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Principal component analysis (PCA) has been applied to analyze random fields in various scientific disciplines.
However, the explainability of PCA remains elusive unless strong domain-specific knowledge is available. This
paper provides a theoretical framework that builds a duality between the PCA eigenmodes of a random field
and eigenstates of a Schrödinger equation. Based on the duality we propose the Schrödinger PCA algorithm
to replace the expensive PCA solver with a more sample-efficient Schrödinger equation solver. We verify the
validity of the theory and the effectiveness of the algorithm with numerical experiments.
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I. INTRODUCTION

Random fields are prevalent and important in many sci-
entific disciplines, e.g., cosmology [1], high energy physics
[2], fluid dynamics [3], and material science [4,5]. Since fields
values are usually correlated with neighboring points, a low-
dimensional description of random fields is not only possible,
but also more computationally efficient. One standard method
for dimensionality reduction [6–13] is principal component
analysis (PCA), which attempts to diagonalize the correlation
matrix via an orthogonal transformation, whose column vec-
tors are known as eigenmodes.

A random field can be characterized by a two-point co-
variance function C(x, y), so the question is: How is C(x, y)
related to the eigenmodes φi(x)? The answer is the Karhunen–
Loève expansion [14], an established theory in the statistics
community. The aim of this paper is to answer this question in
the taste of physics by revealing the fact that PCA eigenmodes
of random field configurations are (approximately) equivalent
to eigenstates of a steady-state Schrödinger equation. The
aspects of such duality is summarized in Table I.

For example, we study a toy 2D random field shown in
Fig. 1. Many realizations of the random field are drawn from
the probabilistic distribution determined by C(x, y). PCA
eigenmodes of these realizations have interesting structures:
the eigenmodes look like quantum wave functions of a 2D
harmonic oscillator. In this paper, we argue that this is not a
mere coincidence but rather a direct consequence of the du-
ality between the PCA problem and the quantum steady-state
problem. Definitions of these quantities in the table will be
made precise in the next section.

Besides offering a phyiscal perspective of the well-
known PCA algorithm, we can also achieve a significant
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computational speedup benefiting from the duality. We can
solve a PCA problem with a Schrödinger solver (i.e., elliptic
equation solver), which is the main idea of our proposed
Schrödinger PCA algorithm. Numerical experiments show
that Schrödinger PCA requires 100× fewer anchor points
to accurately recover eigenvalues and eigenvectors compared
to PCA. In the literature, there have been various methods
proposed to accelerate the PCA algorithm, including Hilbert
space methods exploiting the structure of RKHS [15] and
stochastic PDE methods that use solutions of SPDE to ap-
proximate Gaussian rathom fields [16]. Our Schrödinger PCA
method instead studies the case where the variance function
could be as general as position-dependent, and the correlation
length is relatively small, rendering previous methods inap-
plicable or inefficient. We notice that Refs. [17,18] are the
PCA variants closest to our goals, but they do not point out
the duality nor take advantage of the elliptic partial differential
equation solvers. Although connections between convolutions
and differential operators have been well studied in the math-
ematics literature [19–21], we provide a particular case where
an intuitive physics picture is available.

II. METHOD

A. Notations and backgrounds

1. Random field

A random field is a stochastic process where φ : Rd → R
is a stochastic function, which we refer to as field below. Two-
point covariance C(x, y), one-point variance A(x), and two-
point correlation K (x, y) of the random field are defined as

C(x, y) ≡ 〈φ(x)φ(y)〉,
A(x) ≡ C(x, x) = 〈φ(x)φ(x)〉,

K (x, y) ≡ C(x, y)/
√

A(x)A(y),

(1)
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TABLE I. The duality between the PCA problem and the quan-
tum steady-state problem.

PCA Schrödinger

Variance A(x) Potential V (x)
Correlation Kernel �(x) Inverse mass �m(x)
Eigenvalue λi Eigen-energy Ei

Eigenvector φi Eigenstate ψi

where 〈· · · 〉 means averaging over an ensemble of realiza-
tions of the random field or integral over the probability
distribution:

P[φ(x1) = v1, . . . , φ(xn) = vn]

∝ exp

[
−

∑
i j

C(xi, x j )viv j

]
. (2)

Usually K (x, y) = f (|x − y|), where | · | can be an arbi-
trary norm, and f is a monotonically decreasing function that
approaches to 0 as |x − y| → ∞ due to locality. To make
things concrete, we focus on Gaussian random fields,1 where

K (x, y) = exp
[ − 1

2 (y − x)T �−1(y − x)
]

(3)

Without loss of generality, we have assumed 〈φ(x)〉 = 0.2

In the special case where � = σ 2I, σ characterizes the cor-
relation length of the Gaussian random field. The correlation
length can originate from the smoothness of functions or from
physical entities, e.g., the width of a particle [22]. A large
class of spatial data (including but not limited to physics) can
be modeled with Gaussian random fields [1,2,23–25], in that
Gaussian random fields capture two key features: fluctuations
and (local) correlations. In numerical experiments, Gaussian
random fields are efficiently generated by smearing out com-
pletely uncorrelated random fields with a Gaussian filter (see
Appendix D).

2. PCA

PCA plays an important role in dimension reduction,
pattern recognition, and partial differential equations (PDE)
[26–30]. The key idea of PCA is to diagonalize the correlation
matrix via an orthogonal transformation. For the random fields
described by Eq. (1), eigenmodes φi(x)(i = 1, 2, · · · ) should
satisfy the eigen-equations and orthogonality constraints:∫

y
dyC(x, y)φi(y) = λiφi(x),

∫
x

dxφi(x)φ j (x) = δi j, (4)

where eigenvalues λi are ordered as λ1 � λ2 � · · · � 0.
The nonnegative eigenvalues and existence of orthogonal
eigenmodes are due to the positive definiteness of C(x, y).
Eigen-decomposition of random field is also known is
Karhunen–Loève expansion in the statistics literature [14].

1Our analysis can also extend to laplace-type correlation and pos-
sibly many other tailed correlations (please see Appendix B).

