω) − 5
1204 ω + 3

280

P(4)
σ

11
1638 ηf(1 − ω) + 5

672 ω − 5
672

P(5)
σ

1
922 ηf(1 − ω) + 1

280 ω − 1
280

P(0)
q

1154
1343 ηω + 367

793 ηf(1 − ω) + 319
1181 ω + 2

3

P(1)
q − 659

1193 ηω − 631
1190 ω

P(2)
q − 324

2011 ηω − 97
706 ηf(1 − ω) + 25

322 ω + 1
24

P(3)
q

29
540 ηω − 188

821 ηf(1 − ω) − 119
1300 ω + 5

72

P(4)
q − 18

889 ηf(1 − ω) − 47
1065 ω + 1

15

P(5)
q − 23

1499 ηω + 79
1725 ηf(1 − ω) + 32

551 ω − 1
72

P(0)
s

1241
1049 ηω + 279

305 ηf(1 − ω) + 57
181 ω + 115

144

P(1)
s − 213

964 ηω − 298
1405 ω

P(2)
s − 109

877 ηω − 39
955 ηf(1 − ω) − 35

792 ω + 371
2365

P(3)
s

29
700 ηω − 16

653 ηf(1 − ω) − 191
1801 ω + 253

2688

P(4)
s

29
1050 ηω − 9

551 ηf(1 − ω) − 39ω

788 + 63
1004

P(5)
s

12
943 ω

heat flux,

lim
δ→0

P(0)
σ = √

π
2ζ+4

15
�

(
ζ + 7

2

)
, (41)

lim
δ→0

P(0)
q = √

π
2ζ+5

45
�

(
ζ + 7

2

)
, (42)

for any values of ω, η, and ηf, which are the expressions
obtained for a monatomic VHS gas [19,20]. Expressions
consistent with the monatomic case also hold for all other
coefficients.

Table I displays the form of the coefficients for the specific
gas δ = 2 and ζ = 1/2 in an exemplary way. The parameter
choice corresponds to nitrogen N2 in the temperature range of
approximately 293–373 K [22]. In the table, the dependency
on the parameters ω, η, and ηf is explicit, while generally
real valued coefficients are approximated by rationals with
accuracy 10−6. Also the values are scaled such that P(0)

σ = 1
when ω = 0 and ηf = 0. We can observe that the production
for dynamic pressure vanishes in the frozen case, ω = 0, as
well as the linear cross-coupling terms for the heat fluxes,

which is independent of the choice of the transition probability
(29). The influence of the internal heat flux on stress vanishes
in the completely nonfrozen case, ω = 1.

C. Prandtl number

The explicit form of the production terms allows to conduct
the first iteration of the Chapman-Enskog expansion [22,26].
The transport terms for (37)–(40) have been presented else-
where [6,23]. We only consider the linear, leading-order terms
of the transfer equations for the stress tensor,

2ρθ∂〈i v j〉 = −νP(0)
σ σi j, (43)

and for translational and internal heat fluxes,

5

2
ρθ∂iθ = −ν

(
P(0)

q qi + P(1)
q si

)
, (44)

δ

2
ρθ∂iθ = −ν

(
P(0)

s si + P(1)
s qi

)
, (45)

and compute for the stress tensor and total heat flux
q(tot)

i = qi + si,

σi j = −2
ρθ

ν

1

P(0)
σ

∂〈i v j〉, (46)

q(tot)
i = −ρθ

ν

5
(
P(0)

s − P(1)
s

) + δ
(
P(0)

q − P(1)
q

)
2
(
P(0)

q P(0)
s − P(1)

q P(1)
s

) ∂iθ, (47)

as a first-order contribution. From these we readily identify
the transport coefficients of viscosity μ and heat conduc-
tivity κ which depend only on temperature as μ, κ ∼ θ rvisc

with an exponent of rvisc = 1 − ζ/2. We find for the Prandtl
number [20]

Pr = (5 + δ)μ

2κ
(48)

= (5 + δ)
(
P(0)

q P(0)
s − P(1)

q P(1)
s

)[
5
(
P(0)

s − P(1)
s

) + δ
(
P(0)

q − P(1)
q

)]
P(0)

σ

, (49)

which depends on the model parameters ω, η, and ηf, as well
as internal energy degeneracy δ and exponent ζ . Note that fix-
ing Pr still leaves freedom in the choice of those parameters.
We also remark that due to consistency, we obtain Pr = 2/3
in the monatomic limit δ → 0.

The formula of Eucken [4,20] for the Prandtl number
has been derived originally in Ref. [27] based on plausible
heuristics related to frozen collisions and constant transition
probabilities. The result reads

Pr = 2(δ + 5)

2δ + 15
, (50)

which also reduces to the monatomic case when δ → 0. In
agreement with the assumptions of Eucken, the Prandtl num-
ber (49) of the pVHS model reduces exactly to the Eucken
expression, if we restrict the collisions to the frozen case
ω = 0 with a reduced influence of the internal energies ηf = 0
as well as choosing the exponent ζ = 0. This finding clarifies
the restricted validity of the Eucken formula.

