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Charged-particle chaotic dynamics in rotational discontinuities
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The interplanetary plasma is characterized by a high level of complexity over a broad range of spatial scales.
Spacecraft have detected a large variety of embedded structures that have been identified as discontinuities in
the magnetic field vector. They can be either generated within the solar corona and advected by the plasma
flow or locally generated as a result of the turbulent cascade of the solar wind turbulence. Since magnetic field
fluctuations and structures influence the energetic particle propagation, here we set up a numerical model to
study the interaction between charged particles and an ideal magnetohydrodynamics rotational discontinuity.
This interaction is strongly influenced by the model parameters, such as the rotation angle of the discontinuity,
the orientation of the mean-field direction with respect to the normal to the discontinuity direction, the initial
particle pitch angle, and the initial particle gyrophase. Numerical results clearly show that the motion of particles
crossing the discontinuity is extremely complex and highly sensitive to the initial conditions of the system, with
transitions to a chaotic behavior. We find that particles can be temporarily trapped in rotational discontinuity and
that the trapping times have a nearly power-law distribution. Also, the separatrix in the initial conditions phase
space between crossing and noncrossing trajectories has a fractal structure. Implications for energetic particle
propagation in space plasmas are discussed.

DOI: 10.1103/PhysRevE.104.025208

I. INTRODUCTION

A crucial and still open problem in astrophysics is the
transport of energetic particles in the heliosphere and in the
interstellar medium. In the heliosphere, even in the surround-
ings of the Earth, energetic particles with a wide spectrum of
energies, ranging from a few tens of keV up to � 1 GeV are
frequently observed [1]. These particles can be accelerated by
flares in the solar corona and by coronal mass ejections (solar
energetic particles), and by interplanetary shocks. Their trans-
port properties are strictly related to magnetic turbulence [2,3]
and to coherent structures [4], that are ubiquitously present in
astrophysical plasmas [5–7]. Pitch-angle diffusion, connected
with transport in the direction parallel to magnetic field, drift
motions due to magnetic field inhomogeneities, as well as
transverse diffusion due to random walk of magnetic lines are
all aspects of energetic particle transport that are controlled by
magnetic turbulence properties, such as fluctuation amplitude,
spectral index and anisotropy [2,3,8–10]. In addition, how
particles interact with structures, waves, and fluctuations has
fundamental implications for particle acceleration processes
at interplanetary shock waves, since fast pitch-angle diffusion,
as well as slow spatial diffusion, can speed up the acceleration
process [11–14].

A number of studies show that turbulence cannot be sim-
ply considered as a superposition of random fluctuations
at different spatial scales. In fact, a relevant aspect is the
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presence of coherent structures that dynamically form in
the turbulent cascade process toward small scales [15–18].
Examples are current sheets, tangential (TDs) or rotational
discontinuities (RDs), routinely observed in the solar wind
turbulence [19–22]. Such structures have also been detected
in the inner heliosphere by Parker Solar Probe [23]. RDs
will have a nontrivial influence (distinct from fluid effects)
on energetic particles whose gyroradius is comparable to the
thickness of the RD, which in the solar wind can be estimated
as of the order of 104 km (see details below). This may
correspond to energies in the range from 100 keV to 1 MeV.
However, the effect of RDs or TDs on particle transport
has scarcely been investigated in the literature. Since these
structures have the potential to cause fast, large pitch-angle
scattering, it is crucial to understand their effects on particle
motion. A recent work describing the interaction of ions with a
RD, based on the Hamiltonian formalism, has shown that fast
pitch-angle scattering is indeed possible, and that it is related
to the destruction of the longitudinal adiabatic invariant due to
separatrix crossing in phase space [24].

The magnetic field B has a rotation when crossing either
a RD or a TDs. In the framework of magnetohydrodynamics
(MHD), RDs are planar structures that have a nonvanishing,
constant magnetic field component Bn in the normal direction
[in a one-dimensional (1D) model, ∇ · B = 0 implies that Bn

is constant], while pressure and magnetic field intensity are
continuous across the discontinuity. Moreover, RDs propagate
at the Alfvén speed vA = Bn/(4πρ)1/2 (with ρ the mass den-
sity) along the mean magnetic field. TDs have vanishing Bn

and can have arbitrary jumps in plasma and magnetic pressure,
though the total pressure remains constant across the discon-
tinuity. TDs do not propagate in the plasma reference frame
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and can be interpreted as the boundary between two adiacent
magnetic flux tubes [25]. In the limit Bn → 0, a RD becomes
a TD where plasma and magnetic pressure are constant across
the discontinuity.