2Principal component analysis will remove the mean value before
solving the eigen-problem.

3. Schrödinger equation

The Schrödinger equation (SE) [31] uses a wave function
ψ (x) (x ∈ Rd ) to characterize a quantum particle. The steady-
state SE describes a particle in a potential field V (x) with
constant energy E :

Ĥψ (x) = −�m(x)

2
�ψ (x) + V (x)ψ (x) = Eψ (x), (5)

where the positive definite matrix �m ∈ Rd×d is the inverse
mass matrix of the particle, � is the Laplacian operator: � =
∇2 = ∑d

i=1
∂2

∂x2
i
. The first term −�m (x)

2 �ψ (x) and the second
term V (x)ψ (x) correspond to the kinetic and potential energy
of a particle, respectively. Because Ĥ is an Hermitian operator,
we have a complete set of real eigenstates ψi(x) that satisfy

Ĥψi(x) = Eiψi(x),
∫

x
dxψi(x)ψ j (x) = δi j, (6)

where ψi(x) and Ei are the ith eigenstate and eigen-energy,
respectively.

B. The duality between PCA and Schrödinger equation

We shall build the correspondence between PCA and
Schrödinger equation under some mild assumptions. Compar-
ing Eqs. (4) and (6), similar structures can be observed, and
intuitively the eigenmodes with the largest eigenvalues of the
PCA problem could be mapped one-by-one to the first few
lowest energy states of the Schrödinger equation. We aim to
establish the duality in Theorem 1.

Theorem 1. (Informal) The PCA problem of Eq. (4) can be
approximated by the Schrödinger problem of Eq. (6), i.e., two
systems have the same equation hence same eigenvalues and
eigenmodes up to a (possible) minus sign,3 up to a second-
order approximation provided that these quantities are equal:

φ(x) ⇐⇒ ψ (x),

−A(x) ⇐⇒ V (x),

A(x)�(x) ⇐⇒ �m(x).

(7)

This approximation is valid for the first few eigenmodes, but
not for higher eigenmodes.

We summarize the key idea of the proof here. Formal
formulation of Theorem 1 and proof details can be found in
Appendix A. We characterize a general operator M by its
Rayleigh quotient (	 is the integral domain):

R(M, φ) =
∫

x∈	
dxφ(x)Mφ(x)∫

x∈	
dxφ2(x)

=
∫

x∈	

dxφ(x)Mφ(x),

[
||φ||2 =

∫
x∈	

φ2(x)dx = 1

]
.

(8)

3The eigenvalues of PCA and SE match each other by a minus
sign. In terms of eigenmodes, there is a possible minus sign as in
most eigen-problems: ψi is an eigenstate if and only if −ψi is an
eigenstate.
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FIG. 1. PCA eigenmodes of random field configurations share much similarity with eigenstates of a 2D quantum harmonic oscillator.

The Rayleigh quotient of PCA and SE are defined as
RPCA(C, φ) and RSE(Ĥ , ψ ), respectively:

RPCA(C, φ) =
∫

x∈	,y∈	

dxdyφ(x)C(x, y)φ(y)

=
∫

x∈	

dxφ(x){
∫

y∈	

dyC(x, y)φ(y)}, (9)

RSE(Ĥ, ψ ) =
∫

x∈	

dxψ (x)Ĥψ (x)

=
∫

x∈	

dxψ (x)

{[
− �m

2
� + V (x)

]
ψ (x)

}
.

(10)

The only thing left is to prove the (approximate) equiv-
alence of {· · · } in Eqs. (9) and (10) by invoking Guassian
integrals and integration by parts (details in Appendix A). To
sum up, the approximation is valid for lower eigenmodes in
practice, but we do not know a priori how many eigenmodes
can be well approximated. Rather, the formal version of Theo-
rem 1 in Appendix A sheds some light on how to post-process
and verify a posteriori that the approximation is valid.

Although highly speculative, this duality between PCA and
the quantum steady-state problem might shed light on deep
theoretical links between quantum mechanics (Schrödinger)
and information compression (PCA), which will be explored
in future works.

C. Discussions

1. Implications of the Duality

The duality also explains scientists’ conventions when they
analyze a signal/field by decomposing it into a combina-
tion of hand-designed modes, e.g., Fourier bases, spherical
harmonics, Bessel functions, etc. We argue that scientists
are implicitly doing some optimal compression (PCA) when
choosing the hand-designed modes. For simplicity, we con-

sider a uniform random field such that �(x) and A(x) are
independent of x. These conditions are then translated to
uniform potential energy V (x) = V0 [WLOG V (x) = 0] and
constant mass in the Schrödinger equation. Consequently, the
Schrödinger equation describes a free particle on the domain
	, where both the random field and Schrödinger equation are
defined on.

Suppose 	 is a sphere (2D). On the one hand, eigen-
states of a free particle on a sphere are spherical harmonics,
i.e., eigenstates of the angular momentum operator. On the
other hand, in cosmology, spherical harmonics are leveraged
to analyze the (approximately) isotropic cosmic microwave
background (CMB) [32]. We speculate this is not coincident
but a direct consequence of the duality. If we humans are
living in a universe where CMB is largely anisotropic, then
the spherical harmonics are no longer “optimal” in the sense
of PCA (see the anisotropic example in Sec. IV B). Similarly,
a particle trapped in a deep circular well (2D) has Bessel
functions as eigenstates, a free particle in a periodic box has
plane wave solutions (i.e., Fourier). These basis functions are
used in waveguide design and fluid dynamics, respectively.
We summarize the relations in Table II.

2. No quantum tunneling for PCA

Quantum mechanics is distinguished from classical me-
chanics by its uncertainty principle, leading to the intriguing
phenomenon of quantum tunneling. When a particle (with
state-independent mass) is trapped in a finite deep poten-

TABLE II. “Optimal” bases for different problems.

