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Turbulent compressible flows are traditionally simulated using explicit time integrators applied to discretized
versions of the Navier-Stokes equations. However, the associated Courant-Friedrichs-Lewy condition severely
restricts the maximum time-step size. Exploiting the Lagrangian nature of the Boltzmann equation’s material
derivative, we now introduce a feasible three-dimensional semi-Lagrangian lattice Boltzmann method (SLLBM),
which circumvents this restriction. While many lattice Boltzmann methods for compressible flows were restricted
to two dimensions due to the enormous number of discrete velocities in three dimensions, the SLLBM uses only
45 discrete velocities. Based on compressible Taylor-Green vortex simulations we show that the new method
accurately captures shocks or shocklets as well as turbulence in 3D without utilizing additional filtering or
stabilizing techniques other than the filtering introduced by the interpolation, even when the time-step sizes are

up to two orders of magnitude larger compared to simulations in the literature. Our new method therefore enables
researchers to study compressible turbulent flows by a fully explicit scheme, whose range of admissible time-step
sizes is dictated by physics rather than spatial discretization.
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I. INTRODUCTION

One major challenge in fluid dynamics is the study of
compressible turbulent flows, involving intrinsic as well as
variable density compressibility effects [1-7]. Applications
range from aviation [8] or astrophysics [9] to the investiga-
tion of canonical flows like boundary layers [10], channel
flow [11-13], mixing layers [14-18], jets and aeroacous-
tics [19-21], or shock-turbulence interaction [22], to mention
a few, considering the vast literature available. These flows
feature both solenoidal and dilatational structures, which con-
stantly interact and possibly cause shock waves [5,23].

Numerical simulations have become an indispensable tool
to understand their physics, and many studies exploring
compressible turbulent flows have been conducted using high-
order compact finite difference, optimized dispersion-relation
preserving schemes [19,24-30] for the spatial derivatives,
often combined with low-dispersion-dissipation Runge-Kutta
schemes for time-integration [19,31,32]. Although these
methods provide accurate results, the time steps are generally
small [33], because of the methods’ Eulerian time derivatives,
which describe how the variables of interest pass through fixed
locations in the field. Thus, the admissible time-step sizes are
tightly linked to spatial resolution. This issue is for many
discretizations linked to the Courant-Friedrichs-Lewy (CFL)
condition,

cb; /8y < CFLpax, (1)

using linear stability theory, relating a characteristic ve-
locity ¢ to the spatial and temporal discretization intervals
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8, and §;, respectively (see Ref. [34], for example). Though
implicit time integration schemes often provide larger stabil-
ity domains, their application can be unfeasible for transient
problems due to their computational cost. Explicit time in-
tegration schemes with scheme-specific CFL,,x, by contrast,
enforce small time steps §, for high-flow velocities, typ-
ically occurring in many high-speed compressible flows.
Another obvious way to circumvent the CFL condition in
Eq. (1) is to incorporate Lagrangian time derivatives, which
track the motion of the variables of interest moving through
the domain.

In practice, Semi-Lagrangian (SL) schemes are used in-
stead, which provide a viable alternative to the discretization
of Eulerian time derivatives. SL schemes discretize the
Lagrangian solution by tracking the trajectories back in time.
The prefix “semi” indicates that the trajectories’ end points
usually do not coincide with the simulation grid points, which
requires application of an appropriate interpolation scheme.
SL methods were successfully incorporated in algorithms
solving the Navier-Stokes equations [35], although tracking
of the fluid trajectories was often found to be cumbersome,
introducing additional errors [36]. The major advantage when
using SL schemes in kinetic theory is that the trajectories
are linear, resulting in cancellation of the tracking error.
Consequently, SL schemes were both applied to the Vlasov
equation [37-39] and to the Bhatnagar-Gross-Krook (BGK)-
Boltzmann equation [40,41]. Recently, we introduced the
semi-Lagrangian lattice Boltzmann method (SLLBM) [42,43]
for compressible flows [44], which solves the lattice
Boltzmann equation using a high-order SL streaming
step.

©2021 American Physical Society
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In this article, we explore the capabilities of the SLLBM
for three-dimensional compressible flows. Furthermore, we
demonstrate that the SLLBM remains stable for time-step
sizes that exceed typical CFL constraints of Eulerian solvers
by orders of magnitude. To yield a lean scheme, the SLLBM is
combined with state-of-the-art cubature rules for the velocity
discretization [45-47]. This combination proves capable of
modeling compressible turbulence with time steps that are
at least one order of magnitude larger than in standard Eu-
lerian methods and decouple the spatial from the temporal
discretization.

Background

We start with a critical look at the more specialized lat-
tice Boltzmann method (LBM) [48]. Despite the successes
of the standard LBM in the computation of multiphase [49],
particle-laden [50], thermal [51], or turbulent flows [52,53],
compressible LBM [54] were overlooked for a relatively long
time, but regained attraction during the last decade [55-68].
Let us recall the force-free BGK-Boltzmann equation
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with the continuous distribution function f, the equilibrium
distribution function f°4, the particle velocity &, and the re-
laxation time A. To discretize Eq. (2), the original LBM is
based on three key principles. First, the equilibrium distribu-
tion function f®! is polynomially expanded into a series of
Hermite polynomials ™, with expansion coefficients being
the equilibrium moments ag;) [69]1,

%w@)z ,g'c? H, (3)

n=0

where N is the expansion order and w(&) the weight function.
Since aéz) and H™ are symmetric tensors of rank n, the
product involves contraction to all D" scalar components, de-
pending on dimension D. Second, a Gau3-Hermite quadrature
is applied to the unbounded velocity space of the Boltzmann
equation, leading to discrete particle velocity sets [69]. The
moments are then found by the quadrature
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with the weighted discrete distribution functions f; =
w; f(&;)/w(&;). The combination of Q discrete particle veloc-
ities &; and weights w;, the velocity set, is usually derived by
the GauB-product rule applied to a one-dimensional Gauf-
Hermite quadrature. Third, the discrete Boltzmann equation
is integrated along characteristics with an inherent Lagrangian
discretization of the Boltzmann equation’s material derivative
to obtain a stable numerical scheme and second-order tempo-
ral convergence [70].