In single-spacecraft studies the variance matrix method has
been applied to discriminate between RDs and TDs [19,26–
31]. In most cases, either RDs or TDs have been found to be
prevalent in fast-speed or in slow-speed streams, respectively.
Other studies based on multispacecraft observations [32–35]
have found a dominance of cases with large θBn (the largest
angle between the upstream or downstream magnetic field
and the normal direction) and small �B/B, which can be
interpreted either as RDs propagating at a large angle with
respect to the ambient magnetic field, or as TDs with a small
jump in the magnetic intensity [34,35]. The presence of RDs
in fast-speed streams seems to be related with quasi-uniform-
intensity magnetic field fluctuations that characterize such
streams [36]; this relationship has independently been found
by Roberts [37] and by Valentini et al. [38] using different
methods.

The present paper deals with some aspect of the energetic
particle dynamics in the presence of such discontinuities. We
investigate by numerical simulations the dynamics of high-
energy charged particles when encountering a RD. The latter
is described by a constant |B| analytical model. Our purpose
is to single out the role of RDs in pitch-angle scattering, by
studying how the pitch angle is modified when a particle
crosses a RD, for different configurations of the RD.

The plan of the paper is the following: in Secs II and III the
magnetic field model and particle dynamics setup are respec-
tively described; in Sec. IV numerical results are presented;
finally, a discussion and conclusive considerations are given
in Sec. V.

II. THE MODEL

A charged particle moving in an electromagnetic field is
subject to the Lorentz force F = Fe + Fm = qE + qv × B/c,
where E and B are the electric and magnetic field, respec-
tively, q and v are the particle charge and velocity, and c is the
speed of light. The relative intensity of the electric to magnetic
force Fe/Fm can be estimated by the following argument: In-
dicating by δE and δB the amplitude of electric and magnetic
field fluctuations characterized by spatial and temporal scales
� and τ , respectively, the following relation is derived from the
Faraday’s law: δE ∼ (�/τ )(δB/c) ∼ (vφ/c)δB where vφ is
the propagation speed of fluctuations. Assuming that vφ ∼ vA

with vA the Alfvén velocity, we obtain

Fe

Fm
∼ δE

vδB/c
∼ vA

v
. (1)

To fix the ideas, we consider high-energy protons with a ki-
netic energy Ep = mpv

2/2 = 1 MeV, with mp the proton mass,
therefore moving with a velocity v1MeV � 1.38 × 109 cm/s.
This energy is roughly in the middle of the energy range
for energetic particles observed in the heliosphere, and cor-
responds to Larmor radii comparable to the magnetic field
line radius of curvature, see Fig. 3. Assuming for the Alfvén
speed the value vA ∼ (3–5) × 106 cm/s, typical of the solar
wind, from Eq. (1) we obtain Fe/Fm ∼ (2.2−3.6) × 10−3. We
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FIG. 1. Magnetic field components Bx , By, Bz and intensity |B|,
from the dataset of the Wind spacecraft, are plotted as functions of
time t . The reference frame is such that the z axis corresponds to the
minimum variance direction for the considered sample of data. RDs
are present around times t � 90 s, t � 190 s, t � 255 s, t � 400 s,
and t � 520 s (vertical dashed lines).

conclude that, when describing the dynamics of such particles,
we can neglect the contribution of the electric force. For the
same reason we neglect the time dependence in the magnetic
field B. Therefore, the motion equations can be written in the
following dimensionless form:

dv
dt

= v × B(r),
dr
dt

= v, (2)

where the position r is normalized to a length � that represents
the width of the RD; the magnetic field B is normalized
to a typical value B0, time t is normalized to 1/
0, with

0 = qB0/(mpc) the corresponding gyrofrequency, and the
velocity v is normalized to ṽ = �
0. To simplify the notation,
from now on we indicate dimensionless quantities with the
same symbols as the corresponding dimensional quantities.
To assess the values of � and B0 we consider a dataset of
magnetic field measurements obtained in a fast-speed stream
by the Wind spacecraft. A sample of such dataset is plot-
ted in Fig. 1, where rapid rotations of B, corresponding to
RDs, are visible. These structures are actually advected by
the solar wind flow with a speed much larger than both the
spacecraft speed (which is moving at less than 106 cm s−1)
and the typical propagation speed (i.e., vA). Thus, RDs can
be considered frozen into the bulk flow. The magnetic field
magnitude |B| has much smaller variations, corresponding to
continuous magnetic pressure across RDs. From the magnetic
field data, we estimate a typical time the spacecraft takes to
cross a RD as tRD ∼ 10 s; being the solar wind velocity in
this interval vSW ∼ 6 × 107 cm s−1 the corresponding RD
width is � = vSW tRD ∼ 6 × 108 cm. We estimate a typical
value for the magnetic field B0 � 4 × 10−5 G, corresponding
to 
0 = qB0/(mpc) � 0.38 s−1. This gives ṽ = �
0 � 2.3 ×
108 cm/s. Therefore, the normalized value for the velocity of
1 MeV protons is v = v1MeV/ṽ = 6.