Domain 	 Eigenstates/Bases Physics Example

Sphere (2D) Spherical harmonics CMB in cosmology
Circular well (2D) Bessel function Circular waveguide
Periodic box (nD) Fourier bases Fluid dynamics
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Algorithm 1. Principal Component Analysis for Mode
Decomposition.

Input: Data points X = {xi ∈ Rd} and corresponding field
value � = {φ(xi, t ) ∈ R}
(i = 1, . . . , m; t = 1, . . . , n) where i labels different
anchor points in space, and t refers to different time of
measurements or realizations. We have removed the
mean value of fields such that 1

n

∑n
t=1 φ(xi, t ) = 0 for

all i.
(1) Compute covariance matrix

Ci j = Cov(φ(xi ), φ(x j )) = 1
n

∑n
t=1 φ(xi, t )φ(x j, t );

(2) Diagonalization of C such that C = ∑
k λkφkφ

T
k where λk

and φk are the kth eigenvalue and eigenmode;
(3) Interpolation of finite-dimensional eigenmode

φk ∈ Rm(k = 1, 2, · · · ) to a function φk (x) that satisfies
φk (xl ) = φk,l where φk,l is the lth entry of φk which
corresponds to the field value at xl in mode φk ;

Output: {λk, φk (x)}(k = 1, 2, · · · )

tial well, i.e., V (x) = −V0 < 0(x ∈ 	) and V (x) = 0(x �∈ 	),
the wave function of the particle is nonzero outside 	 even
when the particle has negative energy −V0 < E < 0. How-
ever, there does not exist a random field model dual to the
quantum system. According to Theorem 1, one-point variance
is determined A(x) = V0 > 0(x ∈ 	) and A(x) = 0(x �∈ 	).
For x �∈ 	, inverse mass matrix �m(x) = A(x)�(x) = 0, i.e.,
an infinite mass. The consequence is as follows: Outside 	

the particle is infinitely heavy thus cannot move at all, i.e.,
quantum tunneling is impossible. This actually makes perfect
sense for PCA: If a field value never fluctuates, then it should
contribute exactly zero to all eigenmodes.

3. Extension to Laplace-type random field

The duality can be similarly extended to the Laplace-type
kernel, with only coefficients different from the Gaussian
case. Please refer to Appendices B and C for details.

III. SCHRÖDINGER PCA ALGORITHM

We aim to design an algorithm, dubbed as Schrödigner
PCA, to convert a PCA problem to the corresponding
Schrödinger problem. The main idea is already clear in the
aforementioned duality. We start this section by revealing the
limitation of PCA, motivating Schrödinger PCA.

A. Motivation and algorithm

1. Why PCA degrades

In practice, only a finite set of anchor points S =
{x1, · · · , xn} are available for field measurements i.e., only
[φ(x1), · · · , φ(xn)] are accessible rather than φ(x) for any x ∈
	 ⊂ Rd . The procedure of PCA on discrete anchor points is
shown in Algorithm 1. In brief, one applies PCA to many real-
izations of the field values at anchor points, obtain eigenmodes
defined on these anchor points and interpolate eigenvectors to
continuous functions.

In the case � = σ 2Id×d where σ is the correlation length,
two neighboring anchor points should be close enough (e.g.,

Algorithm 2. Schrödinger Principal Component Analysis for
Mode Decomposition.

Input: Data points X = {xi ∈ Rd}, field value
� = {φ(xi, t ) ∈ R} and estimated correlation kernel
� = {�(xi ) ∈ Rd×d }
(i = 1, . . . , m; t = 1, . . . , N )

(1) Compute variance vector: A(xi ) = 1
N

∑N
t=1 |φ(xi, t )|2;

(2) Define corresponding potential vector as Vi = −A(xi ) and
interpolation of V ∈ Rm to a function V (x) satisfying
V (xi ) = Vi;

(3) Define corresponding inverse mass matrix as
�m,i = A(xi )�(xi ) and interpolation of �m ∈ Rd×d to a
matrix function �m(x) satisfying �m(xi ) = �m,i;

(4) Solve the Schrödinger equation
−�m (x)

2 �ψ (x) + V (x)ψ (x) = Eψ (x) and obtain
eigenstates ψk (x) and corresponding energies Ek ;

Output: {Ek, ψk (x)}(k = 1, 2, · · · )

distance � σ ) to make sure the covariance is significant
enough to reveal local correlation. As a rough estimate, we
suppose 	 has size L on each dimension, then the number
of anchor points required scales as ( L

σ
)d which increases as

L
σ

increases (multiscale) or d increases (curse of dimension-
ality). We will attack the multiscale issue with Schrödinger
PCA algorithm.

2. Schrödinger PCA

Instead of trying to detect local correlation with densely
distributed anchor points, Schrödinger PCA bypasses this
multiscale issue by intergrating out local Gaussian correla-
tion analytically thus transforming the PCA problem to a
Schrödinger equation. The key steps are summarized here
(also in Algorithm 2): (1) compute only variance of fields
at each anchor point; (2) leveraging dualities in Eq. (7) and
interpolate to obtain the continuous potential function V (x)
and inverse mass matrix �m(x); (3) solving the Schrödinger
equation, Eq. (5), with elliptic equation solvers.

B. Discussions

1. When Schrödinger PCA outperforms PCA

It is worth emphasizing the key factor that contributes
to the success of Schrödinger PCA lies in scale separa-
tion, i.e., φ(x) have smaller scales than A(x) such that
∇∇T A(x)/A(x) � ∇∇T φ(x)/φ(x). While PCA requires an-
chor points to characterize φ(x) (small scale), Schrödinger
PCA only requires anchor points to characterize A(x) (large
scale). For this scale separation to work, Schrödinger PCA
requires extra estimation of the small-scale correlation ker-
nel K (x, y) to determine the coefficients in the Schrödinger
equation, but this is cheap because either (1) the correlation
kernel is known a prior (e.g., can be derived from physical
principles); (2) a few detector points can be added locally
around each anchor point to estimate the correlation kernel.
In the isotropic case � = σ 2I, only one detector point is
required to determine σ so the extra computational costs can
be ignored. For simplicity, we choose � = σ 2I and assume
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σ is known a priori (but can depend on x) in the following
numerical experiments.