Unfortunately, the LBM in its original formulation is
mainly restricted to Cartesian grids and velocity discretiza-
tions that match the regular lattices. The customary “D2Q9”
based on second-order expansion in Eq. (3) is plagued

by a cubic error being proportional to the Mach number.
Consequently, compressible simulations either demand cor-
rection terms that nihilate the errors and restore Galilean
invariance [64,71], hybrid LBMs with separate temperature
fields [72,73], or higher-order discretizations of Egs. (3)
and (4). Yet the resulting high-order velocity sets are only
compact when the abscissae may reside off-lattice, and uti-
lization of such velocity sets therefore requires an efficient
off-lattice Boltzmann solver. Previous Eulerian off-lattice
Boltzmann schemes [74-79], like finite difference or finite
volume LBM, would be suited in principle. However, they
sacrifice the Lagrangian time integration along characteristics.
Moreover, their time step is severely restricted by a CFL
condition of the streaming step, Eq. (1), with respect to the
fast discrete particle velocities.

In contrast, the SLLBM preserves all of the aforemen-
tioned key principles of the LBM but it also decisively extends
its capabilities. Here, the SLLLBM is in the spirit of a work
by Pavlo et al. for thermal flows who used an interpolation-
based LBM with a D2Q17 velocity set [80]. In previous
works [42—44] we have shown that a high-order interpolation
increases the spatial order of the method and reduces net mass
fluctuations to an acceptable level. Also, we have demon-
strated the unconditional stability of the advection step, when
incorporating Gauf3-Lobatto-Chebyshev nodes for the inter-
polation up to third order, and that the stability is practically
not affected even with fourth order. The flexibility in terms of
meshing and velocity sets encouraged us to search for efficient
quadrature rules solving the weight function. This research
led us to long-established cubature rules [45-47], i.e., multi-
variate quadratures, which are often used in Kalman filters,
e.g., in Ref. [81].

II. METHODOLOGY

A. Compressible semi-Lagrangian LBM

The compressible SLLBM uses the established lattice
Boltzmann equation with the BGK collision operator [42]

hi(x + 8:&;,t + &) = hi(x,1) — %[hi(x, ) —hiix, 0] (5)

Here, h; denotes either f; or the second distribution func-
tion g; related to the variable heat capacity ratio y. The
shifted dimensionless relaxation parameter T = A/§, + 0.5 =
n/(Pé;) + 0.5 depends on dynamic viscosity u, and pressure
P = pT with density p and temperature 7. The discrete equi-
librium distribution function £ is

N

FEN o = wi Y i,ag';)(x 1) H, ©6)

n=0

and g9 = (2C, — D)T f74, with heat capacity at constant vol-
ume C,, and number of dimensions D. Both ai’;) and ’HE") =
H "™ (&;) are listed in Appendices A and B, respectively. To

adjust the heat conductivity, a quasiequilibrium approach [82]
is applied to Eq. (5), for more details see Appendix D.

025301-2



HIGH-ORDER SEMI-LAGRANGIAN KINETIC SCHEME FOR ...

PHYSICAL REVIEW E 104, 025301 (2021)

° ° °
° ° ° °

e e e °
Yy ® 0 ° e ¢

°
® 0 ° e ¢

°

X
z ® 0 ° o o

FIG. 1. Support points of a three-dimensional reference cell with
Gaul}-Lobatto-Chebyshev points of order p = 4. Interior and rear
points are not shown.

Density p, momentum pu, and energy E are determined by

0-1 0-1 0-1
p=Y_ [ pu=)_ fi& 20E =) (flEl+g). (7
i=0 i=0 i=0

Appendix C demonstrates the connection of the present
SLLBM model with the macroscopic equations using a
Chapman-Enskog analysis [83]. Note that the analysis leaves
out the interpolation, which would lead to source terms in
the mass, momentum and energy equations due to the error
introduced by the interpolation procedure. The combination
of an integration along characteristics of the streaming step
and a Crank-Nicolson scheme for the collision step incorpo-
rates a second-order temporal error [84], whose order can be
increased by multistep schemes [85]. In standard LBMs, the
particle velocities &; in Eq. (5) are designed to end up on one
of the neighboring nodes, and the time-step size is invariably
set to unity for the same purpose. By contrast, the SLLBM’s
particle distribution functions are still integrated along char-
acteristics, but the departure points may reside offside the
grid, i.e., they are off-lattice. To recover the off-lattice values
an interpolation is needed. While several interpolation strate-
gies are possible, we chose a cell-oriented approach, which
means that once a departure point is identified, the degrees
of freedom points hig ; in the enclosing cell are used for the
interpolation

N;
hi(x, 1) =Y higj(t)Yz;(x) ®)
j=1
in cell &, with the number of support points per cell N; and
with the basis functions vg;. A three-dimensional reference
cell with polynomial order p =4 is shown in Fig. 1. For
each of the N support points in the simulation, there are Q
particle velocities, i.e., there are N - Q departure points to be
identified. Therefore, at the beginning of the simulation the
path from each support point to the corresponding Q departure
points is tracked through all adjacent cells. Then a sparse
matrix W stores the shape function values z; belonging to
the departure point’s position; the algorithm is presented in
Ref. [43]. The actual streaming step is expressed as a matrix-
vector multiplication

hi(t + &) = W;h;(1), )

whereas the collision step remains local. For the realization
we have wrapped our semi-Lagrangian lattice Boltzmann

FIG. 2. Three-dimensional D3Q45 velocity set with 45 ab-
scissae, derived by a degree-nine cubature rule originally by
Konyaev [89].

solver NATriuM [43] around the finite element software pack-
age deal.ii [86] for mesh, cell, and matrix organization.

B. Cubature-based velocity sets

The discretization of the velocity space is a key princi-
ple for any simulation with the lattice Boltzmann method.
If a quadrature is to be applied, it must be suited to inte-
grate the weight function exp(—x?), and it has to be of ninth
degree to enable compressible flow simulations [87]. A promi-
nent method to derive two- and three-dimensional velocity
sets is the GauB-product rule applied to a one-dimensional
quadrature. Application to the one-dimensional degree-nine
GaulB3-Hermite quadrature delivers a two-dimensional D2Q25
off-lattice velocity set with 25 abscissae, which we used for
previous work [44]. Due to its structure, this velocity set
is infeasible for standard on-lattice streaming but perfectly
suited for the SLLBM.