We consider a form for the magnetic field dependence B(r)
that represents a simple model for a RD. Defining a Cartesian
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FIG. 2. Magnetic field components By (left) and Bz (right), corresponding to the expression (3), are plotted as functions of x, for α = 45◦

and β = 30◦ (purple lines), β = 45◦ (green lines), and β = 60◦ (orange lines)

reference frame {x, y, z}, we assume a planar structure where
B depends only on the x coordinate. The conditions ∇ · B = 0
implies that Bx ≡ Bn = const. More explicitly, we assume the
following expression:

B(x) = cos α ex + sin α {cos [ψ (x)]ey + sin [ψ (x)]ez},
with ψ (x) = β tanh(x), (3)

where α and β are constant angles and ex, ey, and ez are
the unit vectors along the Cartesian axes. The quantity ψ (x)
represents the angle between the transverse magnetic field
component BT = Byey + Bzez and the y axis. Increasing x
from negative to positive values, BT rotates by an angle 2β,
while the angle α between B and the normal component
Bn = cos α ex remains constant. The width of the RD is � = 1
and the magnetic field magnitude is uniform |B| = 1, in nor-
malized units. The magnetic field (3) depends only on two
parameters, namely, the angles α and β: Larger values of β

correspond to a wider rotation of B across the RD; in the limit
α → 90◦ the RD tends to a TD with no magnetic pressure
jump. Profiles of components By and Bz as functions of x are
shown in Fig. 2 for α = 45◦ and different values β.

III. PARTICLE DYNAMICS

Since we neglect the electric field in our model, the kinetic
energy is conserved. Therefore, an increase (decrease) of the
parallel velocity v|| = (v · B)/B during a particle crossing of
the RD corresponds to a decrease (increase) of the perpendic-
ular velocity v⊥ = |v − v||B/B| and of the Larmor radius ρ =
v⊥/B (in normalized units). To quantify this phenomenon, we
consider the time evolution of the pitch-angle cosine w(t ) =
v||(t )/v, related to the Larmor radius by ρ = v

√
1 − w2/B.

We consider particles that at the initial time t = 0 are located
upstream of the RD, moving toward the RD with a given
w0 = w(t = 0). After interacting with the RD, the particle has
a final pitch-angle cosine w1 that, in general, is different from
w0. In cases when the sign of w1 is opposite to that of w0 the
particle is reflected back by the RD. In general, the random

variation �w = w1 − w0 in a population of particles can give
rise to parallel diffusion.

One can expect a different behavior of particles according
to whether the Larmor radius ρ is smaller or larger than the
curvature radius Rc of magnetic lines [39]. Indeed, for ρ 	 Rc

the conservation of magnetic momentum μ = mpv
2
⊥/(2B) is

assumed. In our case where |B| is constant, this implies that
also w(t ) is (approximately) constant. Therefore, we expect
to find significant variations �w when ρ is of the order of
or larger than Rc. The curvature radius is defined by Rc =
|db̂/ds|−1, where b̂ = B/B and ds is the arc length increment
along the magnetic line. In our case dx = cos α ds; therefore,
Rc = (cos α|db̂/dx|)−1. Using the expressions (3), we find
Rc(x) = cosh2(x)/(β sin α cos α). The minimum curvature ra-
dius is at the center of the RD (x = 0):

Rc,min = Rc(x = 0) = 1

β sin α cos α
. (4)

In Fig. 3 the minimum curvature radius Rc,min is plotted
as a function of α, for various values of β. The minimum
minα{Rc,min} is found for α = 45◦ and this quantity decreases
for increasing β. For reference, on the same figure we super-
posed the value ρmax = v/B = 6. Fig. 3 indicates that larger
variations |�w| are to be expected for a broad range of values
around 45◦ and for large values of the rotation angle β.