2. Error analysis of the second-order approximation
of Schrödinger PCA

Since the duality between PCA and Schrödinger equa-
tion is only approximated up to second-order approximations,
higher-order terms should be small enough for this du-
ality to be valid. The only two approximations used in
proof of Theorem 1 (Appendix A) are: (1) The deriva-
tive of A(x) is truncated to the first order ∇A(x), thus
higher-order terms ∇nA(x)(n � 2) can be neglected; (2) The
derivative of φ(x) is truncated to the second order ∇∇φ(x),
thus higher-order terms ∇nφ(x)(n � 3) can be neglected. In
Sec. IV we show in practice, the errors can be almost ne-
glected for leading eigenmodes/eigenvalues. We leave the full
analysis of how perturbation of high-order terms influence
eigenmodes/eigenvalues in future works.

IV. NUMERICAL EXPERIMENTS

First, we revisit the example mentioned in Fig. 1 to test
the correctness of the correspondence between PCA and
Schrödinger equation stated in Theorem 1. We find PCA and
Schrödinger PCA have similar eigenvalues and eigenmodes
for the fine grid (i.e., a large number of anchor points), but
PCA fails for the coarse grid (i.e., a small number of anchor
points) while Schrödinger PCA can still obtain accurate eigen-
values and eigenmodes. Second, we apply our method to the
global climate example which is modeled as a random field on
a 2D sphere S2. The climate modes discovered by Schrödinger
PCA admit a nice physical interpretation and demonstrate the
potential of our method to attack problems on graphs and
manifolds beyond the Euclidean space.

A. Two-dimensional Gaussian Process

The two-dimensional Gaussian random field lives on the
grid [−50, 50] × [−50, 50] (size L × L ≡ 100 × 100). The
field generation process can be found in Appendix D. The
generated profiles are denoted as φt (x) where x = (x1, x2)
and t = 1, · · · , N index to distinguish among different real-
izations. The random field satisfies the following statistical
properties:

A(x) =
{

1 − (
x2

1 + x2
2

)
/402

(
x2

1 + x2
2 � 402

)
,

0
(
x2

1 + x2
2 > 402

)
,

(11)

C(x, y) =
√

A(x)A(y)exp

(
− (x − y)T (x − y)

2σ 2

)
(σ = 3).

(12)

Note that σ = 3 � L = 100; this corresponds to a multi-
scale scenario where Schrödinger PCA obtains more accurate
results than PCA in the undersampling regime.

1. Oversampling regime with fine grids

In this part, we use numerical results to verify the equiva-
lence between PCA and Schrödinger equation, as pointed out
in Theorem 1. PCA (fine grid) is treated as the gold standard
method and its results are treated as ground truths.

FIG. 2. The (relative) eigenvalues of first 21 modes with different
algorithms. Schrödinger PCA is able to recover eigenvalues on both
the fine grid and the corase grid, while other methods either fail
(SPDE and Hilbert), or succeed only for the fine grid (PCA).

2. PCA (fine grid)

We use all 101 × 101 = 10 201 points as anchor points
and generate 40 000 realizations of Gaussian random field
satisfying Eq. (11). We apply PCA to obtain the first k =
21 eigenmodes and corresponding eigenvalues. The dis-
tance of two neighboring anchor points is 1 (smaller than
σ = 3). In this sense, the anchor points oversample the
random field, so covariance information among different spa-
tial points can be captured. We implement PCA by using
sklearn.decomposition.pca.

3. SE (fine grid)

We use all 10 201 anchor points to evaluate A(x) to obtain
the potential function V (x) and inverse mass matrix �m(x)
as indicated in Theorem 1, then the Schrödinger equation,
Eq. (5), is discretized on the same grid with the finite differ-
ence method. The eigenvalue problem is solved by the python
eigen-solver named numpy.linalg.eigh. We collect first
k = 21 eigenstates and eigenenergies. These eigenenergies
are negative and are negated below to compare with PCA
results.

4. SE (harmonic approximation)

The potential function V (x) = −A(x) has a quadratic form
that is reminiscent of the harmonic oscillator in quantum
physics. Although �m(x) depends explicitly on x it can be
nicely approximated as �m(0) for ground states and low
excited states (eigenstates with low energies) because the
wavefunction ψ (x) centered around x = 0 where the potential
energy is global minima. As soon as the system is identified
as a harmonic oscillator, the eigenenergies and eigenstates
are immediately accessible via our knowledge of quantum
mechanics, detailed in Appendix E.

As shown in Fig. 2, three methods listed above agree
well in terms of eigenvalues for first k = 10 modes. For
k > 10 modes, the staircase degeneracy structure still re-
mains the same for all methods above, while the values
have deviations ∼0.06, which is because the approximation
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FIG. 3. The eigenmodes of first 10 modes from different algorithms. Each square subfigure is a 2D heat diagram where bright (yellow)
and dark (dark blue) colors represent high and low values, respectively. Schrödinger PCA is able to recover eigenmodes on both the fine grid
and the corase grid, while other methods either fail (SPDE and Hilbert), or succeed only for the fine grid (PCA).

�m(x) ≈ �m(0) becomes poorer for states with higher en-
ergies. The staircase degeneracy structure can be elegantly
understood by the energy spectrum of 2D quantum harmonic
oscillator: an energy level with quantum number n � 0 ad-
mits n + 1 ways to choose two integers n1, n2 � 0 such that
n1 + n2 = n. Likewise, eigenmodes for all methods are illus-
trated and compared in Fig. 3 and they show similar behavior
for the three aforementioned methods.

As mentioned in the Introduction, the Stochastic PDE
(SPDE) method and the reproducing kernel Hilbert space
(RKHS) method can also be used to solve the eigen-
decomposition of random fields. We show below that neither
methods are proper to attack our particular case with position-
dependent variance and small correlation length.

