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Thermodynamics of hydrophobic-polar model proteins on the face-centered cubic lattice
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The HP model, a coarse-grained protein representation with only hydrophobic (H) and polar (P) amino acids,
has already been extensively studied on the simple cubic (SC) lattice. However, this geometry severely restricts
possible bond angles, and a simple improvement is to instead use the face-centered cubic (fcc) lattice. In this
paper, the density of states and ground state energies are calculated for several benchmark HP sequences on the
fcc lattice using the replica-exchange Wang-Landau algorithm and a powerful set of Monte Carlo trial moves.
Results from the fcc lattice proteins are directly compared with those obtained from a previous lattice protein
folding study with a similar methodology on the SC lattice. A thermodynamic analysis shows comparable folding
behavior between the two lattice geometries, but with a greater rate of hydrophobic-core formation persisting
into lower temperatures on the fcc lattice.
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I. INTRODUCTION

Protein folding is a complex, macromolecular process
which is difficult to study computationally due to the enor-
mous number of available physical states and the rough
free-energy landscapes that arise in these systems. Such chal-
lenges, along with large timescales and length scales, often
motivate the use of simplified models with Monte Carlo (MC)
simulations in place of all-atom simulations.

The hydrophobic-polar (HP) lattice model [1,2] has been
used to study various aspects of protein folding [3–8], where
lattice geometry, amino acid representation, and energy func-
tion are chosen to simplify the problem. While simple, the
model has a huge number of possible configurations [9,10],
and finding the ground state is NP-complete [11]. For this rea-
son, the HP model is often used to test optimization algorithms
and sampling methods [12–20].

Square and simple cubic (SC) lattices are commonly used
to study model proteins for a complete (but only qualita-
tively representative) analysis of the protein folding process,
although higher-coordination lattices can be used. Statistical
analyses [21–23] of experimentally measured protein struc-
tures show that the face-centered cubic (fcc) lattice mimics
the backbone geometry quite well compared to other sim-
ple lattices. In this paper, the replica-exchange Wang-Landau
(REWL) algorithm [24] is used to examine thermodynamics
of biologically motivated HP sequences on the fcc lattice, and
a direct comparison is made with results from previous folding
simulations on the SC lattice [25,26].

The remainder of the paper is organized as follows:
Section II describes the models used; Sec. III describes
the Wang-Landau and REWL algorithms and details bond-
rebridging moves for the fcc lattice; Sec. IV presents the
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simulation results and compares with their SC counterparts;
finally, Sec. V summarizes the results.

II. SIMULATION MODEL

A. HP lattice protein

First proposed in the 1980’s, the HP model [1,2] greatly
reduces the degrees of freedom of the represented protein
while preserving the essential physics of folding. The 20
possible amino acid types are classified as either hydrophobic
(H) or polar (P) residues that are restricted to lie on sites
of a rigid lattice and are connected by unbreakable, nearest-
neighbor peptide bonds, as shown in Fig. 1. There is no
explicitly modeled solvent surrounding the protein; rather, the
hydrophobic effects between an aqueous solution and amino
acids are implicitly considered as the “driving force” of the
folding process that results in a hydrophobic core. Shown in
Eq. (1), the total energy of an HP lattice protein

H = −nHHεHH (1)

is solely determined by the number of neighboring, non-
bonded H residues in a conformation (H-H contacts) nHH , and
a chosen coupling strength εHH .

B. HP model on the fcc lattice

While widely used on the SC lattice, the same HP model
constraints and energy function can also be directly mapped
onto other rigid lattices. Having 12 possible nearest neighbors
per site, the fcc lattice is a high-coordination lattice, with
60◦ and 120◦ angles allowed between adjacent edges (bonds),
as well as the 90◦ and 180◦ angles found on the SC lattice.
Figure 2 shows the HP model on the fcc lattice.