The initial position for all particles is (x0, y0, z0) =
(−30, 0, 0). The value |x0| is sufficiently large to guarantee
that the initial position is located outside the RD. The values
of y0 and z0 are not relevant since B depends only on x. To
define the initial velocity we consider another reference frame
{x′, y′, z′}, where the z′ axes is parallel to B(x0). With respect
to such a reference frame, the initial velocity is defined as

v0 = v
[√

1 − w2
0 (cos φ0ex′ + sin φ0ey′ ) + w0ez′

]
, (5)

where v = 6 in normalized units (i.e., v1MeV � 1.38 × 109

cm/s), 0 < w0 � 1, corresponding to particles moving toward
the RD, and φ0 ∈ [0, 2π ] is the initial gyrophase. The unit
vector along the z′ axis is ez′ = B(x0)/B(x0); the unit vec-
tor along the y′ axis is chosen to be perpendicular both to
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FIG. 3. The minimum curvature radius Rc,min is plotted as a func-
tion of α for different values of β: β = 15◦ (purple line), β = 30◦

(green line), β = 45◦ (light blue line), β = 60◦ (orange line), and
β = 90◦ (yellow line). The dashed line indicates the value ρmax = 6.

the x axis and to ez′ : ey′ = (ex × ez′ )/|ex × ez′ |; finally, ex′ =
(ey′ × ez′ )/|ey′ × ez′ |. A sketch of the geometry is illustrated
in Fig. 4: the magnetic field B at the initial position x = x0, its
components Bx and BT , angles α and ψ (x0) = −β (green el-
ements), the {x′, y′, z′} axes (blue), the initial particle velocity
v0, the initial pitch angle θ0 and gyrophase φ0 (red elements).
Moving along x, the component Bx remains constant while the
transverse component BT rotates in the yz plane by varying ψ .

FIG. 4. A sketch of the geometry is illustrated: the magnetic field
B at the initial position x = x0, its components Bx and BT , angles
α and ψ (x0) = −β (green elements), the {x′, y′, z′} axes (blue), the
initial particle velocity v0, the initial pitch angle θ0, and gyrophase
φ0 (red elements). The y′ axis and the magnetic field transverse
component BT are both perpendicular to the x axis, as explicitly
indicated.

Using the above definitions, the initial velocity components
with respect to the {x, y, z} reference frame are given by

v0x = −By(x0)

B(x0)
v cos φ0

√
1 − w2

0 + Bx(x0)

B(x0)
vw0

v0y = Bx(x0)By(x0)

B(x0)Byz(x0)
v cos φ0

√
1 − w2

0

− Bz(x0)

Byz(x0)
v sin φ0

√
1 − w2

0 + By(x0)

B(x0)
vw0

v0z = Bx(x0)Bz(x0)

B(x0)Byz(x0)
v cos φ0

√
1 − w2

0

+ By(x0)

Byz(x0)
v sin φ0

√
1 − w2

0 + Bz(x0)

B(x0)
vw0 (6)

where Byz =
√

B2
y + B2

z . In expressions (6) we will vary the

parameters w0 and φ0 that define the direction of the initial
velocity.

The motion equations (2) are numerically integrated by
using the Boris method. It has been shown that this method
is symplectic and conserves the energy up to the round-off
error [40]. For each particle, time integration is carried out
until the particle has completely left the RD. Numerically, this
is well verified when |x(t )| > 3|x0|/2.

IV. RESULTS

To quantify how the pitch-angle cosine is modified in a
population of particles because of their interaction with a RD,
we define a regular 2D grid {w0;i, φ0; j} in the (w0, φ0) plane,
formed by Nw × Nφ points: w0;i = i δw, φ0; j = j δφ, with
i = 1, . . . , Nw, j = 0, . . . , Nφ − 1, and δw = 1/Nw, δφ =
2π/Nφ . Such grid points determine a set of initial condi-
tions for an equal number of particles. For all particles we
have solved the motion equations (2) until calculating the
final pitch-angle cosine w1;i, j and the corresponding varia-
tion �wi, j = w1;i, j − w0;i. The distribution of the pitch-angle
cosine variation f (�wi, j ) has been calculated, and this proce-
dure has been repeated for different values of the parameters
α and β. We notice that 0 < w0;i � 1, in order to have v|| > 0
at the initial time, while −1 � w1;i, j � 1. Therefore �wi, j

varies in the range −2 � �wi, j < 1. In Fig. 5 the distribution
f (�wi, j ) is plotted as a function of �wi, j for various values
of the rotation angle β and for α = 45◦. In this figure we
have set Nw = Nφ = 103. For β = 15◦ the distribution is
centered around �wi, j = 0 and has a relatively small width; in
particular, a sharp peak is present at �wi, j � 0. In this case,
particles crossing the RD have small but finite variations of
the pitch-angle cosine. The behavior of f (�wi, j ) in the small
interval 15◦ � β � 22◦ is plotted in the inset of Fig. 5: A
small increase in the rotation angle β results in the sharp peak
rapidly flattening and splitting into two distinct peaks. Further
increasing the rotation angle β, the width of the distribution
function increases indicating the presence of particles whose
final value w1 is very different from w0. In particular, for β =
90◦ the distribution extends over the whole range of �wi, j ,
and a population with �wi, j ∼ −2 is visible, corresponding to
the largest possible variation |�wi, j |. This behavior is consis-
tent with what expected from Fig. 3: Increasing β corresponds
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FIG. 5. The distribution f (�wi, j ) of the pitch-angle cosine vari-
ation is plotted as a function of �wi, j , for α = 45◦ and β = 15◦