5. SPDE

The Matern-type random field has eigenmodes which are
solutions of the following equality [16]:

(κ2 − �)α/2φi(x) = λiφi(x). (13)

Although Eq. (13) looks similar to Eq. (5), our toy ran-
dom field is not the Matern-type random field, so Eq. (13)
is inapplicable to our example. The Matern-type variance
function should be at least position-independent, but our vari-
ance function is indeed position-dependent. Consequently, we
do not expect SPDE to work, but for illustration we choose
α = 2 and κ = 1/σ = 1/3. Equation (13) therefore becomes
a wave equation whose eigenmodes are 2D Fourier bases
with wave-number (k1, k2) = 2π

L (n1, n2). And according to
the wave-number spectrum obtained in Ref. [16], eigenvalues

are

λi = C
(
κ2 + k2

i,1 + k2
i,2

)−α
. (14)

Eigenvalues and eigenmodes obtained from SPDE are plotted
in Figs. 2 and 3.

6. Reproducing Kernel Hilbert Space (RKHS)

The space of bandlimited continuous functions (truncated
Fourier space) is a RKHS [15]. We first project random fields
onto the leading 100 Fourier bases (i.e., truncated Fourier
transformation), obtaining Fourier coefficients, followed by
applying PCA to those Fourier coefficients. Eigenmodes of
Fourier coefficients are then transformed back via an inverse
Fourier transformation. The RKHS method is insufficient to
reproduce eigenvalues and eigenmodes in Figs. 2 and 3 be-
cause our toy problem has small correlation length, and the
leading 100 Fourier bases cannot capture such small-scale
information.

7. Undersampling regime with coarse grids

When the number of anchor points decreases, PCA will
fail in terms of both eigenvalues and eigenmodes; by contrast,
Schrödinger PCA remains quite robust and behaves nearly the
same as the Schrödinger PCA in the oversampling regime, as
illustrated in Figs. 2 and 3.

8. PCA (coarse grid 1)

We set anchor points on the uniform coarse grid
[−50, 40, . . . , 50]2 (121 anchor points in total). The same
40 000 random field realizations are used as in the
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FIG. 4. Eigenmodes of the global climate model obtained from Schrödinger PCA (top view). First row: Anisotropic globe; second row:
Isotropic globe. Each globe is a heat diagram where bright (red) and dark (blue) colors represent high and low values, respectively.

oversampling test, but only the field values on the coarse
grid are available. We apply PCA to obtain eigenmodes and
eigenvalues defined on the coarse grid, and interpolate the
eigenmodes back to the fine grid.

9. PCA (coarse grid 2)

Same with PCA (coarse grid 1) except that switching the
order of PCA and interpolation.

10. SE (coarse grid)

We evaluated A(x) at anchor points (coarse grid) and inter-
polate A(x) back to the fine grid. Correspondingly the values
of V (x) and �m(x) can be determined on the fine grid based on
Eq. (7). Finally the SE is discretized with the finite difference
method and solved with the eigh eigen-solver on the fine grid.

B. Global climate modes

In this example, we demonstrate the effectiveness of the
proposed Schrödinger PCA to solve a mode decomposition
problem on a unit sphere S2.

Our earth has various kinds of climates, depending on
longitude and latitude of the location. In the following, we
use spherical coordinate x = (θ, ϕ) and φ(x) refers to any
climate-related scalar field (e.g., temperature). Both fluctu-
ation magnitude A(x) and (local) correlation length σ (x) =√

�(x) depends explicitly on x: (1) A(x) is small for a place
where it is like spring all the year around, while large for
another place with scorching summers and cold winters; (2)
σ (x) is large in oceans due to ocean circulations, while small
on a land without any winds.

We consider two “earths”: isotropic earth (below a = 0)
and anisotropic earth (a = 3):

A(θ, ϕ) = 1
20 (3 + acosθ ),

σ 2(θ, ϕ) = 1
50 (3 − acosθ )d2. (15)

To discretize the Laplacian oeprator on a graph, we utilze
icosahedron mesh which contains 2562 vertices, 7680 edges,
and 5120 faces. Here d is the (averaged) length of all
edges. The details of generating the mesh can be found in
Appendix F. We replace the Laplacian operator in Eq. (5) with
the graph Laplacian matrix and obtain the eigenmodes on the
graph. Finally we interpolate eigenmodes back to the sphere
and show them (top view) in Fig. 4. Here k = 0, 1, 2 · · · refers
to the index of eigenstates, ordered from lowest energy to
highest energy. The isotropic case provides a baseline for
spherical function decomposition, and in fact they correspond

to spherical harmonic functions. We observe that eigenmodes
of the anisotropic earth can shed light on the the fluctuation
pattern: (1) Fluctuations are large around the poles, so the
first few patterns (k = 1, 5, 10, 20) only concentrate around
poles; (2) intermediate patterns (k = 100, 200) are particu-
larly interesting because such patterns have similar magnitude
around the pole and the equator, but finer structure is observed
around the pole revealing that the correlation length is smaller
around the pole than the equator; (3) the last few patterns (k =
1000, 2000) capture local fluctuations around the equator, not
revealing collective behavior of global temperature.4 These
observations are particularly interesting because it allows one
to infer the random field model from eigenmode structures.
We will investigate quantitatively the question of “Can one
hear the shape of random fields?”5 in future works.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we first build the duality between PCA eigen-
modes of a random field and eigenstates of a Schrödinger
equation. Based on this observation, we propose the
Schrödinger PCA algorithm which is more sample-efficient
than PCA when the random fields have multiscale structures.
Besides the numerical examples in the previous section, the
proposed algorithm has the potential to speed up many sci-
entific computations: (1) model reduction of turbulent fluid
dynamics [3]; (2) analysis of the cosmic microwave back-
ground [1]; (3) collective behavior of relativistic heavy-ion
collisions [2]. All of these scenarios have a very narrow corre-
lation kernel, which can be nicely handled by our algorithm,
while vanilla PCA will fail on these cases in the undersam-
pling regime.

