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Carbon ionization from a quantum average-atom model up to gigabar pressures
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We use a nonrelativistic average-atom model to calculate carbon ionization at megabar and gigabar pressures.
The pressure is calculated using the stress-tensor method. The electronic electrical conductivity is also considered
using the Kubo-Greenwood approach. Comparisons are made with quantum molecular dynamic simulations.
A good agreement is obtained for the pressure between the average-atom model and the quantum molecular
dynamic simulations in the regime of gigabar pressures. However, the discrepancy already seen with the
PURGATORIO code for the average ionization deduced from the quantum molecular dynamic simulations is
also observed here with the present average-atom model. Excellent agreement with the PURGATORIO code is
found for the average ionization.
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I. INTRODUCTION

The calculation of average ionization in dense plasmas is a
long-standing problem [1]. This quantity can play a key role
in the calculation of the equation of state, electrical conduc-
tivity, or absorption coefficients in warm and hot dense matter.
There is no accepted definition of the average ionization. One
reasonable solution is to use the electronic density at the
boundary of the Wigner-Seitz cell [2]. In this way we obtain
a quantity that is a smooth function with pressure ionization.
It has been shown that it gives good results for the electrical
resistivity calculated with the Ziman-Evans formula [3–6]
when compared with experiment [7].

Recently, it has been proposed to extract the average ion-
ization using quantum molecular dynamic (QMD) simulations
[8]. The idea is to calculate the electronic electrical conductiv-
ity σ (ω) using the Kubo-Greenwood approach [9–11] where
ω is the angular frequency, and to use a well-known sum
rule obeyed by σ (ω) to derive an effective average ionization.
Calculations have been done in carbon plasmas at gigabar
pressures. Comparisons [8] with the PURGATORIO average-
atom model [12,13] have shown that the QMD results are
systematically about 0.5 higher than the average ionization
predicted by the PURGATORIO code.

In this article, we propose to use a nonrelativistic quan-
tum average-atom model (QAAM) to calculate the average
ionization and the pressure to confirm or infirm the com-
parisons performed between the QMD simulations and the
PURGATORIO code [8]. We consider carbon plasmas in local
thermodynamic equilibrium (LTE) at megabar and gigabar
pressures. The electronic electrical conductivity is also cal-
culated using the Kubo-Greenwood method applied to the
average-atom model [14–16]. The present work is organized
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as follows. We first present the 1D spherically symmetric
QAAM model. The bound and free formulas for the electronic
pressure are given [17] as well as the free-free electronic elec-
trical conductivity expression based on the Kubo-Greenwood
method. Second, we describe how the QMD simulations were
done and how the pressure is calculated in this approach.
The same methods are used in QAAM and the QMD sim-
ulations to compute the electronic and ionic parts of the
pressure. The only difference is the treatment of the 3D ef-
fects in the QMD simulations. Numerical results are then
presented. Comparisons between the QAAM results and the
QMD and PURGATORIO code for the average ionization are
performed. Comparisons are made for pressure and electrical
conductivity between QAAM and QMD simulations. Finally,
we present our conclusion in the last section.

II. THEORY

A. The quantum average-atom model QAAM

The nonrelativistic quantum average-atom model in
the muffin-tin approximation to describe the electronic struc-
ture in dense plasmas is well known [12–14,18,19]. We
assume that the electrons are in LTE at Te and the ions at
Ti. The electronic structure does not depend on Ti; only the
equation of state depends on Ti. In this work, we suppose
that Te = Ti = T . We use the finite-temperature density-
functional-theory (DFT) in the local density approximation
(LDA) [20–22] to derive the average-atom equations. They
read[

− h̄2

2me
∇2 − Z2e2

r
+ e2

∫
dr′ n(r′)

| r − r′ | + Vxc(r)

]
ψa(r)

= εaψa(r), (1)

where h̄ is the reduced Planck constant, e the elementary
charge, me the electron rest mass, and Z the nuclear charge. εa

2470-0045/2021/104(2)/025209(7) 025209-1 ©2021 American Physical Society

https://orcid.org/0000-0002-2395-040X
https://orcid.org/0000-0002-1838-2129
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.025209&domain=pdf&date_stamp=2021-08-25
https://doi.org/10.1103/PhysRevE.104.025209