(purple line), β = 30◦ (green line), β = 45◦ (light blue line), β =
60◦ (orange line), and β = 90◦ (yellow line); inset: α = 45◦ and
β = 15◦ (purple line), β = 20◦ (green line), β = 22◦ (black line).

to decreasing the curvature radius, leading to a progressive
violation of magnetic momentum conservation. Summarizing,
the scattering power of a RD on a population of particles
increases with increasing the rotation angle β of B across the
discontinuity. A certain amount of scattering is present even
at small values of β, while large β values give rise to strong
scattering in a single interaction with the RD.

In Fig. 6 2D maps of the final value w1 are plotted as
functions of the initial pitch-angle cosine w0 and gyrophase
φ0, in the cases α = 45◦, and β = 15◦, β = 45◦, β = 90◦.
Lighter (darker) grey corresponds to positive (negative) w1;
the purple line is the contour separating regions where w1 > 0
from regions where w1 < 0. For small values of the rotation
angle β (upper panel) the final pitch angle cosine remains
always positive—except for initial pitch angles very close to
90◦—indicating that almost no particles are reflected back by
the RD. When increasing β, larger and larger regions in the
{w0, φ0} plane appear where w1 is negative, corresponding to
reflected particles (middle and lower panels). We notice that
for initial pitch angles close to 90◦, the two regions where
w1 has opposite signs are strongly intermixed. This indicates
that small variations in the initial parameters w0, φ0 can result
in much larger variations of the final pitch-angle cosine w1.
For larger values of w0 (i.e., particles with a large parallel ve-
locity) the two regions are apparently more clearly separated.
However, negative values of w1 are found even for large values
of the initial pitch-angle cosine: w0 � 0.8 (corresponding to
θ0 � 37◦) at β = 45◦ and w0 � 1 at β = 90◦. Therefore, a
population of particles initially moving at small angles with B
is reflected back by the RD; this property is more evident for
large values of the rotation angle β.

Further details of the dependence of the final pitch-angle
cosine w1 on the initial condition can be observed in Fig. 7,
where “cuts” of w1 = w1(w0, φ0) are plotted for a fixed value
w0 = cos 80◦ � 0.17, as functions of φ0 (red line in the mid-
dle panel of Fig. 6), in the case α = 45◦, β = 45◦. In Fig. 7(a)
the whole range 0 � φ0 � 360◦ is represented. In most of this

FIG. 6. Two-dimensional maps of the final value w1 are plotted
as functions of the initial pitch-angle cosine w0 and gyrophase φ0,
for α = 45◦ and β = 15◦ (upper panel), β = 45◦ (middle panel),
β = 90◦ (lower panel). The purple line is the contour separating
regions where w1 > 0 from regions where w1 < 0. The vertical red
line in the middle panel indicates the location of the “cuts” plotted
in Fig. 7.

range it is w1 > 0, corresponding to forward-moving parti-
cles, and w1 has a smooth dependence of the initial angle φ0.
However, some subranges are present where w1, as a function
of φ0, shows very fast variations and can take negative values,
corresponding to back-reflected particles. A blow-up of one of
these subranges is represented in Fig. 7(b) [indicated by two
vertical green lines in Fig. 7(a)], where a structure similar as
in Fig. 7(a) is visible at a smaller scale; namely a succession
of subdomains where w1(φ0) has either a smooth or a rapidly
changing behavior. Further progressive enlargements of such
subdomains plotted in Figs. 7(c) and 7(d) display the same
behavior at increasingly smaller scale. Two properties can be
infererred from Fig. 7: (i) Around regions of the (w0, φ0)
plane where the final pitch-angle cosine w1 is negative, w1 is
extremely sensitive to the initial condition, since very small
variations of φ0 and w0 lead to very different final values
w1; this kind of behavior is typical of a chaotic dynamics.
(ii) The line in the (w0, φ0) plane separating regions where
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FIG. 7. The final pitch-angle cosine w1 is plotted as a function of the initial gyrophase φ0 for w0 = cos 80◦ � 0.17 in the case α = 45◦,
β = 45◦ (purple curves). Plot (a) refers to the whole range 0 � φ0 � 360◦; plots (b) to (d) refer to increasingly small subintervals. Vertical
green lines in plots (a) to (c) indicate the subinterval represented in the subsequent plot.

w1 < 0 from those where w1 > 0 appears to have self-similar
properties and then could be a fractal. These two properties
will be investigated in more details in the following.