Unlike the SC lattice, there is no parity problem where
residues must be separated by an odd number in the poly-
mer chain in order to be nonbonded nearest neighbors of
one another. The HP model has previously been studied
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FIG. 1. HP model on the simple cubic lattice: The six nearest
neighbors are shown on the left; a typical lattice configuration of the
BPTI protein is shown on the right. Black residues are polar (P) and
white are hydrophobic (H).

on the fcc lattice to test optimization algorithms with low-
energy structure prediction [17,19,20,27], and others have
proposed various augmented protein models on the fcc lattice
[23,28–31].

Here, we calculate the ground states and full density (mul-
tiplicity) of states for the HP model on the fcc lattice to make
a direct comparison of the average thermodynamics with pre-
vious results on the SC lattice.

C. Benchmark HP sequences

The HP sequences given in Table I are benchmarks from
various SC lattice studies (references in the caption of Table I)
and have average thermodynamics reported by Wüst and Lan-
dau [26] with which to compare. Most of the sequences are
mapped from real protein fragments [3,32], with the exception
of seq_67 and seq_88 that were specifically designed for the
SC lattice, and are known to have threefold degenerate and
nondegenerate ground state energies, respectively [13,33].

III. METHODOLOGY

A. Wang-Landau algorithm

The Wang-Landau (WL) algorithm [34,35] estimates the
density of states ĝ(E ) using a modification factor f and flat-
ness criterion p as control parameters, and a histogram H (E )
to keep track of visited energies. The algorithm is as follows:

(1) Start with f = e and ĝ(E ) = 1 ∀E .

FIG. 2. HP model on the face-centered cubic lattice: The 12
nearest neighbors are shown on the left; a typical lattice configuration
of the BPTI protein is shown on the right. Black residues are polar
(P) and white are hydrophobic (H).

(2) Using MC trial moves, randomly transition between
states A and B with probability

P(A → B) = min

(
1,

ĝ(EA)

ĝ(EB)

)
. (2)

(3) After each trial move, update ĝ(E ) ← f · ĝ(E ) and
H (E ) ← H (E ) + 1.

(4) If H (E ) � p · H (E ) ∀E is satisfied, set H (E ) = 0 ∀E
and let f ← √

f .
(5) Continue to iterate steps (2)==(4) until f ≈ 1 within

some user-defined threshold (e.g., ln ffinal = 10−6).

B. Replica-exchange Wang-Landau algorithm

The REWL algorithm [24,36], a parallelized version of
the WL algorithm, employs the WL scheme as “replicas”
concurrently sampling overlapping energy subspaces called
“windows.” Each replica is assigned to a window, and samples
within the bounds of this window with its own ĝ(E ). At a
chosen frequency, two replicas, i and j, in the overlapping
regions of neighboring windows attempt to exchange states,
denoted A and B, according to the exchange probability

Pi, j (A → B) = min

(
1,

ĝi(EA)

ĝi(EB)
· ĝ j (EB)

ĝ j (EA)

)
. (3)

The benefit of not having to converge the whole energy space
within a single ĝ(E ) is a remarkable speed-up and access to
larger system sizes [37]. The algorithm can be scaled up in
the number of windows, number of walkers per windows,
and even the dimensionality of the density of states. After
all windows converge, the simulation ends, and the individual
ĝi(E ) are shifted together at the point where d

dE | ln[ĝi(E )] −
ln[ĝi±1(E )]| is minimal.

After running REWL, the normalized ĝ(E ) can be used
as fixed weights in a multicanonical [38] production run that
samples ∝1/g(E ). From this run, the ĝ(E ) can be improved
through reweighting, or additional averages can be calculated
for the system, as described in Eq. (5) at the end of the
section. We used a large production run to improve estimates
of ln[g(E )] from REWL for seq_124, which was the most
challenging sequence to adequately sample.

C. Monte Carlo trial move set

The following MC trial moves are reversible and ergodic,
and are implemented in an unbiased fashion that does not need
to count forward (backward) transitions between states:

Single-site pull move [39,40]: Displace one residue and
“pull” the rest of the chain along occupied positions until
reconnected.

Bond-rebridging moves [41], Hamiltonian path [42]: Cut
and form new pairs of backbone bonds without changing
residue locations.

Pivot move [17,43]: Rotate a random portion of the chain
with random axis and angle.