FAUSSURIER, BLANCARD, AND BETHKENHAGEN PHYSICAL REVIEW E 104, 025209 (2021)

is the one-electron energy. a = (n, �) for bound states and a =
(ε, �) for continuum states. In this case, the one-electron en-
ergy is simply ε = h̄2k2/2me. Vxc(r) is the finite-temperature
exchange-correlation potential [23]. We are using a fit of
a finite-temperature exchange-correlation functional in the
LDA framework. This fit has been obtained from the equa-
tion of state of the finite-temperature electron liquid derived
using the Singwi-Tosi-Land-Sjölander approximation. More-
over, it is difficult to know how the present finite-temperature
exchange-correlation potential compared with, for instance,
the finite-temperature exchange potential of Gupta and
Rajagopal [24]. The wave function ψa(r) is equal to

ψa(r) = 1

r
Pa(r)Y ma

�a
(θ, φ)χσa , (2)

where Y m
� (θ, φ) is a spherical harmonic and χσ is a two-

component electron spinor. The bound and free radial wave
functions are normalized such that∫ +∞

0
drPn�(r)Pn′�(r) = δnn′ (3)

and ∫ +∞

0
drPε�(r)Pε′�(r) = δ(ε − ε′). (4)

The total electron density of the average atom is n(r) =
nb(r) + n f (r) where

4πr2nb(r) =
∑

n�

2(2� + 1)

1 + e(εn�−μ)/kBT
Pn�(r)2 (5)

and

4πr2n f (r) =
∑

�

∫ +∞

0
dε

2(2� + 1)

1 + e(ε−μ)/kBT
Pε�(r)2. (6)

kB is the Boltzmann constant. The chemical potential μ is
determined such that∫ RW S

0
4πr2n(r) dr = Z. (7)

RW S is the Wigner-Seitz radius with 4πR3
W SNi/3 = 1 where

Ni is the ion density. The Wigner-Seitz cell is neutral. For r >

RW S , Vei(r) = 0 where

Vei(r) = −Z2e2

r
+ e2

∫
dr′ n(r′)

| r − r′ | + Vxc(r). (8)

The Kohn-Sham potential Vei(r) is short-range. These equa-
tions are solved self-consistently using the RADIAL package
[25]. The maximum orbital quantum-number �> for the con-
tinuum states is set equal to 15. We are using the trick
proposed by Blenski and Ishikawa [18] to take into account
high values of the orbital quantum-number for the continuum
states using a well-known sum rule obeyed by the Bessel func-
tions. We have checked that the summation converged rapidly
with �> so that �> = 15 is a very good choice in the calcula-
tions presented in this work. We do not describe the density of
states between −0.005 Ry and 0.0001 Ry. An initial guess of
Vei(r) is done using a Thomas-Fermi-Dirac-Amaldi potential
[26] to start the self-consistent process. The bound and free
radial wave functions are then calculated within this initial
potential and the self-consistent process is launched. In this
work, we have used a two-step relaxation process on Vei(r).
We can do better by relaxing directly the total radial density
n(r) before calculating Vei(r), which is far more efficient. In
practice, for the first three steps, we relax Vei(r) and then n(r).
Note that the calculations using the RADIAL package may
take some time. By this, we mean that in this work it can
take 15 to 20 min for the process to achieve convergence for
one point in temperature and mass density on a usual work-
station. We can achieve convergence in a few minutes using
the routine FREEWA from the University College London
distorted-wave code [26] to compute the free wave functions.
However, this routine is sometimes less accurate to obtain the
phase shifts than the routine SFREE of the RADIAL pack-
age. Note that there is a deep problem concerning the charge
conservation in the average-atom model using the muffin-thin
approximation that cannot simply be solved using simple
ionic reference-systems such as hard-sphere, one-component
plasma, or soft-sphere systems [27]. In order to calculate the
electronic pressure, we use the stress-tensor approach [17].
The neutrality is ensured only inside the Wigner-Seitz cell.
For the free part, we have

Pcontin = h̄2

24πme

∫ +∞

0
dε f (ε)

∑
�

2(2� + 1)

{[
d

dr

(
Pε�(r)

r

)]2

+ k2

(
Pε�(r)

r

)2

+ �(� + 1)

r2

(
Pε�(r)

r

)2}
RW S

. (9)

This expression is consistent with the one derived by Johnson Pressure in the Average-Atom Model [28]. Pnr
contin is clearly positive.

f (x) is the Fermi-Dirac distribution function, i.e., f (x) = 1/[1 + e(x−μ)/kBT ]. For bound electrons, we find that

Pbound = h̄2

24πme

∑
n�

2(2� + 1) f (εn�)

{[
d

dr

(
Pn�(r)

r

)]2

+ 2me

h̄2 εn�

(
Pn�(r)

r

)2

+ �(� + 1)

r2

(
Pn�(r)

r

)2}
RW S

. (10)

Because εn� takes negative values, Pnr
bound has no definite sign. For the ions, we use the ideal gas pressure.