In order to better show such a chaotic dynamics, in Fig. 8
the trajectories of two particles are plotted (upper panels) for
the configuration α = β = 45◦. These particles start with the

FIG. 8. Upper panels: The trajectories of two particles starting with two slightly different gyrophases φ0 = 14.46628◦ (left) and φ0 =
14.46631◦ (right) and with the same pitch angle θ0 = 80◦, in the configuration α = β = 45◦; the green asterisk indicates the initial position.
Lower panels: The pitch-angle cosine w(t ) is plotted as a function of time t for both particles.
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FIG. 9. The distribution f of particle crossing times tcross is plot-
ted in the cases α = 45◦ and β = 30◦ (black line), β = 60◦ (red line),
and β = 90◦ (blue line).

same pitch angle θ0 = 80◦ and with two almost equal gy-
rophases, the gyrophase difference being �φ0 = (3 × 10−5)◦.
Left and right plots correspond to a particle that is reflected
back (denoted by P1) and to a particle that goes beyond
the RD (denoted by P2), respectively. When such particles
approach the RD their pitch angle θ becomes close to 90◦ and
particles remain “trapped” inside the RD for many gyrope-
riods. However, further interaction of the particles with the
RD gradually modifies the dynamics and particles eventually
leave the RD propagating either forward or backward. It can
be noticed that a very small difference in the initial condition
implies a completely different behavior, which is the hallmark
of chaotic dynamics. Lower panels in Fig. 8 show how the
pitch-angle cosine w varies in time and illustrate in more
detail the trapping process. Trapping lasts for some hundreds
of time units, corresponding to ∼80 or ∼43 gyroperiods for
P1 or P2, respectively. At the beginning of the trapping stage,
the pitch-angle cosine w(t ) follows a sequence of oscillations
that damp approaching the value w = 0, with w(t ) > 0. Of
course, a consistently null w would correspond to an infinite
trapping time. However, trapping is not stable and during a
subsequent stage oscillations increase in amplitude, with w(t )
assuming also slightly negative values. Eventually, trapping
ends and w(t ) rapidly reaches the final value w1, either posi-
tive or negative.

The probability distributions of interaction times for an en-
semble of 4 × 107 particles uniformly injected in the (w0, φ0)
space are shown in Fig. 9 for three different values of β. It
can be seen that these distributions are very broad, extending
over more than three orders of magnitude: Very short times are
found, comparable to or shorter than the gyrotime, confirming
that RD can act as fast pitch-angle scatterers [24]. But also
very long crossing times, which can be interpreted as the
trapping times discussed above, are found with non-negligible
probability; long time trapping is one of the properties of
deterministic chaos and may have influence on the origin of
anomalous transport [41,42]. The distributions of crossing
times may roughly be described as power-law distributions
with a slope of about −3. Some local oscillations can be
seen around tcross ∼ 10: These are not statistical fluctuations,

since the statistical error is less than 10−3 times the reported
values, and therefore they reflect the complexity of the chaotic
dynamics. Also, a change of slope around tcross ∼ 100 can be
seen, which drifts to lower times for increasing β.

In order to further assess the chaotic properties of the parti-
cle dynamics in the (w0, φ0) space, we have characterized the
line �0 separating regions where w1 < 0 (reflected particles)
from those where w1 > 0 (forward particles) (purple line in
Fig. 6) by calculating its Hausdorff dimension D. For a regular
curve one has D = 1, for a surface it is D = 2, while a fractal
in the plane has an intermediate Hausdorff dimension 1 <

D < 2. The Hausdorff dimension of the curve �0 has been cal-
culating employing a box-counting method [43], as described
in the following: (i) we calculated the final pitch-angle co-
sine on the above-defined gridpoints: w1;i, j = w1(w0;i, φ0; j ),
thus obtaining Nw × Nφ values, with Nw = Nφ = N = 212 =
4096. (ii) We selected gridpoints belonging to the line �0 in
the following way: A given gridpoint (w0;i, φ0; j ) is assumed
to belong to �0 if the sign of w1;i, j is different from the sign
of w1;i±1, j or w1;i, j±1, i.e., of w1 calculated on at least one
of the four next-neighbor points. (iii) We defined a hierarchy
of (log2 N ) + 1 partitions of the (w, φ) plane. Each partition
is identified by the upper index (n), with n = 0, . . . , log2 N .
The (n)th partition is composed by a set of equal disjunct
rectangular subdomains (“boxes”) D(n)