In the future, it would be interesting to investigate deeper
physical implications of the duality between PCA and the
Schrödinger equation. Moreover, we would like to extend
Schrödinger PCA algorithm to solve higher-dimensional
problems, or problems on graphs and Riemannian manifolds,
with the help of state-of-the-art elliptic partial differential
equation solvers.

4Although we do not provide PCA results here, the averaged edge
length d is much greater than the (averaged) correlation length σ ,
which in principle prevents PCA from working.

5Similar to the spirit of “Can one hear the shape of a drum?” [33].
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APPENDIX A: PROOF OF THEOREM 1

In this Appendix, we shall present a formal version of
Theorem 1, with rigorous mathematical formulations along
with assumptions on the kernel and the function space. Then
we make relevant comments on the implications of the as-
sumptions and how it is related to practical scenarios.

Theorem 1. (Formal) Assume that the coefficients
satisfy −A(x) = V (x) and A(x)�(x) = �m(x), and that
‖√A(x)‖L∞‖(− A′⊗2(x)

8A(x)3/2 + A′′(x)
4
√

A(x)
)‖L∞ � c1 for some c1 > 0.

In the function space Hc2 , the PCA problem of Eq. (4) can
be approximated by the Schrödinger problem of Eq. (6), in
the sense that |λi − Ei| � O(c1 + c2) for all i. Here the func-
tion space Hc2 is defined via Hc2 = {φ ∈ L2 ∩ C3, ‖φ′′′‖L∞ �
c2‖φ‖L2}.

Proof. Since the ith eigenvalue λi of a positive operator
M is related to the min-max formulation of the Rayleigh
quotient:

λi = min
S:dim(S)=i

max
x∈S,‖x‖=1

(Mx, x),

we only need to bound the differences between Eqs. (9) and
(10) for ‖φ‖L2 = 1. In the following we aim to build a corre-
spondence between two expressions in {· · · } of Eqs. (9) and
(10). First, we shall introduce an approximation via Taylor’s
expansion:∫

y
dyC(x, y)φ(y) (A1)

=
∫

y
dy

√
A(x)A(y)exp

[
−1

2
(y − x)T �−1(y − x)

]
φ(y)

(A2)

=
∫

r
dr

√
A(x)A(x + r)exp

(
−1

2
rT �−1r

)
φ(x + r) (A3)

≈
∫

r
dr exp

(
−1

2
rT �−1r

)[
A(x) + 1

2
∇A(x) · r

]

×
[
φ(x) + ∇φ(x) · r + 1

2
rT ∇∇T φ(x)r

]
(A4)

=
∫

r
dr exp

(
−1

2
rT �−1r

){
1

2
rT [∇A(x)∇T φ(x)

+ A(x)∇∇T φ(x)]r + φ(x)A(x)

}
(A5)

=
∫

r
dr exp

(
−1

2
rT �−1r

)(
1

2
rT {∇T · [A(x)∇φ(x)]}r

+φ(x)A(x)

)
(A6)

= (2π )
d
2 (det�)

1
2

(
φ(x)A(x) + 1

2
Tr{�∇T · [A(x)∇φ(x)]}

)
.

(A7)

From Eqs. (A3) to (A4), A(x) and φ(x) are Taylor expanded to
first and second order, respectively. From Eqs. (A4) to (A5),
odd terms of r vanish due to symmetry. From Eqs. (A6) to
(A7), we leverage the Gaussian integral:∫

r
dr exp

(
−1

2
rT �−1r

)
(rT Br) = (2π )

d
2 (det�)

1
2 Tr(�B).

(A8)

We insert the trace term back to Eq. (9) and invoke integration
by parts:∫

x
dxφ(x) · Tr{�∇T · [A(x)∇φ(x)]} (A9)

= Tr

{
�

∫
x

dxφ(x)∇T · [A(x)∇φ(x)]

}
(A10)

= Tr

(
�

∫
x

dx{∇T · [φ(x)A(x)∇φ(x)] − ∇φ(x)

× [A(x)∇φ(x)]}T

)
(A11)

= −Tr

[
�

∫
x

dxA(x)∇φ(x)∇T φ(x)

]
(A12)

= −
∫

x
dxA(x)∇T φ(x)�∇φ(x). (A13)

By inserting Eqs. (A7) and (A13) back to Eq. (9) we have

RPCA(C, φ) = −(2π )
d
2 (det�)

1
2

∫
x

dx
{

− A(x)φ2(x)

+ ∇T φ(x)

[
1

2
A(x)�

]
∇φ(x)

}
. (A14)

After integration by parts, Eq. (6) now becomes

RSE(Ĥ , ψ ) =
∫

x
dx

[
V (x)ψ2(x) + ∇T ψ (x)

1

2
�m∇ψ (x)

]
.

(A15)

To equate Eqs. (A14) and (A15) [ignoring the constant factor
in Eq. (A14)], we only need Eq. (7).

Therefore, we only need to give an estimate of the approx-
imation to obtain a qualitative bound on the error.

In fact, the Taylor’s residue in Eq. (A4) in approximation
of

√
A(x)A(x + r) is

√
A(x)(− A′⊗2(x+εr)

8A(x+εr)3/2 + A′′(x+εr)
4
√

A(x+εr)
) · r⊗2.

Similarly, the Taylor’s residue in line Eq. (A4) in approxima-
tion of φ(x + r) is 1

6φ′′′(x + εr) · r⊗3. Thus, we can bound
the approximation error as∫

r
dr exp

(
−1

2
rT �−1r

){
|c1r⊗2|

∣∣∣∣
[
φ(x) + ∇φ(x) · r

+ 1

2
rT ∇∇T φ(x)r

]∣∣∣∣ +
∣∣∣∣
[

A(x) + 1

2
∇A(x) · r

]∣∣∣∣
× 1

6
‖φ′′′‖L∞|r⊗3| + |c1r⊗2|1

6
‖φ′′′‖L∞|r⊗3|

}
.