In fact, for a general exponent ζ the reduced frozen case
ω = ηf = 0 gives

Pr(frozen) = 2(δ + 5)

δ
(
2 + 4

5ζ
) 2ζ+2δ+7

ζ+2δ+7 + 15
, (51)
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FIG. 1. Possible Prandtl numbers for pVHS gases with different
adiabatic coefficients γ for three fixed viscosity exponents, namely
ζ = 1/5, 1/2, 4/5, corresponding to rvisc = 0.9, 0.75, 0.6, respec-
tively. For a specific gas, the value of ζ would be fixed by the
temperature dependence of the viscosity, and the value of δ fol-
lows from the adiabatic coefficient. The Prandtl number can then
be adjusted by the parameters ω, η, ηf. Here, several choices are
possible and the pVHS model allows us to match additional physical
properties.

which can be viewed as a generalization of the formula by
Eucken to particle models with nonconstant dependence on
the relative velocity in the transition probability, ζ � 0, hence,
viscosity exponents rvisc � 1.

However, formula (51) is still restricted and could be varied
further by choosing different values for 0 � ω � 1, η, ηf � 0.
In particular, the combination of frozen and nonfrozen colli-
sions in the pVHS model allows us to construct many other
values for Pr. To demonstrate the wealth of the modeling
flexibility of the pVHS model we display the range of the
Prandtl number for specific cases of ζ = 1/5, 1/2, 4/5 when
varying the parameters 0 � ω � 1, 0 � η, ηf � 2 as the yel-
low background in Fig. 1. Table I is based on the exponent
ζ = 1/2 and the curves in Fig. 1 can be obtained from the
expressions in the table and (49). The values of the Eucken
formula (50) are displayed as a solid green curve to demon-
strate the difference from expression (51), shown as a dashed
blue curve (ω = 0, ηf = 0) in the plot. The nonfrozen part of
the model tends to give values greater than Eucken, while the
frozen part produces smaller values for Pr.

D. Discussion and outlook

The presented results open many possibilities for further
investigations. The explicit and accessible nature of the col-
lision operator allows us to compute transport coefficients
and moment equations in order to increase the predictivity
of polyatomic gas flow models especially in the rarefied or
microscopic regime [5,9,12]. Its flexibility, due to a set of
model parameters such as B, ω, η, ηf, permits the additional
matching of gas properties, such as relaxation times and col-
lision frequencies, beyond the Prandtl number. The collision
operator can also be used as a basis to derive, validate, and
improve BGK models [13] for polyatomic gases.

The collision model itself may be further refined. It is
straightforward to include a nonconstant scattering angle
dependency for the transition probability and, hence, use
more realistic interaction potentials. Additionally, the av-
eraging between frozen and nonfrozen collisions could be
temperature dependent, allowing additional flexibility to ad-
just to the experimental data. Similarly, the internal degrees
of freedom δ could be chosen to depend on temperature or
relative velocity, which would model a nonpolytropic gas
character.
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Science Fund of the Republic of Serbia, PROMIS, No.
6066089, MaKiPol, and the Ministry of Education, Science
and Technological Development of the Republic of Serbia
No. 451-03-68/2020-14/200125, as well as by holding an
Alexander von Humboldt Foundation Fellowship.

[1] C. Cercignani, The Boltzmann Equation and its Applications,
Applied Mathematical Sciences (Springer, New York, 1988),
Vol. 67.

[2] M. Torrilhon, Modeling nonequilibrium gas flow based
on moment equations, Annu. Rev. Fluid Mech. 48, 429
(2016).

025309-6

https://doi.org/10.1146/annurev-fluid-122414-034259


CONSISTENT, EXPLICIT, AND ACCESSIBLE … PHYSICAL REVIEW E 104, 025309 (2021)

[3] A. Munafò, J. R. Haack, I. M. Gamba, and T. E. Magin, A
spectral-Lagrangian Boltzmann solver for a multi-energy level
gas, J. Comput. Phys. 264, 152 (2014).

[4] E. Nagnibeda and E. Kustova, Non-Equilibrium Reacting Gas
Flows, Heat and Mass Transfer (Springer, Berlin, 2009).

[5] S. Kosuge and K. Aoki, Shock-wave structure for a polyatomic
gas with large bulk viscosity, Phys. Rev. Fluids 3, 023401
(2018).

[6] T. Ruggeri and M. Sugiyama, Classical and Relativistic Ra-
tional Extended Thermodynamics of Gases (Springer, Berlin,
2021).

[7] J.-F. Bourgat, L. Desvillettes, P. Le Tallec, and B. Perthame, Mi-
croreversible collisions for polyatomic gases and Boltzmann’s
theorem, Eur. J. Mech. B Fluids 13, 237 (1994).

[8] L. Desvillettes, R. Monaco, and F. Salvarani, A kinetic model
allowing to obtain the energy law of polytropic gases in the
presence of chemical reactions, Eur. J. Mech. B Fluids 24, 219
(2005).
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