k,l = {(w0;i, φ0; j )}, with
(k − 1)2n + 1 � i < k2n, (l − 1)2n + 1 � j < l2n, and 1 �
k, l � N/2n. The size of boxes of the (n)th partition is Rn =
2n. Each partition covers the entire (w0, φ0) plane; increasing
the partition index by one unit: n → n + 1 multiplies the size
Rn of boxes by a factor 2; in the lowest partition n = 0 all
boxes D(0)

k,l are single gridpoints, while the highest partition
n = log2 N contains a single box which coincides with the
whole (w0, φ0) plane. (iv) Finally, for each partition (n) we
count the number Nn of boxes that contain at least one point
of the curve �0. If �0 is a fractal, then Nn = cR−D

n , with c a
constant [43], or

log Nn = −D log Rn + log c. (7)

Therefore, the Hausdorff dimension D of �0 can be calculated
as the opposite of the angular coefficient of a linear depen-
dence expressed by the relation (7).

In Fig. 10 (left panel) the number Nn of non empty boxes
in the (n)th partition is plotted as a function of the box size
Rn, for α = 45◦ and β = 30◦ or β = 90◦. It is clear that the
function relating Nn with Rn approximately follows a power
law, whose index −D can be determined by a fitting proce-
dure. Power laws that fit data points are indicated by dashed
lines. In the right panel of Fig. 10 the resulting Hausdorff
dimension D is plotted as a function of the rotation angle β,
in the interval 30◦ � β � 90◦ and for α = 45◦. We see that
in all the considered interval it is D � 1.64, with D slightly
varying with β. So we can say that for β � 30◦ the RD is
consistently generating chaotic behavior and large pitch-angle
scatterings. Since the Hausdorff dimension D is intermediate
between 1 and 2, we conclude that the curve �0 separating
regions of the (w0, φ0) plane corresponding to w1 > 0 from
regions corresponding to w1 < 0 is a fractal. In contrast, �0

is a regular curve for smaller values β. We conclude that
particles with a chaotic behavior and a fractal phase space
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FIG. 10. Left: The number Nn of non empty boxes found in the (n)th partition (squares) and the fitting law (7) (dotted lines) are plotted as
a function of the box size Rn, for β = 30◦ and β = 90◦. Right: The Hausdorff dimension D of the line �0 resulting from the fitting procedure
as a function of the rotation angle β.

are present in configurations where the curvature radius of
magnetic lines is smaller than the Larmor radius (see Fig. 3).

V. DISCUSSIONS AND CONCLUSIONS

Motivated by the frequent observations of RDs and current
sheets in space plasmas, we have studied the dynamics of
charged particles interacting with an ideal MHD rotational
discontinuity by means of a test particle simulation. The RD
is described by an analytical model with constant magnetic
field intensity, and field line rotation described by the angle
β; also the direction of the magnetic field with respect to
the normal-to-the-discontinuity direction is described by the
angle α. By injecting particles with random initial velocity
direction directed toward the RD, we can study the particle
trajectories by means of a simplectic integrator.

We find that particles having the Larmor radius comparable
to or larger than RD field line radius of curvature exhibit
marked chaotic properties. In particular, the pitch-angle co-
sine w1 of particles having interacted with the RD is only
weakly related to the initial pitch-angle cosine w0, and this
relation vanishes for β → 90◦ (see Fig. 5). This behavior is
typical of chaotic dynamics and shows that RDs are very
effective pitch-angle scatterers, a fact that should be taken
into account in many astrophysical plasmas, in particular
when considering cosmic ray propagation. Close analysis of
the dependence of w1 on φ0 shows a high sensitivity and a
self-similar hierarchy of values of φ0 that can result in the
full range of values of w1 (see Fig. 7). In addition, ener-
getic particles can be trapped for long times within the RD,
and the crossing or trapping times have an approximately
power-law distribution. The study of the initial positions in
velocity space, quantified by (w0, φ0), which correspond to
either crossing (w1 > 0) or reflected (w1 < 0) particles shows
the emergence of a fractal structure, with a fractal dimension
close to 1.63. This confirms the complexity of the underly-
ing dynamics and the strong unpredictability of the results
of RD-particle interaction. Our study complements those of
Wilkinson [44], where the particle dynamics is studied ana-

lytically with the aim to understand the interaction with an
ideal magnetic field structure associated with a collisionless
shock wave, and of Artemyev et al. [24], where it is shown that
fast ion pitch-angle scattering is related to the destruction of
the longitudinal adiabatic invariant (the longitudinal direction
being that parallel to Bn). We note that while Wilkinson [44]
finds that the space of initial conditions of pitch angle and
gyrophase can be divided in relatively simple domains of
particles either returning to or escaping upstream of the dis-
continuity (see Fig. 2 in Wilkinson [44]) we find that the
domains corresponding to either crossing or noncrossing par-
ticles have indeed a fractal structure, see our Figures 6 and 10.