To obtain the electronic electrical conductivity, we use the Kubo-Greenwood approach developed for the average-atom model
[14–16]. Only the free-free component is considered. We have

σ (ω) = 2πe2

3�ω3m2
e

∫ +∞

0
dε[ f (ε) − f (ε + h̄ω)]

∑
�′=�±1

�>

[∫ RW S

0
drPε�(r)

dVei(r)

dr
Pε+h̄ω�′ (r)

]2

. (11)

In this expression, � = 4πR3
W S/3 and �> is the maximum of � and �′
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FIG. 1. Average ionization Z̄ as a function of mass density in a
carbon plasma at T = 100 eV. The QAAM values are compared to
the QMD and PURGATORIO results. We have included the calcula-
tions of Potekhin al. [36] (PMC05) done at T = 1 000 000 K.

. We use the acceleration form to compute the matrix ele-
ment [29]. This expression diverges as 1/ω2 at small angular
frequency ω. To avoid this problem, we multiply σ (ω) by
ω2/(γ 2 + ω2). The free parameter γ is determined such that
the sum rule [11]

∫ +∞

0
dωσ (ω) = πe2

2me
Z̄Ni (12)

is respected [14]. By definition [2], the average ionization
Z̄ = � n(RW S ). A relativistic version of the QAAM code ex-
ists [27]. We do not use it because the relativistic effects are
small in the present cases studied in this work. Note that we
have a relativistic equation of state based on the QAAM code
but not the relativistic extension of the free-free component of
the electronic electrical conductivity.
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FIG. 2. α = Z̄/Z as a function of pressure in a carbon plasma at
T = 100 eV. The QAAM values are compared to the QMD results.
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FIG. 3. Population of subshell 1s as a function of mass density
in a carbon plasma at T = 100 eV obtained with QAAM.

B. Quantum molecular dynamics simulations

To compare data obtained with QAAM to results from
QMD simulations, which treat the electrons within DFT,
while describing the ions with classical molecular dynamics.
In particular, we calculate the pressure from recently pub-
lished carbon QMD data [8], which were computed using the
Vienna Ab initio Simulation Package (VASP) [30–32]. The
data set considered mass densities between 20 and 400 g/cm3

at a temperature of T = 100 eV, which is extended for four
additional mass densities (50 g/cm3, 80 g/cm3, 100 g/cm3,
and 150 g/cm3) at T = 150 eV in this work. For the addi-
tional data points, we used the same simulation parameters as
described by Bethkenhagen et al. [8], i.e., 32 carbon atoms
thermostated with the Nosé-Hoover approach [33]. The elec-
trons were described with the Perdew, Burke, and Ernzerhof
[34] exchange-correlation functional and a Coulomb poten-
tial with a 15 keV energy cutoff was used. Each calculation
at T = 150 eV was run for at least 20 000 time steps after
equilibration with a time step size of 30 as and the k-point
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FIG. 4. Pressure as a function of mass density in a carbon plasma
at T = 100 eV obtained with QAAM and QMD simulations.
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TABLE I. Pressure P in Gbar, Z̄ , α = Z̄/Z , ε1s, and μ as a function of the mass density ρ in g/cm3 obtained with the QMD simulations
and QAAM at T = 100 eV. ε1s and μ are in Rydberg and are given only for QAAM (see text). (x) means 10x .