For the simulations in this work we used velocity sets
derived by cubature rules [45,46], exhibiting the same de-
gree of precision but consisting of fewer support points to
lower computational cost. In two dimensions we employed
the degree-nine D2Q19 velocity set with 19 abscissae [88]
that we have presented in recent work [47]. In three di-
mensions, the GaufB3-product rule led to noncompetitive 125
abscissae for a three-dimensional degree-nine D3Q125 veloc-
ity set. Therefore, we successfully identified and implemented
a degree-nine D3Q45 velocity set with only 45 components,
which fulfills all requirements in terms of symmetry. The
D3Q45 was derived by a cubature rule after Konyaev [89]
and has recently been listed in the supplemental material of
a cubature article by van Zandt [90]. The resulting discrete
velocities are shown in Fig. 2, whereas weights and abscissae
of the D2Q19 and D3Q45 are listed in Ref. [47].
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FIG. 3. Density (a) and velocity (b) of Sod shock tube simulation
using SLLBM with 2000 cells at time # = 0.1, which is reached after
only 100 time steps (5, = 0.001), despite the fine spatial resolution
of 6000 grid points. For a smaller time-step size and lower viscosity
the reference is perfectly matched.

III. RESULTS

We test the proposed method through three test cases. The
first two test cases, a temporally underresolved Sod shock
tube and a two-dimensional Riemann problem, demonstrate
the effect of large time-step sizes on the simulations. The third
test case is the compressible three-dimensional Taylor-Green
vortex at different Reynolds and Mach numbers to present the
capability of SLLBM to simulate both turbulent and shocked
three-dimensional flows.

A. Temporally underresolved Sod shock tube

The Sod shock tube illustrates the large range of time-step
sizes accessible to the SLLBM. The domain x € [0, 1] was
divided into two regions at x = 0.5 with initially

po=8u=0FP=10, pr=1u =0P =1,

and a viscosity of u =7 x 10~*. The domain x € [0, 1] was
discretized using 2000 cells at third polynomial order, i.e.,
6000 grid points in x direction. Despite this fine spatial res-
olution, which we only chose for demonstration purposes, the
time-step size was set to §, = 0.001, such that the solution
at t = 0.1 was reached by performing only 100 time steps.
Figure 3 shows that the SLLBM accurately traces the shock
front despite the extremely large time step. For a smaller
time-step size of §; = 0.0005 and viscosity of u = 107> the
simulation results perfectly matched the inviscid reference

YL _

X active cell departure cell

FIG. 4. Exemplary departure point location for the Sod shock
tube configuration in this article with 2000 cells. The path of the
longest abscissa of the 2D velocity set D2Q19 is shown. Starting
from the current cell, the abscissa’s path linearly traverses six con-
tiguous cells and locates the departure point in the seventh cell.
A third-order polynomial interpolation using the cell-local Gaul3-
Lobatto-Chebyshev support points is applied to reconstruct the
distribution function value.

solution. To get an impression of the time-step size of other
solvers, we repeated the simulations with the larger viscosity
w =7 x 10~* using the same collision process and velocity
discretization, but this time applying a spectral-element dis-
continuous Galerkin solver for the streaming step [43,77].
This solver also features high-order solutions, but requires a
dedicated time integrator and the time-step size is bounded
by the CFL condition of the streaming step (1). The simu-
lation produced nearly identical results as the SLLBM with
8; = 0.001 (therefore not shown), but required §, = 0.000086
to be numerically stable, i.e., 1154 time steps with an ex-
plicit exponential time integrator [91] and §; = 0.00005,
i.e., 2200 time steps with the more common fourth-order
Runge-Kutta method.

As the distance of the departure points from the active
nodes is proportional to the time-step size [Eq. (5)], the depar-
ture points of the SLLBM were located up to seven cells away.
The trajectory is shown in Fig. 4 for an exemplary departure
point. It is obvious that the CFL restriction of explicit Eu-
lerian solvers prohibits the exchange of information crossing
multiple cells during the streaming step. This property is of
special interest in the case of simulations with body-fitted
meshes, where the spatial extent of the smallest cells usually
dictates the time-step size of the whole simulation. As op-
posed to Eulerian solvers, the maximum stable time-step size
in the SLLBM is proportional only to the viscosity and not
dictated by the mesh size. On top of that, when doubling the
number of cells the number of SLLBM time steps can still be
kept constant, whereas it inevitably doubles for the explicit
discontinuous Galerkin solver. Finally, Fig. 5 confirms that
the SLLBM is also capable to stably simulate the shock tube
with a lower resolution of 100 cells, polynomial order p = 4
and 400 grid points, without additional numerical dissipa-
tion measures. Here, the time-step size was set to §; = 0.005
and §, = 0.0005 with viscosities . = 0.002 and © = 0.0002,
respectively.

B. 2D Riemann study of time-step size effects

Case 12 of the two-dimensional Riemann problems was
intensively studied by Lax [92] as well as Kurganov and Tad-
mor [93]. In one of our last works [44] we already showed that
the SLLBM is capable to resolve the density contours of
this test case with good visual agreement to the references.
This time, similar to the shock tube test case in Sec. III, we
examined the effect of the time-step size onto this test case.
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FIG. 5. (a) Density and (b) velocity of Sod shock tube simulation
using SLLBM with 100 cells at time ¢ = 0.1, which is reached after
20 time steps (8, = 0.005), at a more reasonable resolution of 400
grid points. Simulations with smaller time-step sizes and viscosity
match the reference better, despite slight overshoots visible near the
shock fronts.

The initial conditions of the four quadrants are [79]

(0.5313,0,0,0.4), x>0, y>0,
~](1,07276,0,1),  x<0, y=>0,
(0> e, 4y, PY = 1.08.0. 0. 1), x<0, y<o0,
(1,0,0.7276,1), x>0, y<O.