Evaluating the Gaussian integrals, we obtain the desired error
bound of O(c1 + c2). �

To avoid confusion, we provide a few remarks here:
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(1) The only approximation made in the proof of
Theorem 1 lies in Eq. (A4) where A(x) and φ(x) are taylor
expanded to first-derivative and second-derivative, respec-
tively. The underlying assumption is that (a) the correlation
lengths (eigenvalues of �) should be much smaller than
the size of whole integral domain, so that the Gaussian
factor decays fast enough before Taylor expansion fails;
(b) the variation of A(x) is milder than variation of φ(x), or
∇∇T A(x)/A(x) � ∇∇T φ(x)/φ(x).

(2) The assumptions on the coefficients and the function
space might appear strange. The purpose is to impose a control
of higher-order derivatives, so as to make the approximation
via Tayler’s expansion valid. In practical implementations, we
shall relax the constraint and search for eigenfunctions in L2.
For the numerical experiments and its lower eigenmodes, the
functions are with low oscillation with associated constants
c1, c2 small, so the approximation is indeed accurate. There
shall be more oscillations for high eigenmode functions, in
the regime beyond the applicability of our theorem, which
explains why our approximation is more valid and mostly
applicable to the approximation of the first few eigenmodes.

Unfortunately, we do not know a priori how many lower
eigenmodes are applicable for this theorem. The statement
of the theorem can only serve as a posteriori criteria in the
numerical experiments since the desired a priori estimates on
the first few eigenmodes are not available.

(3) Although we have assumed C(x, y) as Gaussian, our
proof also works for any function that can be decomposed
into a linear combination of Gaussian radial basis function.
The equivalence between PCA and SE remains valid when
the covariance function C(x, y) is of the form of an expo-
nential function, which is reminiscent of many condensed
matter systems in physics, e.g., Ising model. Please refer to
Appendices B and C for details.

(4) The corresponding relations Eq. (7) are particularly in-
teresting in terms of physics. Normally one locates the system
at disposal on a compact support 	c ∈ 	, i.e., A(x) > 0 for
x ∈ 	s while A(x) = 0 for x ∈ 	/	s, V (x) = −A(x) implies
that the quantum particle is trapped in a potential well on
	s. Further, if A(x) can be approximated as a quadratic form
around the global maxima, then the Schrödinger equation is
readily identified as a well-studied system in physics: the
quantum harmonic oscillator, the properties of which are sum-
marized in Appendix E.

APPENDIX B: GENERALIZATION OF THEOREM 1 TO
EXPONENTIAL CORRELATIONS

In the physics community, we are often concerned with
covariance fields of the following type:

C(x, y) =
√

A(x)A(y)exp
( − ∣∣�− 1

2 (y − x)
∣∣)/Z�, (B1)

where � is a positive definite function, cd−1 is the area surface
of the unit sphere in Rd , Z� := (d − 1)!cd−1(det�)

1
2 is the

normalization factor of the covariance function, and | · | refers
to vector 2-norm.

Similar to the Gaussian case, we shall use Schödinger
equation to perform PCA approximations. Here we identify
when the PCA problem described by Eq. (4) can be well ap-

proximated by the Schrödinger problem described by Eq. (6)
as in Theorem 1.

Theorem 2. (Informal) The PCA problem described by
Eq. (4) can be approximated by the Schrödinger problem
described by Eq. (6); i.e., two systems have the same equation
hence same eigenvalues and eigenmodes, up to a second-order
approximation provided that these quantities are equal:

φ(x) ⇐⇒ ψ (x),

−A(x) ⇐⇒ V (x),

(d + 1)A(x)� ⇐⇒ �m.

(B2)

Proof. In the following we aim to build a correspondence
between two expressions in {· · · } of Eqs. (9) and (10):∫

y
dyC(x, y)φ(y) (B3)

=
∫

y
dy

√
A(x)A(y)exp

( − ∣∣�− 1
2 (y − x)

∣∣)φ(y)/Z� (B4)

=
∫

r
dr

√
A(x)A(x + r)exp

( − ∣∣�− 1
2 (r)

∣∣)φ(x + r)/Z�

(B5)

≈
∫

r
drexp

( − ∣∣�− 1
2 (r)

∣∣)[A(x) + 1

2
∇A(x) · r)

]

×
[
φ(x) + ∇φ(x) · r + 1

2
rT ∇∇T φ(x)r

]/
Z� (B6)

=
∫

r
dr exp

[ − ∣∣�− 1
2 (r)

∣∣]{1

2
rT [∇A(x)∇T φ(x)

+ A(x)∇∇T φ(x)]r + φ(x)A(x)

}/
Z� (B7)

=
∫

r
dr exp

[ − ∣∣�− 1
2 (r)

∣∣](1

2
rT {∇T · [A(x)∇φ(x)]}r

+φ(x)A(x)

)/
Z� (B8)

= φ(x)A(x) + 1

2
(d + 1)Tr

{
�

1
2 ∇T · [A(x)∇φ(x)]�

1
2
}
.

(B9)

From Eqs. (B5) to (B6), A(x) and φ(x) are Taylor expanded to
first and second order, respectively. From Eqs. (B6) to (B7),
odd terms of r vanish due to symmetry. From Eqs. (B8) to
(B9), we leverage the Exponential integral:∫

r
drexp

[ − ∣∣�− 1
2 (r)

∣∣](rT Br)/Z� = (d + 1)Tr
(
�

1
2 B�

1
2
)
.

(B10)

We insert the trace term back to Eq. (9) and invoke integration
by parts:∫

x
dxφ(x) · Tr

{
�

1
2 ∇T · [A(x)∇φ(x)]�

1
2
}

(B11)

= Tr

{
�

1
2

∫
x

dxφ(x)∇T · [A(x)∇φ(x)]�
1
2

}
(B12)
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= Tr

(
�

1
2

∫
x

dx{∇T · [φ(x)A(x)∇φ(x)]

−∇φ(x)[A(x)∇φ(x)]T }� 1
2

)
(B13)

= −Tr

[
�

1
2

∫
x

dxA(x)∇φ(x)∇T φ(x)�
1
2

]
(B14)

= −
∫

x
dxA(x)∇T φ(x)�∇φ(x). (B15)

By inserting Eqs. (B9) and (B15) back to Eq. (9) we have

RPCA(C, φ) = −
∫

x
dx

{
− A(x)φ2(x)

+ 1

2
(d + 1)∇T φ(x)[A(x)�∇φ(x)]

}
. (B16)

After integration by parts, Eq. (6) now becomes

RSE(Ĥ, ψ ) =
∫

x
dx

[
V (x)ψ2(x) + 1

2
∇T ψ (x)�m∇ψ (x)

]
.