ρ P Z̄ α ε1s μ

QMD QAAM QMD QAAM QMD QAAM QAAM QAAM

20 0.824 0.834 4.605 3.790 0.768 0.632 −15.3043 −1.8959
30 1.305 1.323 4.622 3.862 0.770 0.644 −13.5995 2.0286
50 2.427 2.463 4.719 4.017 0.787 0.670 −11.2755 7.7790
80 4.501 4.577 4.867 4.208 0.811 0.701 −8.9363 1.4281(1)
100 6.140 6.250 4.954 4.307 0.826 0.718 −7.7624 1.7942(1)
150 11.12 11.33 5.144 4.488 0.857 0.748 −5.5647 2.5880(1)
200 17.29 17.66 5.297 4.611 0.883 0.769 −4.0113 3.2801(1)
300 33.04 33.89 5.497 4.771 0.916 0.795 −1.9915 4.4966(1)
400 53.02 54.63 5.623 4.874 0.937 0.812 −0.8408 5.5779(1)

sample was performed with the Baldereschi mean-value point
[35]. The pressure for each simulation was finally calculated
as average over the entire trajectory containing an ideal gas
contribution and an interaction term, which is calculated as
trace of the stress-tensor obtained from the DFT part. In the
latter, we applied an energy cutoff for the Coulomb potential
of 100 keV instead of 15 keV to ensure the highest level
of accuracy possible. To be more specific, the QAAM and
the electronic part of QMD are indeed based on the same
Kohn-Sham idea. However, QMD does not use spherical har-
monics to construct the orbitals. It uses instead plane waves,
which should be well suited for high-density systems. Note
also that the carbon QMD simulations presented here are
spin-degenerate, i.e., we do not treat spin explicitly at high
temperature. This is the same thing for QAAM but at any
temperature. QMD does not differentiate between bound and
free electrons by construction. We only do that as soon as we
start to calculate the ionization via the conductivity, where we
have to make a choice what electrons to consider as free. In
the actual QMD runs, we never differentiate between bound
and free and also have all the bound-free transitions included
explicitly within the adiabatic approximation. In QAAM, we
consider explicitly bound and free electrons, but they are
treated self-consistently in a quantum mechanical approach.
The electronic pressure is made of two parts, a bound contri-
bution and a free contribution. In QMD simulations, no such
thing is done.

III. NUMERICAL APPLICATIONS

As a first application, we compare the average ionization
Z̄ found with the QAAM model to the ones obtained with the
QMD simulations and the PURGATORIO code for a carbon

plasma at T = 100 eV [8]. Z̄ is plotted as a function of mass
density in Fig. 1. We can see the excellent agreement between
QAAM and PURGATORIO. QAAM is here nonrelativistic
and PURGATORIO is relativistic. The small disagreement
near the minimum may be due to this fact, but it is not certain
since relativistic effects here are rather small. We confirm that
QMD results are systematically about 0.5 higher than the aver-
age ionization predicted by the average-atom models. We have
also plotted the Potekhin et al. [36] (PMC05) calculations at
T = 106 K, so quite close to T = 100 eV. The curve is quite
irregular, but it is in better agreement at high mass density with
the QMD simulations than the predictions of the two average-
atom models. The approach of Potekhin et al. [36] is based
on the minimization of the free energy in the framework of
the chemical picture, so quite different from the average-atom
model. It is puzzling why there is such a discrepancy between
the two groups of approaches, i.e., the QMD simulations and
the PMC05 calculations and the QAAM and PURGATORIO
results. We have no explanation to furnish right now to explain
this fact. Maybe it is a many-body effect due to electronic
correlations that is causing the deviation of 0.5 between the
QMD simulations and the average-atom model results. In
Fig. 2 we plot the values of α = Z̄/Z as a function of pressure
in a carbon plasma at T = 100 eV obtained by the QMD
simulations and QAAM. Not surprisingly, we confirm the
discrepancy between the QMD and the QAAM results for the
average ionization. It is not clear why the QMD results are 0.5
higher than average ionization predicted by the average-atom
models. The subshell 1s is significantly open in the QMD sim-
ulations compared to the average-atom model. To check this,
we plot in Fig. 3 the population of subshell 1s as a function
of mass density in a carbon plasma at T = 100 eV. We can
see that near 100 g/cm3, P1s is close to 1.8, so we expect

TABLE II. Pressure P in Gbar as a function of the mass density ρ in g/cm3 obtained with the QMD simulations and QAAM at T = 150 eV.