(10)

The heat capacity ratio was y = 1.4, the number of cells was
Nz = 1282 with polynomial order p = 4, i.e., N = 512% grid
points. The simulation end time was f.,g = 0.25. Figure 6
shows the density contours in the interval p € [0.412, 1.753],
beginning with a small time-step size and low viscosity in sim-
ulation [Fig. 6(a)]. Each of the figures also lists the time-step
size and viscosity. When increasing the time-step size, the vis-
cosity also needs to be increased to ensure stable simulations
as depicted for simulation [Fig. 6(b)]. The effect of a malad-
justed time-step size is shown in simulation [Fig. 6(c)], where
oscillations occur in the top right corner near the shock fronts.
Finally, simulation [Fig. 6(d)] depicts the density contours for
a approximately 50 times larger time-step size than for the
case in Fig. 6(a). In this case, the shock fronts are widened,
comparable to the observations in Sec. III A.

C. Compressible three-dimensional Taylor-Green vortex

To show that the SLLBM captures the intricate interac-
tions between turbulent and compressible features including

shocklets, the compressible three-dimensional Taylor-Green
vortex flow was simulated. On the triply periodic domain
S = [0, 27 1%, the initial conditions with constant temperature
initial condition (CTIC) are

ui(xy, x2, x3,t = 0) = sin x; cos x, cos x3, (11D

up(x1, xp, x3,t = 0) = — cos x; sinx, Cos x3, (12)

uz(x1,x2,x3,t =0) =0, (13)
C

px1, x2,x3,t =0) =1+ 1—6[008(2)61) (14)

4+ cos(2xy)][cos(2x3 + 2)], (15)
T(x1,x,x3,t =0)=1, (16)

with velocities u, density p, Mach number Ma, and tem-
perature 7. The numerator C differs between the cases in
this work with C = 1 for Re = 100 and Re = 400 as well as
C = yMa? for Re = 1600. The Reynolds number is defined
as Re = 1/v.,, where the subscript co denotes the value at
T = 1. The Prandtl number is Pr = 0.7; the heat capacity
ratio is Yy = 1.4. The dynamic viscosity u = vp obeys the
Sutherland law

. 1.4042713

T T 0404171

as proposed by the reference works [94,95].
In comparison to forced or decaying isotropic turbulence,

this test case enables a deterministic initialization and thus an
easier and more objective comparison.

Iz a7

1. Reynolds number Re = 400

Peng and Yang thoroughly studied the compressible
Taylor-Green vortex at Reynolds number Re = 400 [94].
The original work used a compact eighth-order finite differ-
ence scheme [24] to discretize the convective terms in the
Navier-Stokes equation in combination with a seventh-order
weighted essentially nonoscillatory (WENQO) scheme. The
present compressible SLLBM uses fourth-order polynomials
for the equilibrium [Eq. (3)] and for the interpolation [Eq. (8)],
without utilizing additional filtering or stabilizing techniques
other than the filtering introduced by the interpolation. More-
over, to satisfy the CFL condition, the original work applied
a time-step size of § = 0.0005, whereas the SLLBM was
capable to utilize time-step sizes two orders of magnitude
larger: §; = 0.017 for Mach number Ma = 0.5, §; = 0.033
for Ma = 1.0, §; = 0.018 for Ma = 1.5, and 6, = 0.012 for
Ma = 2.0. Note that the lower time-step size for Ma = 0.5
compared to Ma = 1.0 is due to the current implementation
of the SLLBM with only a single layer of ghost cells in
each MPI process. The spatial resolution was Npoins = 2563,
(i.e., Ng = 643), whereas the reference operated with 5123
grid points.

Figure 7 depicts the kinetic energy over time for all Mach
numbers, which accurately follows the reference solution de-
spite the coarse temporal discretization. Next, Fig. 8 depicts
the solenoidal dissipation defined as

A 1 (V x u)? d’x (18)
B lorefRe SM ’
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FIG. 6. Density contours of the 2D Riemann simulations using 512 x 512 grid points. The time-step size of simulation (d) is approximately
50 times larger than the time-step size of simulation (a), but the viscosity differs by a factor of approximately 12. As a general rule, lower
viscosities demand smaller time-step sizes. When choosing the time-step size too large for a given viscosity, the simulations tend to become
unstable near the shock fronts, as depicted in panel (c). By contrast, simulation (b) remains stable due to a 57% reduction of the time-step size

with equal prescribed viscosity.

All Mach numbers quite accurately matched the reference.
The effect of changing the time step to similar levels as in the
above mentioned reference can be seen for the smaller Mach
numbers Ma = 0.5 and Ma = 1.0. The small deviation from
the reference seen here is reduced by decreasing the time-step
size to similar levels, here 8§, = 0.003 in both cases.

The dilatational dissipation

e = 4 w(V -u)? d’x (19)
3iorefRe S

is a measure for pressure work in the simulation. Figure 9
shows that the dilatational effects are strong in the beginning
at small simulation times, surmounting the solenoidal dissipa-
tion. The comparison to the reference shows a slight deviation

from the reference and mild oscillations near the peak values
around t = 2.5.

2. Reynolds number Re = 1600

The Taylor-Green vortex at Reynolds number Re = 400
shows strong dilatational effects, but the transition to fully
developed turbulence requires higher Reynolds numbers.
Therefore, another recent work by Lusher and Sandham ex-
amined this test case at Reynolds number Re = 1600 up
to Mach number Ma = 1.25 [95]. In their study, the au-
thors compared high-order finite difference schemes equipped
by WENO or targeted essentially nonoscillatory (TENO)
schemes of different orders. The present work re-examines
the Mach numbers Ma = 1.0 and Ma = 1.25 up to ¢t = 20,
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Ref.
Ma=0.5

0.16 1

trte-

FIG. 7. Kinetic energy over time of the compressible 3D Taylor-
Green vortex at Reynolds number Re = 400. Simulations by the
SLLBM with the D3Q45 velocity set shown in Fig. 2. Reference
from Ref. [94].

with time-step sizes 6, = 0.010, and §, = 0.009, respectively.
These time-step sizes were still 20 times larger than those in
the reference [95]. The resolution was Nyoins = 2563, whereas
the reference used 5123 grid points. Fig. 10 demonstrates that,
just as in the case Re = 400, the kinetic energy over time is
excellently reproduced for both Mach numbers. Figure 11
shows the solenoidal dissipation in comparison to the ref-
erence with even better results for the higher Mach number
Ma = 1.25. The good agreement confirms the little numerical
dissipation introduced by the SLLBM at polynomial order
p =4 in turbulent flows at transonic Mach numbers. By

0.018 4 ° Ref.
Ma=0.5
0.016 A
— .= Ma=0.5 small &
0.014 { —— Ma=1.0
— == Ma=1.0 small &
0012 ' Ma=1 5
% 00104 —— Ma=20

0.008 A

0 2 4 6 8 10

FIG. 8. Solenoidal dissipation &* of the compressible 3D Taylor-
Green vortex at Reynolds number Re = 400. Small time-step sizes
at Ma = 0.5 and Ma = 1.0 with 5.5 times and 11.1 times smaller
times step sizes, respectively. The reduction induced a slightly better
agreement with Ref. [94].