Diagonal (kink flip) move: Displace one residue if it re-
mains connected to its bonded neighbors.
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TABLE I. HP sequences for (a) bovine pancreatic trypsin inhibitor (BPTI) [3], (b) benchmarks with low-degeneracy ground states on the
SC lattice [13,33], (c) cytochrome C (apo form) [32], (d) ribonuclease A [32], and (e) 1-136 staphylococcal nuclease fragment [32]. Subscripts
in the specified sequences signify consecutively repeated residues.

Name Sequence

(a) seq_58 PHPH3PH3P2H2PHPH2PH3PHPHPH2P2H3P2HPHP4HP2HP2H2P2HP2H
(b) seq_67 PHPH2PH2PHP2H3P3HPH2PH2PHP2H3P3HPH2PH2PHP2H3P3HPH2PH2PHP2H3P
seq_88 PHPH2PH2PHP2H2P2HP2HP2HP2HP2HP2H2P2H3P2H3P2H3P2H3P2HPH2PH2PHP2HP2HP2H2P
(c) seq_103 P2H2P5H2P2H2PHP2HP7HP3H2PH2P6HP2HPHP2HP5H3P4H2PH2P5H2P4H4PHP8H5P2HP2

(d) seq_124 P3H3PHP4HP5H2P4H2P2H2P4HP4HP2HP2H2P3H2PHPH3P4H3P6H2P2HP2HPHP2HP7HP2H3P4−
−HP3H5P4H2PHPHPHPH

(e) seq_136 HP5HP4HPH2PH2P4HPH3P4HPHPH4P11HP2HP3HPH2P3H2P2HP2HPHPHP8HP3H6P3H2P2−
−H3P3H2PH5P9HP4HPHP4

Bond-rebridging move on fcc lattice

Bond-rebridging moves closely follow the original proce-
dures from Deutsch [41] (or more generally [44]), and involve
moves of type 1 and type 2. Diagrams of the moves for fcc
lattice are given in Fig. 3.

(1) Choose a random residue n, excluding end points.
(2) Choose a random lattice direction that is different from

the two backbone bonds of n.
(3) If no residue j exists in the chosen direction, or if |n −

j| < 3, the move is not possible and fails.
(4) Check if residue n + 1 is adjacent to residue j − 1 (type

1), residue j + 1 (type 2), or both. Otherwise, the move fails.
(5) Randomly choose between type 1 and type 2 moves if

both are valid.

FIG. 3. Two types of rebridging moves. The example configu-
ration has residues arranged in two parallel planes, where the four
larger, slightly shaded residues are in plane and in the foreground.
The new (broken) bonds need not be parallel, as shown in steps (a).
For clarity, the images show configurations without HP sequences;
otherwise, a trivial relabeling would be performed.

(6) If a type 1 move is chosen, then steps (1)–(4) are
repeated on the disconnected loop (using variables n2 and j2)
to recover a linear topology.

(7) Relabel the sequence information for the new con-
figuration: For type 2, this is simply reversing the segment
between [ j, n + 1], but extra steps must be taken for relabeling
type 1 moves.

D. Simulation details

REWL runs are performed with 8–16 windows, one replica
per window, and an overlap of at least 75%. Windows are
initialized using a WL walker with a temporary ĝ(E ) and
ln f = 1.0. When a walker enters the bounds of a window, its
configuration is sent to the neighboring, uninitialized window,
which then starts its initialization with this state as an upper
bound. A recently initialized window can continue sampling
within its bounds to perform replica exchanges while the next
window initializes. If necessary, we restart this procedure with
new windows once a crude estimate of the energy range is
obtained, adding newly found energies to the lowest window.

The Mersenne twister 19937 pseudorandom number gen-
erator is independently seeded and used for all simulations.
MC moves have typical ratios of 60% pull, 15% Hamiltonian
path, 15% bond rebridges, 5% pivot, 5% diagonal moves, but
are assigned separately for each window. Replica exchanges
are attempted every 1000–10 000 MC sweeps (attempting to
move all residues once=1 MC sweep), and histogram flatness
is checked with a criterion of p = 0.8 every 50 000–500 000
MC sweeps. A modification factor threshold of ln f = 10−6

is used to terminate the simulation. Run times vary from
140 core hours (eight windows per run, seq_58), to 5000+
core hours for the most challenging (16 windows per run,
seq_124).