ρ P

QMD QAAM

50 3.513 3.546
80 6.141 6.193
100 8.129 8.190
150 13.89 14.00
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FIG. 5. Electrical conductivity as a function of energy in a carbon
plasma at 50 g/cm3 and T = 100 eV obtained with QAAM and
QMD simulations using the Kubo-Greenwood approach.

an average ionization around 4.2 as is the case for QAAM
and PURGATORIO in Fig. 1. We can see how subshell 1s is
pressure ionized. The behavior of P1s is consistent with the
trend of Z̄ in Fig. 1. Occupation numbers of subshells 2s and
2p are small and do not contribute much to Z̄ . Subshell 2p
disappears between 2.5 and 3.2 g/cm3, whereas subshell 2s
does between 5 and 6.3 g/cm3. Subshell 1s disappears be-
tween 501 and 631 g/cm3. In Fig. 4 we compare the pressure
obtained from QAAM and the QMD simulations. We can see
the good agreement between the two approaches. Note that
we are using the same methods to calculate the electronic and
ionic components of the pressure, so the comparison between
the QMD simulations and QAAM really makes sense. QAAM
performs very well compared to QMD simulations. The only
difference concerns the electronic part. In the QAAM ap-
proach, we are using a 1D spherically symmetric description
of the electronic density, whereas in the QMD simulations,
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FIG. 6. Structure factor S(k) as a function of the wave number
k in a carbon plasma at 50 g/cm3 and T = 100 eV obtained using
an OCP model or extracted from the QMD simulations. k is in
atomic units (a.u.).

we consider a 3D description of the electronic density. In
the present work, 3D effects could be important since the
carbon plasma in our thermodynamic conditions may be not
so simple. What is tricky with the average ionization predicted
by the QMD simulations is that it is based on the electrical
conductivity, which is not strictly related to the pressure. So
we may have a higher effective average ionization coming
from the QMD simulations compared to the QAAM code
and at the same time have close predictions concerning the
QMD and QAAM pressures. It would be better to speak of
effective average ionization. It would be great to have the
pressure as predicted by the PURGATORIO code using either
the differentiation of the free energy or the virial theorem
[37] or using the stress-tensor method. Unfortunately, we
do not have it [8]. We can fit the pressure values obtained
with QAAM as a function of mass density with the formula
log10[P(Mbar)] = h{log10[ρ(g/cm3)]} where ρ is the mass
density and

h(x) = 1.63013 + 0.921541x + 0.0894653x2 − 0.100441x3

+ 0.071916x4 − 0.0119356x5. (13)

log10(x) is the logarithm with base 10 of x. In Table I we give
the values of pressure, average ionization, and α as a function
of mass density for the QMD simulations and QAAM. We
give also ε1s and μ for the QAAM code. We do not present
ε1s and μ for QMD simulations since a ε1s for an effective
single ionic particle is difficult to extract for a system of many
ionic particles in the simulation box and μ may not have a real
meaning that could be compared to corresponding QAAM
values. In Table II we give the pressure obtained with the
QMD simulations and QAAM for various mass densities at
T = 150 eV. The agreement between the two approaches is
very good. The QMD and QAAM pressures are more or less
the same because we are using the same method to calculate
the electronic pressure, i.e., the stress-tensor approach. To
our knowledge, this is the first comparison of QMD simula-
tions and the average-atom model using the same technique
to calculate the electronic pressure and the same treatment
for the ions. Note that the QMD method is not so ab initio
because the ions in VASP are described using the ideal gas
law. This may be questionable at low temperature. We also
give in Table III Z̄ derived from the Friedel Sum Rule (FSR)
[27] as well as the FSR corresponding to Table I. We can see
that Z̄ is decreasing function with increasing density. We can
see that the FSR is well satisfied since we obtain results close
to 6. The contribution of bound and free electronic densities
beyond the Wigner-Seitz radius is small, and the phase shifts
are well calculated as can be seen below for a specific exam-
ple. At 50 g/cm3 and T = 100 eV, Z̄ = 4.67 for the QMD
simulations whereas Z̄ = 4.02 with QAAM. At this thermo-
dynamic condition, we plot in Fig. 5 the dynamic electronic
electrical conductivity as a function of energy calculated with
the Kubo-Greenwood approach using QMD simulations and
QAAM. We can see some disagreement between the two
approaches if we keep in mind that the average ionization
predicted by the QMD simulations is higher than the one given
by QAAM and that this approach considers only the free-free
component. This explains why the QMD curve at low energy
is higher that the QAAM curve. In this regime, the QAAM
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TABLE III. Z̄ from the Friedel sum rule (FSR) and the FSR as a function of the mass density ρ in g/cm3 obtained with
QAAM at T = 100 eV.