0.008 -
0.006 -
® 0.004

0.002 -

0.0 2.5 5.0 7.5
t

10.0

FIG. 9. Dilatational dissipation ¢ of the compressible 3D
Taylor-Green vortex at Reynolds number Re = 400. The time-step
sizes are identical to the large §, simulations in Fig. 8.

contrast, the interpolation order p = 2 worsens the solution
despite the identical resolution of Npoins = 256%.  Next,
we investigated the dilatational dissipation. During the early
phase of the simulation the large vortex structures begin to en-
tangle. This entanglement leads to strong moving shock-like
structures or turbulent shocklets with strong negative dilata-
tion [95] and local numerical oscillations of the macroscopic
variables due to an underresolution of these shocklets. A slice
of the density field illustrating the shocklets, indicated by
large jumps in the governing variables, is shown in Fig. 12.
The size of the jumps agreed well with that obtained via
classical Rankine-Hugoniot jump conditions. Additionally,
during the early phase, the Mach numbers can be higher
than the initially prescribed Mach numbers. Moreover, to
compute Eq. (19), we made use of the gradients of the inter-
polation polynomials, which—in contrast to the distribution
functions—are not continuous over the cells. It is likely that
this approach to compute the dilatational dissipation faces
issues at strong shocklets. This might explain the oscilla-
tions for Ma = 1.25 in Fig. 13, which depicts the dilatational

Eyin

0.05

Eyin

0.05

FIG. 10. Kinetic energy over time of the compressible 3D
Taylor-Green vortex at Reynolds number Re = 1600 for Mach num-
bers (a) Ma = 1.0 and (b) Ma = 1.25. Reference from Ref. [95].
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FIG. 11. Solenoidal dissipation &° of the compressible 3D
Taylor-Green vortex at Reynolds number Re = 1600 for Mach
numbers (a) Ma = 1.0 and (b) Ma = 1.25. Note the differ-
ences between second-order polynomials p =2 and fourth-order
polynomials p = 4.

dissipation. Despite these deviations from the reference in the
beginning, the SLLBM was able to reproduce the dilatational
dissipation well for the rest of the simulation, as shown in
Fig. 13, without using additional stabilizing measures like
filtering or artificial diffusivity.

3. Reynolds number Re = 100 for higher Mach numbers

As a last test case, Fig. 14 shows that for Re = 100 we
were able to stably simulate the given test case for Mach
numbers Ma = 2.5 and Ma = 3.0. The Knudsen number for

FIG. 12. Density of the three-dimensional Taylor-Green vortex
with Re = 1600 and Mach number Ma = 1.25 at time r = 3.34. The
x-z plane is shown at position y = 7.

0.00075 -

0.00050 -

0.00025 -

0.00000 -

FIG. 13. Dilatational dissipation & of the compressible 3D
Taylor-Green vortex at Reynolds number Re = 1600.

this configuration was of order Kn = O(Ma/Re) = O(1072).
Due to this Knudsen number at the upper end of the continuum
flow scale, the SLLBM was once more able to use large times
steps 8, = 0.015 and 8§, = 0.03, respectively. Although only
shown at low Reynolds numbers, these stable simulations
indicate the principal capability of the SLLBM to perform
stable simulations at high Mach numbers.

IV. DISCUSSION

As demonstrated by the numerical experiments, the
SLLBM is able to simulate complex two- and three-
dimensional compressible flows with shocks and shocklets.
There are two main arguments in favor of the method. First,
the method works with large and adjustable time-step sizes.
Second, cubature rules provide lean velocity sets resulting in
an efficient scheme. The D3Q45 used in this work is, to the
authors knowledge, the smallest known degree-nine velocity
set and key to reduce errors caused by interpolation.

The SLLBM’s streaming-step is not subject to a CFL con-
dition, as already shown in past works [42] and as confirmed
by the shock tube simulations in this work. In contrast to the
usual spatial filtering, the independence of the CFL condition
opens the field of temporal large eddy simulations (TLES)
with fine spatial, but coarse temporal resolutions [96,97].
Since no dedicated filter operation has been used, we clas-
sify the scheme as some sort of temporal implicit large eddy
simulation (TILES). Despite the temporally coarse resolu-
tions, most relevant flow features during the simulations were
preserved, or they were recovered by scaling the time-step size

0.15
—-= Ma=2.5, Re=100
0.10 - _— Ma:3.0, Re=100
L.q_;i
0.05 -
0.00 T T T T

FIG. 14. Kinetic energy over time of the compressible 3D
Taylor-Green vortex at Reynolds number Re = 100 for Mach
numbers Ma = 2.5 and Ma = 3.0.
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down: a key feature of the SLLBM that on-lattice Boltzmann
schemes often miss.

Although the streaming step is not subject to a CFL con-
dition, the interplay of collision operator and advection may
still cause instabilities at small relaxation times and large
time-step sizes §; as pointed out by various works, e.g., by
Siebert et al. [98]. However, this limitation is—in contrast
to the classical CFL condition—largely independent from
the spatial discretization interval §,. That said, the stability
regions of the BGK collision operator combined with the
D3Q45 and fourth-order equilibria (at high Mach numbers
and adjustable time-step sizes) are yet unknown. Neverthe-
less, we observed that the SLLBM produces good results
without using additional filtering or stabilizing techniques. To
accomplish simulations with even higher Reynolds and Mach
numbers with large time-step sizes, the application of such
techniques to the SLLBM might be beneficial, though.