E. Calculation of average quantities

Using the final estimate for the density of states g(E ), the
partition function Z is computed in the NV T ensemble and
used for an analysis of the system’s average, thermodynamic
properties.

From statistical mechanics, the partition function is a sum
over all energy levels:

Z =
∑

E

g(E ) e−βE . (4)
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FIG. 4. Natural log of g(E ) [shifted so that max{g(E )} = 1] for
seq_103 on the SC (gray triangles) and fcc (black circles) lattices.
The x axis is normalized by Nnn, and results for fcc have approxi-
mately twice as many points as SC. Error bars are smaller than the
symbol sizes.

Note that β ≡ (kBT )−1 and Z can be calculated for all tem-
peratures from a single WL or REWL simulation. An example
of a shifted ln[g(E )] spanning over 50 orders of magnitude is
plotted in Fig. 4 for seq_103 on both the SC (triangles) and
fcc (circles) lattices.

Ensemble averages are denoted by angled brackets 〈 〉,
where Eq. (5) shows the calculation for some arbitrary observ-
able Q using the density of states from REWL and histograms
H (E ), H (E , Q) accumulated during a multicanonical produc-
tion run,

〈Q〉 = 1

Z
∑

E

Q(E )g(E )e−βE , (5)

where

Q(E ) = 1

H (E )

∑
Q

Q H (E , Q).

The heat capacity [Eq. (6)] is equivalent to the thermal rate
of hydrophobic-core formation [Eq. (7)], and is calculated at
a wide range of temperatures.

CV = kBβ2[〈E2〉 − 〈E〉2] (6)

= −εHH
d〈nHH 〉

dT
. (7)

The peaks and shoulders present in CV (T ) indicate transitions
of the sequence’s structural properties, and can be analyzed
along with additional structural quantities to elucidate the
precise behavior, if necessary. Structural observables can be
calculated using Eq. (5) in a multicanonical [38] production
run with the g(E ) from REWL as sampling weights.

When comparing properties between the SC and fcc
lattices, the coordination number, or number of nearest neigh-
bors Nnn, is used to normalize temperature scales. Shown in

Figs. 1 and 2, this quantity is defined as

Nnn =
{

6, SC lattice,
12, fcc lattice. (8)

IV. RESULTS FOR BENCHMARK HP SEQUENCES

Thermodynamic results from REWL for the six benchmark
sequences on the fcc lattice are compared to the results from
Wüst and Landau [26], which used serial WL to simulate the
same sequences on the SC lattice. Figure 5 shows the compar-
ison of the specific heat CV /N for the two lattice types, with
the reduced temperatures normalized by Nnn. Ground state
energies and configurations are reported for the sequences at
the top left of each plot.

The specific heat curves (CV /N) in Fig. 5 each show dis-
tinct maxima in the reduced temperature region between 0.08
and 0.125, indicating the coil-globule transition, where the
model proteins change from an extended conformation to a
collapsed, disordered state. This first structural transition in
the folding process involves an increase in the number of HH
contacts as a disordered hydrophobic core forms. Both lattice
geometries show similar coil-globule transition temperatures
(when shifted by Nnn), but with the fcc lattice having a slightly
greater transition temperature and magnitude of CV /N .

At temperatures below the coil-globule collapse, the for-
mation of an ordered, low-energy H core happens in one or
two more structural transitions that are signified by “shoul-
ders” in CV /N . For the three shortest sequences, the optimal
folded state occurs after a signal at kBT/(NnnεHH ) � 0.075.
Seq_67 and seq_88 are known to have threefold and unique
ground state degeneracies on the SC lattice, respectively, and
both have a sharp peak in CV /N below which the model
protein is optimally folded.