ρ Z̄ FSR

20 4.289 6.012
30 4.228 6.014
50 4.158 6.018
80 4.104 6.023
100 4.084 6.025
150 4.057 6.030
200 4.046 6.032
300 4.037 6.034
400 4.034 6.033

conductivity is nearly Drude-like. With this approach, we
obtain σ (0) = 5.68 MS/m. The Ziman-Evans [3–5] formula
gives σ (0) = 5.65 MS/m. We have used a one-component
plasma structure factor derived from Z̄ in this approach. For
the structure factor, we have used the fit provided by Bretonnet
and Derouiche [38]. In these thermodynamic conditions, the
plasma coupling parameter is equal to 5.09. The ionic system
is thus moderately coupled. We plot in Fig. 6 the structure
factor calculated using the Bretonnet and Derouiche [38]
formula and its value extracted from the QMD simulations.
We can see that the agreement is quite good. In our calcu-
lations using the Ziman-Evans formula, we did not remove
the “crystalline component” from the OCP structure factor, as
proposed by Wetta and Pain [39], because we do not know
how to do this without using an approximate expression such
as the hypernetted-chain equations for charged spheres in the
liquid state. In the QMD simulations, the structure factor is
calculated down to 2 Å−1. We plot in Fig. 7 the phase shifts
as a function of the wave number k up to � = 15. The wave
number k is in atomic units (a.u.). We can see that only a
limited number of phase shifts really matter. We have shown
the s, p, and d phase shifts. All the phase shifts as a func-
tion of k are smooth. As for QMD simulations, we obtain a
σ (0) = 6.20 MS/m using a Drude fit for small energies. Note
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FIG. 7. Phase shifts as a function of the wave number k in a car-
bon plasma at 50 g/cm3 and T = 100 eV obtained with the QAAM
model. k is in atomic units (a.u.).

that we cannot use QAAM to estimate an average ionization
from the sum rule as was done in QMD simulations due
to the divergence of the electronic electrical conductivity at
low energy. By construction, the method proposed in Ref. [8]
gives the average-atom ionization Z̄ . We plot in Fig. 8 the
static electrical conductivity as a function of density in a
carbon plasma at T = 100 eV obtained with QAAM code
and QMD simulations using the Kubo-Greenwood approach
(KG) or the Ziman-Evans (ZE) method. We can see the QMD
results are always higher than the QAAM results as expected.
Moreover, in this example, QAAM results using either ZE
or KG approaches are quite close to each other, especially at
low density. We do not recover the results published recently
by Dharma-wardana using either the Thomas-Fermi Lee and
More method or the Neutral Pseudo-Atom (NPA) model using
the Ziman approach [40]. More specifically, our electrical
conductivity increases with density and does not show any
maximum as can be found in the paper by Dharma-wardana
[40] for the NPA Ziman case. The difference between QMD
KG and QAAM KG is due to the average ionization. It would
be great to have comparisons of electrical conductivity with
the PURGATORIO code. In this work, we go beyond the sem-
inal results of Ref. [8] since we can compare results between
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FIG. 8. Static electrical conductivity as a function of density
in a carbon plasma at T = 100 eV obtained with QAAM and
QMD simulations using the Kubo-Greenwood approach (KG) or the
Ziman-Evans (ZE) method.
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the QMD simulations and the QAAM code for two quantities,
the pressure and the electrical conductivity. Moreover, we
consider two types of calculation of the electrical conductivity
with the QAAM code, the Ziman-Evans approach and the
Kubo-Greenwood method. They are plainly consistent with
each other.

IV. CONCLUSION

We have compared calculations of average ionization, pres-
sure, and electronic electrical conductivity obtained with a
nonrelativistic average-atom model with QMD simulations
for a carbon plasma. We confirm the disagreement between
the QMD results for the average ionization with the average-
atom model. This is not easy to understand why it is such

so. This disagreement is also seen concerning the electronic
electrical conductivity, both of which are obtained with the
Kubo-Greenwood approach. Maybe the concept of splitting
bound and free components as done in QMD does not fully
account for e-e collisions or maybe there is a missing many-
body or 3D effects in the average-atom model. Our results
for the average ionization are in excellent agreement with
the PURGATORIO code. As for pressure, a better agreement
is obtained between our average-atom model and the QMD
simulations in the gigabar regime.
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