A. Comparison to other LBM solvers

Let us now compare the SLLBM for three-dimensional
compressible flows to other LBM solvers, with distinction
between on-lattice solvers and off-lattice solvers. Since we
discussed many aspects in recent works [44,47], we mainly
restrict the discussion to compressible LBM solvers with ap-
plications to three-dimensional turbulent flows.

To perform a time step, off-lattice Boltzmann methods
typically require a special treatment of the distribution func-
tion values such as the discretization by finite difference
schemes [99-101] or finite volume schemes [79] and the ap-
plication of a dedicated time integrator, e.g., a Runge-Kutta
scheme. As an example for these Eulerian time integra-
tion schemes, Chen et al. presented compressible decaying
three-dimensional isotropic turbulence simulations obtained
by a modified discrete unified gas kinetic scheme (DUGKS),
which is essentially a finite volume LBM with second-order
spatial and temporal accuracy [102]. Also, the authors made
use of a high-order Gaussian quadrature to discretize the
velocity space, but they relied on a decisively larger D3Q77
velocity set with identical quadrature degree as the D3Q45.
Like all explicit Eulerian time integration schemes, DUGKS
is subject to the CFL condition Eq. (1).

A second category of off-lattice schemes are interpolation-
based or semi-Lagrangian implementations. Pavlo et al.
pioneered in using second-order interpolations to incor-
porate high-order velocity sets for simulations of thermal
flows [80,103]. Renowned semi-Lagrangian implementations
are the Particles on Demand method [61], which uses dynam-
ically shifted velocity sets to reach high Mach numbers, or
the SLLBM for compressible flows on unstructured meshes
by Saadat et al. [65]. Unlike the present method, the authors
of the latter approach used a D2Q9 velocity set and computed
correction terms by exploiting the gradients of the distribution
functions, which practically come at low costs when using
interpolation polynomials. To the best of our knowledge, these
methods have not been applied to complex three-dimensional
flows, except for a spherical Riemann problem presented by
Zakirov et al. using a D3Q125 velocity set [104]. Additionally,
one decisive feature of the present method is the organization

of support points by cells, enabling three-dimensional high-
order solutions.

On-lattice Boltzmann solvers have the Lagrangian integra-
tion along characteristics in common with interpolation-based
schemes, albeit constrained by a strong coupling of space and
time discretization. This explains, the rather large time-step
sizes of on-lattice Boltzmann methods with increasing Mach
number [47,105]. On-lattice Boltzmann methods generally
exhibit second-order accuracy in space and time, but they are
not as fiercely concerned by numerical diffusion as low-order
off-lattice Boltzmann methods. In general, the computational
costs of on-lattice Boltzmann methods’ streaming step are
low. On the downside, they often suffer from large velocity
sets. For example, Frapolli et al. [55,57,106] were able to
simulate various three-dimensional compressible flows, in-
cluding isotropic decaying turbulence simulations or the flow
around an Onera M6 wing, by the entropic lattice Boltzmann
method. In many ways, their works were groundbreaking for
the development of compressible LBMs. However, the au-
thors used a velocity set with 343 discrete velocities and the
weights were temperature-dependent, which limits the tem-
perature range of the method. In addition, in many on-lattice
Boltzmann frameworks the time-step size is not adjustable
due to the linking of spatial and temporal discretization [105].
An exception to this are hybrid lattice Boltzmann methods,
which solve the temperature field separately [58,62,72,107].
In this case, by adapting the speed of sound, the time-step
size can be varied. Hybrid LBMs enable compact on-lattice
velocity discretizations like the degree-seven D3Q39 velocity
used by the work of Nie et al. [72] published a decade ago, and
the method has been applied to complex flows as presented
by Fares and Wessels [73]. In contrast to hybrid LBMs the
present SLLBM solves the temperature equation by a lattice
Boltzmann formulation with two separate distribution func-
tions using a degree-nine D3Q45 off-lattice velocity set.

By using numerical equilibria instead of the polynomial
equilibrium in this work, Latt ef al. were able to simulate a
three-dimensional flow around a sphere [66] by using only 39
discrete velocities, as similarly proposed by Frapolli [105].
Simulations of complex turbulent flows by this method are
not available, yet. Recently, Saadat e al. [108] proposed an
on-lattice Boltzmann model with a regular D3Q27 velocity set
to perform three-dimensional decaying compressible isotropic
turbulence simulations. Despite the low degree of the velocity
set, this model proved capable to simulate shocked flows up
to Mach numbers of Ma 1.5. This is achieved by correcting
the error-prone high-order moments by expressions obtained
from applying finite differences to the macroscopic variables.

In summary, the number of compressible LBM solvers
for three-dimensional flows is still limited for both on-lattice
and off-lattice Boltzmann schemes, which indicates the value
of the presented SLLBM framework to set a pattern for
future research.

B. Numerical efficiency

The numerical efficiency of the SLLBM depends on the
implementation of the collision and the streaming step. The
former requires at each support point the calculation of
the discrete equilibrium function values given by Eq. (6).
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Once the density, velocities, and temperature are gained from
the distribution function values, the determination of the equi-
librium, however, is well parallelizable. Note, that the tensors
in Eq. (6) are symmetric, so that many entries need to be
computed only once per time step and support point, e.g.,
Cxxxy.eq 15 €qual 10 dyeyeq and all other index permutations.
In addition, the entries of the Hermite tensors H; are constant
for a given velocity set and only need to be determined once
for the whole simulation.

Another decisive factor of the simulation performance
is the streaming step, which requires a “triquartic” inter-
polation, i.e., interpolation polynomials of order p =4 in
three dimensions. The reference cell is shown in Fig. 1.
Generally speaking, interpolations are costlier than the node-
to-node streaming step of the standard LBM. To interpolate
one distribution function value at a given departure point,
all (p+ 1)P = 125 support points of the cell are processed
with the shape function values of the interpolation that
are stored in the Q matrices W¥;. These matrices are the
cornerstone for the whole simulation. When accounting to
equally shaped cells, like in all simulations in the present
work, the size of the matrices can be significantly re-
duced, since the matrices are identical over nearly all cells
(boundary cells excepted). However, for irregular or dis-
torted three-dimensional meshes, the size of the matrices
grows quickly, rendering the streaming step memory-bound.
Therefore, matrix-free implementations [109] appear to be an
attractive extension for SLLBM implementations. In matrix-
free versions the shape function values will be computed
afresh in each time step, which is potentially faster for today’s
high-performance computing clusters. In addition, the mass
losses, still bothering interpolation LBM schemes, might be
solved by applying conservative SL formulations [110].