The three sequences with length > 100 residues show
two additional structural transitions on the fcc lattice below
kBT/(NnnεHH ) � 0.075, where a dense H core is first formed
but then refolded/rearranged as the energy is minimized. For
seq_124 and seq_136 on the SC lattice, the peaks in CV /N
below kBT/(NnnεHH ) � 0.025 are a result of undersampled
g(E ) for the minimal energy, and should be regarded as spuri-
ous. The lowest-temperature signals in CV /N for the fcc lattice
results consistently extend down to kBT/(NnnεHH ) = 0.025,
whereas the SC results show essentially no thermal response
at these temperatures.

Minimal energy (Emin) states (and all other energy states)
are not known a priori, but are identified during the REWL
simulation. Minimal energies and representative structures are
shown in the top left corners of the plots in Fig. 5. Our
REWL method shows superior performance over the modified
pruned-enriched-Rosenbluth method (nPERM) chain-growth
algorithm that was used in previous studies [45] for the fcc
HP model, with significantly lower ground state energies
reported here (−121 vs −116 for seq_103, −164 vs −154
for seq_124, and −174 vs −168 for seq_136). Ground state
energies are identified as optimal using the constraint pro-
gramming HPstruct tool from the CPSP-tools server [46–49],
with the exception of seq_88, that is assured by HPstruct to
have an optimal value greater than −143 (for which we found
a value of Emin = −141).
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FIG. 5. Thermodynamic comparison of benchmark sequences folding on SC (dashed with triangles) and fcc (solid with black circles)
lattices. Reduced temperature is given on the x axis, and normalized by Nnn. Ground state structures and energies are shown in the top left of
each plot. The black residues are polar (P), and the white are hydrophobic (H). Error bars for the fcc results are calculated from 20 independent
trials. Where not shown, the error bars are smaller than the symbol sizes.

V. CONCLUSIONS

This work details the simulation of HP model proteins
on the fcc lattice, where the thermodynamics of folding are
calculated and directly compared with the SC lattice. Not only

are the ground state energies found for the chosen sequences,
but the full density of states is determined using the REWL
algorithm with a set of unbiased MC moves chosen from
the literature. The implementation of bond-rebridging moves
where newly formed bonds need not be parallel is detailed for
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the fcc lattice. We study the simple HP model to explicitly
observe similar folding transitions between the SC and fcc
lattice geometries.

For all but the shortest HP sequence, the temperature at
which the coil-globule transition signal occurs is slightly in-
creased, presumably due to the availability of many more
compact, globular states during the collapse. The rate of
hydrophobic-core formation is also significantly larger at low
temperatures for all tested sequences on the fcc lattice. Most
evident in the results for the longest three sequences, the
shoulder in CV /N below kBT/(NnnεHH ) ≈ 0.05 suggests that
the structural transition associated with an ordered H-core for-
mation may be split into an additional step on the fcc lattice, or
is at least more reliable statistically than the results with the
SC lattice. This effect is a result of the additional geometric
freedom of the fcc lattice, which enables a larger number of
accessible low-energy states in the folding process. Results for
seq_67 and seq_88 are unsurprisingly different between the
two lattice types, as the low degeneracy is not preserved on the
fcc lattice. Minimal energy structures identified during each
simulation are found to have the optimal H cores, as verified
by the HPstruct tool available online.

The presented methodology is effective for identifying and
sampling configurations on the fcc lattice and has general
utility for simulating polymer and protein models with the
fcc lattice geometry. Such models have relevance in current

research topics including ab initio protein structure prediction
[50,51] and the study of helical and fractal polymers [52–54].
Furthermore, the modification of Eq. (1) to incorporate more
realistic secondary structural motifs in protein folding studies
is a known challenge [30,31,55,56] and a possible direction
for future research that could employ this methodology. Here,
we provide thermodynamic data that show the similarity of
HP model protein folding simulations on the fcc lattice with
the commonly used SC lattice, with the fcc geometry having
slightly higher and lower temperatures associated with the
coil-globule and ground state transitions, respectively. These
results will be a useful benchmark for future thermodynamic
inquiries using similar fcc lattice models.
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