These results may have important implications for ener-
getic particle scattering in space and astrophysical plasmas.
Indeed, efficient pitch-angle scattering has a direct influence
on energetic particle transport parallel to the magnetic field,
given that the pitch angle determines the parallel velocity.
In the case of pitch-angle scattering due to the resonant
interaction with magnetic turbulence, the spatial diffusion
coefficient is inversely proportional to the pitch-angle dif-
fusion coefficient and a fast pitch-angle scattering leads to
short acceleration times in the mechanisms of diffusive shock
acceleration (DSA) [14,45]. We may argue that rotational
discontinuities can effectively contribute to efficient pitch-
angle scattering, and therefore contribute to decrease the
acceleration times at shocks (which is one crucial problem
for DSA [46]); however, a point that deserves further in-
vestigation is about the availability of a sufficient “supply”
of RDs in the regions around shocks where acceleration is
supposed to happen. In this connection, in situ observations
in the solar wind and in the near-Earth environment have
pointed out the presence of ubiquitous magnetic field discon-
tinuities [19–21,25,47,48]. Further, Refs. [16,22] have shown
that many discontinuities and current sheets are nested over a
broad range of spatial/timescales in space plasmas: This sug-
gests that fast pitch-angle scattering due to the associated RDs
could be found on many spatial scales, corresponding to the
Larmor radius of particles of different energies. These consid-
erations lead us to the conclusion that pitch-angle scattering
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due to RDs in astrophysical plasmas should be consistently
taken into account.

We point out that our test-particle approach, although
simplified, can be considered appropriate since the dynamic
pressure of energetic particles is usually smaller than that of
thermal particles. The present results have been obtained for
a fixed velocity v = 6, corresponding to a gyroradius of the
same order as the field line radius of curvature. For smaller ve-
locities (smaller gyroradii) we can expect an adiabatic particle
motion with negligible pitch-angle scattering, while for larger
velocities (larger gyroradii) it is possible that the dynamics of
the system will be chaotic for a broader range of values of
the model parameters. Indeed, low-speed particles “see” the
RD as a smooth rotation of the field lines, thus undergoing
small pitch-angle scattering; conversely, high-speed particles
interact with abruptly bending magnetic field lines, thus ex-
periencing a large pitch-angle scattering which sensitively
depends on the initial gyrophase. The study of the dependence
on v is deferred to a future work.

An additional issue which deserves further investigations is
related to the finding that particles may be trapped in the RD
for both short and long times, or, in other words, that a power-
law distribution of trapping times is found, see Fig. 9. In the
field of anomalous diffusion, the latter property is the basis
of subdiffusive behavior [41,42]. Again, a spatial subdiffusive
behavior of energetic particles can lead to a decrease in the
acceleration time of DSA [49], since particles trapped in, say,

an RD in the solar wind upstream of a shock wave can be
quickly convected into the shock and be accelerated. On the
other hand, it is tempting to interpret the trapping times as
long scattering times, since those are a basic ingredient in the
non-Markovian transport model of [45]; however, caution is
necessary on this point.

Finally, we note the our simple model does not take into
account those more complex spatial structures and temporal
fluctuations that are present in actual space and astrophysical
plasmas. Therefore, our results could be modified by perturba-
tions; for instance, these could smear out the fractal structure
in the (w0, φ0) plane and possibly reduce the duration of
particle trapping in the RD. However, many properties of
chaotic systems are resilient to small perturbations, as indi-
cated by the Kolmogorov-Arnold-Moser theorem, too. As an
example, interesting clues come from studies of ion motion
in the Earth’s magnetotail: there, a different magnetic field
configuration is found, usually modeled as a parabolic field re-
versal, which also is capable of generating chaotic motion [39]
and resonant particle acceleration at discrete locations—the
so-called beamlets [50]. In Ref. [51], it is shown by a numer-
ical study that such resonant acceleration at discrete locations
is also found when electromagnetic perturbations of small
amplitude are introduced in the system. This supports the view
that the results of simplified nonlinear models remain valid
even in the presence of perturbations if the latter are not too
strong.
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