At first glance, the second distribution function appears
to be a severe limitation of the method due to the additional
memory accesses needed and due to the computational effort.
On closer inspection, however, it turns out that the overhead
is kept in reasonable limits since the computation-intensive
equilibrium distribution gi* linearly depends on f; and the
shape function values can be used for both f; and g;. Still,
all aforementioned issues pay off in light of the large time-
step sizes of semi-Lagrangian implementations. A major way
to further reduce the computational cost is the reduction of
discrete velocities in the Gaussian quadrature. The research
for even compacter cubature rules is still ongoing [47], so
that future degree-nine velocity sets will possibly be even
more efficient.

Upcoming work will also incorporate boundary conditions
into the SLLBM for compressible flows. Although boundary
conditions usually pose problems to LBM solvers equipped
with high-order velocity sets, the present algorithm relaxes
this constraint: at the beginning of each simulation, the
SLLBM departure points of the distribution function values,
i.e., the values that have to be interpolated, need to be tracked.
To this end, the SLLBM algorithm follows the trajectories
of the particle velocities through all adjacent cells until the
distance §;6, is covered. The advantage of this procedure is
that intermediate boundaries will be detected en route. In the
case of simple halfway bounce back boundaries, the particle
trajectory is reversed and the remaining distance is covered

1.5

=== p(Ma,)
1.0 fm===mmmmm e

—0.5 4

—1.0 1

_15 T T T
Ma,

FIG. 15. All 45 equilibrium distribution functions f; of the
D3Q45 velocity set over Mach numbers ranging from 0 to 4 in
x direction. Density p and relative temperature 6 were constantly set
to unity; Mach numbers in both other directions were set to zero.

towards the opposite direction. Di Ilio et al. presented a good
description of this procedure in Fig. 2 of Ref. [111]. Equilib-
rium boundaries work quite similarly: when the equilibrium
boundary is hit, the distribution function will be set to equilib-
rium during the simulation.

One last remark regarding the equilibrium distribution
function determined via Eq. (6). In the past the Hermite
expansion-based equilibrium was deemed causing instabilities
due to negative distribution function values at high Mach
numbers [105]. Figure 15 depicts the equilibrium function
values f over the Mach number Ma, in x direction. The
figure manifests that most of the discrete velocities signifi-
cantly diverge for Mach numbers larger than Ma > 2.0 toward
either oo or —oo. However, our simulations showed that simu-
lations even up to Ma = 3.0 remained stable. This observation
indicates that negative distribution function values are not per
se a source of instabilities, since the values’ sole role is to
encode the moments of different orders. For the first moments
this encoding can also be seen in Fig. 15: despite the increas-
ing first-order moment of the momentum, the “zeroth-order”
moment of the density remains p = 1.0. To ensure this, nega-
tive values are a consequence at high Mach numbers due to the
discretization of the velocity space via Gaussian quadratures.

V. CONCLUSION

The SLLBM for three-dimensional compressible flows is a
viable alternative to other solvers. The SLLBM allows very
large time-step sizes not restricted by the customary CFL
condition §; < CFLyax8x/|&|max, Which would otherwise limit
the maximum time-step size depending on the fastest par-
ticle velocity |&|m.x. Instead, it is the interplay of collision
and streaming which possibly causes instabilities depending
on the flow. Although the presented SLLBM is a fourth-
order spatial method and accurately captures shocks as well
as turbulence, no stabilization or filtering in addition to the

025301-10



HIGH-ORDER SEMI-LAGRANGIAN KINETIC SCHEME FOR ...

PHYSICAL REVIEW E 104, 025301 (2021)

interpolation were required for the presented test cases. Due
to these unique features, the cubature-based fully explicit
SLLBM enables researchers to perform compressible turbu-
lence simulations, in which the admissible time-step sizes
are largely decoupled from the spatial discretization, open-
ing a new field of affordable simulations for compressible
turbulent flows.
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APPENDIX A: EQUILIBRIUM MOMENTS

The equilibrium moments up to fourth-order read

ag = p: (Ala)
at(xl.)eq = Pl (Alb)
a((xzﬂ),eq = HZ(}S = p[uauﬁ + TO(G - 1)80[13]7 (A]C)
3) _ eq
Qapy.eq = Qaﬁy
= p[uauﬂuy + T()(Q - 1)(8aﬁuy
+ Sayutp + dpytta)], (Ald)
“4) _ peq
aaﬂyﬁ,eq - Raﬂya

= plutgttptty ity + To(® — 1)((Supdys
+ 8ay 885 + Sasbpy )T0(6 — 1)
+ Saplty s + Sy Upgls + SasUplty
+ 8y o lts + Spsitqtty + Sysuqug)l, (Ale)

where 6 = T /Tj is the relative temperature.

APPENDIX B: HERMITE TENSORS

The scaled Hermite tensors depending on the lattice speed
of sound ¢, and with &§; = &;/c, up to fourth order read

WO =1, H, V= Sia Hiap® = §iabip — Sap
) ¢, C% )
. 3) _ éiaéiﬂéi}/ - (éia(sﬂy + éiﬁ‘say + éiy&xﬂ)
iafy - (,‘3 )
Mo s = EinkipbivEis — Ti + (8upbys + Suy8ps + 850p,)
iaBy C? 9
with

Ti = Eikipdys + Einkiy 8ps + Einkiss,
+ Eipkiy 8us + Eipkisday + EiyEisdup-
APPENDIX C: CHAPMAN-ENSKOG ANALYSIS

This Appendix shows the approximation of the compress-
ible Navier-Stokes equations, when applying a Chapman-

Enskog analysis to the SLLBM model. To that end, a
second-order multiscale expansion is applied to the temporal
derivatives

oy = €04, (C1)

3 = e8!V 4+ 28, (C2)

where € is a smallness parameter usually identified as
the Knudsen number [83] and the discrete distribution
functions 4;,

hi =h? + eh" + 2. (C3)