(B17)

To equate Eqs. (B16) and (B17), we only need Eq. (B2). �

APPENDIX C: EXPERIMENTAL RESULTS
FOR LAPLACE KERNEL

For the Laplace kernel case, we did same experiments as
the Gaussian kernel case. Eigenvalues and eigenmodes are
shown in Figs. 5 and 6, respectively.

FIG. 5. Exponential correlation example: the (relative) eigenval-
ues of first 21 modes in five different cases. Note: (1) On the fine
grid, Schrödinger PCA and PCA obtain similar eigenvalues; (2)
On the coarse grid, Schrödinger PCA still works while PCA fails;
(3) Harmonic approximation is nearly exact for first 15 eigenvalues;

APPENDIX D: GENERATION OF GAUSSIAN PROCESS

In this section, we will discuss the generation of the rect-
angular Gaussian process (GP) in our numerical experiments.
We simply set � = σ 2I in Eq. (1).

The generation process contains two stages: (1) we
add Gaussian filtering to match the correlation kernel, i.e.,
exp(− (y−x)T (y−x)

2σ 2 ) in Eq. (1). (2) We rescale the field de-
pendent on x to match the variance A(x) and magnitude of
covariance

√
A(x)A(y) in Eq. (1).

1. Covariance Generation

Since the two-dimensional GP lies on grid[−50, 50] ×
[−50, 50](size 101 × 101), we start from generating a 101 ×
101 matrix with each component independently sampled from
a standard normal distribution.

As we mentioned, an isotropic correlation length σ is in-
troduced in our experiment. The width of the Gaussian filter,
denoted as σ0, is set to match the correlation length σ . It is
easy to see that σ = √

2σ0.
For the standard Gaussian filtering algorithm, a truncation

along each direction is introduced for efficient calculation. In
our numerical experiment, we set this truncation level at 5σ .6

C(x, y) = Cideal(x, y)η(5σ − |x1 − y1|)η(5σ − |x2 − y2|).
(D1)

Here the η(·) is the step function.

η(x) =
⎧⎨
⎩

0, x < 0;
1, x > 0;
1
2 , x = 0.

(D2)

With this truncation, the Gaussian filtering can be achieved by
convolution with a Gaussian kernel Gσ .

2. Modifying magnitudes

Then, due to the scaling property of Gaussian distribution,
we design a window function A′(x) to modulate the original
GP. Field values at point x are multiplied by

√
A(x).

3. The overall algorithm

Based on the above discussion, the overall algorithm to
generate n number of samples GP with predefined variance
A(x) and the Gaussian-like covariance C(x, y) with predefined
isotropic correlation length σ is as Algorithm 3.

APPENDIX E: PROPERTIES OF QUANTUM
HARMONIC OSCILLATOR

The standard equation (in physics) of a one-dimensional
harmonic oscillator is written as follows:7

− 1

2m
∇2ψ (x) + 1

2
mω2x2ψ (x) = Eψ (x), (E1)

6This truncation results in a O(10−7) relative error level.
7We have set the Planck constant h̄ = 1.
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FIG. 6. The exponential correlation example: eigenmodes of first 10 modes in 5 different cases. (1) On the fine grid, Schrödinger PCA and
PCA obtain similar eigenmodes; (2) Harmonic approximation is nearly exact for first 10 eigenmodes; (3) On the coarse grid, Schrödinger PCA
still works while PCA fails.

whose eigenstates ψn(x) and eigenenergies En are

ψn(x) = 1√
2nn!

(
mω

π

) 1
4

e− mωx2

2 Hn(
√

mωx),

En =
(

n + 1

2

)
ω (n = 0, 1, 2, · · · ), (E2)

where Hn(z) = (−1)nez2 dn

dzn (e−z2
) are Hermite polynomials.

For the two-dimensional harmonic oscillator in our case, it can
be decoupled into two independent oscillators along x1 and x2,
respectively. The total energy is equal to the sum of energy
in both directions E = E1 + E2, and the total wavefunction
is equal to the product of wavefunction in both directions
ψ (x1, x2) = ψ1(x1)ψ2(x2).

APPENDIX F: GENERATION OF ICOSAHEDRON MESH

There are many ways to build meshes on a sphere: UV
sphere, normalized cube, spherified cube, and icosahedron.

UV sphere has singularities around two poles, and normal-
ized cube and spherified cube do not sustain enough rational
symmetry. Given the above considerations, we choose icosa-
hedron mesh to discretize the sphere.

Our mesh starts from an icosahedron (20 faces, 30 edges,
and 12 vertices). Each face of icosahedron is an equidistant
triangle. Subdivision is to partition one triangle into four
smaller equidistant triangles, as shown in Fig. 7. Then middle
points are rescaled to project to the surface of the sphere. A
larger number of subdivisions generates finer meshes, shown
in Fig. 8. Both Figs. 7 and 8 courtesy of Ref. [34].

After the icosahedron mesh is generated, corresponding
degree matrix D, adjacency matrix A and Laplacian matrix
L = D − A can be computed. In the global climate example
(Sec. IV B), we replace the Laplacian operator ∇2 with the
Laplacian matrix L in the Schrödinger equation, i.e.,

∇2 → −Ld2, (F1)

where d is the averaged length of edges.

Algorithm 3. Generation of Gaussian Process.
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FIG. 7. Divide one equidistant triangle to four smaller equidis-
tant triangles

FIG. 8. More subdivisions generate finer meshes.
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