These expansion terms are applied to a second-order Taylor
expansion of Eq. (5),

2
1
(eD,- - %DiDi)h,» = ——(hi = %), (C4)
T

with the material derivative [112]
eD; = €DV + e’ DP = €d{") + € £ 0y + €707, (C5)

Next, Eq. (C3) is applied to Eq. (C4) and the terms of same
order are collected. The zeroth-order terms of order €° are

1
0=——(h® — ), (C6)
T

with the trivial relation

B = k9. (C7)

l

When applying the moment relations of Eq. (7) to the
last Equation, we need to differ between the moments of
fiand g;, i.e.,

DA sy =D UL E) (C8)
and

STUPEP+0) =D (e + &Y. (©9)

i i

showing mass, momentum, and energy conservation during
the collision step, which also implies that

DAL &} =0, (C10)
Z (J;,-(l'z"")|§i|2 + ggl,z....)) —0 C11)
As a second step, the order ¢! terms are collected,
DR® = _lh§1>. (C12)
T

This time, the relations of Eq. (7) yield for the
zeroth moment

D" = 8" p + 8. (pus) = 0,

for the first moments with the help of Eq. (Alc) and
P = p(T —Tp),

0" (pug) + 8pT1Y) = 0,

(C13)

OV (puy) + 85 (pugttp) + 35 (P)Sap = 0, (Cl4)
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and for the total energy

OV (PE) + 0y (g pE) = —Pdyity, (C15)

or

P
0T = —uQd,T — —dutg

C16
°C, (C16)

for the temperature.

These are the Euler equations; to derive the Navier-Stokes
equations, the terms of order € also need to be gathered.
This leads to

DPh® + D"n" + %DEI)Dfl)hEO) — -1 )
T

Equation (C12) simplifies the last Equation’s derivatives,

1 1
DO (1 _ E>Dl§l)hl§1) = _;hfz)_ (C13)

Due to vanishing terms, the zeroth moment of Eq. (C18) is

I (C19)

Then, the slightly more complicated part begins with the first
moments of Eq. (C18),

o =0.

1
) _ (1)
0,7 (puy) = —(1 — E)aﬁnaﬁ. (C20)
To express the nonequilibrium moment I'Ifxl) by equilibrium
moments, we derive the second-order moment of Eq. (C12),

which is

1
o Ty + 0, Qs = — Ty (€21
and then complements Eq. (C20)
1
0 (pua) = <r - 5)3,3(3,(‘)1'[;05 +9,09). (€22

The equilibrium moments can be explicitly specified by
Egs. (Alc) and (Ald). By applying the product rule and by

J

1) OsUs
9" = —T7P| (1 +Cv)8ﬁT + 8,3 uy[aﬁuy + Byuﬁ] - MyC—(Sﬂy .

This term now complements Eq. (C26). Finally, by summing
up all contributions of orders €, €', and €2, the compressible
Navier-Stokes equations are derived

0 p + 0a(puq) =0, (C31)
0 (pug) + g (puqug) = 9p(0up), (C32)
% (pE) + d(pEug) = d5(kdsT) + dp(u,04,),  (C33)

with dynamic viscosity u = TP, thermal conductivity x =
tP(C, + 1) =1PC,, since the heat capacity at constant

using the Euler equations for mass Eq. (C13) and momentum
Eq. (C14) and temperature Eq. (C16) to replace the time
derivatives, one obtains

P
o{"'My) = —d, (pugupu,) — Oyt Sup
v

— 0y (Puy )3ap — ua0pP — ugd,P - (C23)
and
8,09 = 8, (puqugit,) + Pdgitq + Pdyug
+ 0, (Puuy )8ap + Ua0pP + ugdo P.  (C24)

This turns Eq. (C22) into

8, (,OMa) =\|\T7T— E Bﬁ P(aauﬂ + aﬂua) — Fayuy&xﬁ .

(C25)
As a last step, the total energy is determined
1
3P (E) = —(1— = )agqy), C26
t (:0 ) 2T ﬂQﬂ ( )
where
1
1 _ 21828, £D 27
ap =D l&l 6, (€27

i

is a contracted variant of Qfxlgy detailed in Eq. (A1d). Similar
to Eq. (C20), this vector can be expressed by equilibrium
counterparts

gy’ =—7(9q5 + 0,r(), (C28)
with
1
oy = D 5 & kit £ (C29)

i
Resembling gg, the tensor rg, is the contracted variant of

Rapys detailed in Eq. (Ale). Again, by a number of replace-
ments, one obtains [113]

(C30)

(

pressure is defined as C, = C, + 1. The stress tensor denotes
Oup = W(0uUp + Opite) — Pdup — gayuy&,,,g. (C34)
v

If the effect of the interpolation was taken into account dur-
ing the analysis, Egs. (C31)—(C33) would contain a source
term, whose derivation has been left out here for brevity.
Since the dynamic viscosity depends on the local pressure P,
the relaxation parameter has to be pressure-dependent, i.e.,
T = u/(P§;) + 0.5. From Eq. (C34) the bulk viscosity, with
respect to the notation in Eq. (C32), can be identified as
mp = p1/Cy.

Note that the presented derivation links the thermal con-
ductivity to the dynamic viscosity. In our approach, we used
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the quasiequilibrium approach to adjust the Prandtl num-
ber Pr = (uC,)/k. For the corresponding extension of the
Chapman-Enskog analysis, we refer to Ref. [56].

APPENDIX D: QUASIEQUILIBRIUM APPROACH FOR
VARIABLE PRANDTL NUMBER

To obtain a variable Prandtl number Pr, the following
equation replaces Eq. (5):

hi(X + 61‘8[’7 r+ 8t) = hi(xv t) - %[hi(-xv t) - h?q(xgiv t)]

Tpr

+ (% - L)h;‘(x, 1), (D1)

with 7p, = (t — 0.5)/Pr + 0.5. The quasinonequilibrium 7}
is thereby obtained by first computing the centered heat flux
tensor

Qupy = Y _ filkia — tta)Eip — up)(Eiy — uy). (D2)
i=1
Then, the nonequilibrium part Q}%) = Qup, — Oy, is ap-

plied to the Hermite tensor HD)

iafy’
B= w0 1) (D3)
i T iXafy iaBy’

via full contraction of indices.
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