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Theoretical results are given in the present paper, which can well explain the experimental observations
performed under microgravity conditions in the PK-3 Plus Laboratory on board the International Space Station
about the propagation of a solitary wave across an interface in a binary complex plasma. By using the traditional
reductive perturbation method and the continuity conditions of both the electric potential and the momentum at
the interface, we obtain the equivalent “initial conditions” for both the transmitted wave and the reflected waves
from the incident wave. Then we obtain the numbers of the reflected and the transmitted solitary waves as well as
all the wave amplitudes by using the inverse scattering method. The ripples of both reflection and transmission
have also been given by using the Fourier series. The number of the reflected and the transmitted solitary waves
produced by interface, as well as all the solitary wave amplitudes, depend on the system parameters such as the
number density, electric charge, mass of the dust particles, and the effective temperature in both regions. The
analytical results agree with observations in the experiments.
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I. INTRODUCTION

A complex plasma is a weakly ionized gas containing
micro-sized solid particles which are highly charged by col-
lecting ions and electrons and interact with each other via
screened Coulomb interaction. It attracts extensively research
interest because of its importance in understanding many
space and astrophysics phenomena as well as the laboratory
plasmas [1–4]. Complex plasmas show many low-frequency
phenomena [5–7] due to the large mass of dust grains and
almost have no impact on high-frequency oscillations [8–10].

Dust acoustic waves (DAW) were first reported theoret-
ically in unmagnetized dusty plasmas by Rao et al. [3].
Shukla and Silin showed the existence of dust ion acoustic
waves (DIAW) [9]. Laboratory experiments have confirmed
the existence of DAW and DIAW [4,11,12]. Furthermore, low-
frequency electrostatic ion acoustic and ion-cyclotron waves
[13], dust lattice waves [14–17], rogue waves [18,19], mag-
netosonic waves [20], and shock waves [21,22] in complex
plasmas have also been studied.

A binary complex plasma contains two types of micropar-
ticles of different sizes [23,24]. These two types of particles
can either be mixed [25–28] or form a phase-separated sys-
tem [29–32], caused by spinodal decomposition [31] or an
imbalance of external forces [32]. In the latter case, an in-
terface emerges between the separated phases. Recently, the
propagation of self-excited waves and solitary waves has been
discovered in the experiments performed in the PK-3 Plus
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laboratory on board the International Space Station (ISS)
[23,33]. The discovery of solitary waves goes back to Scott
Russell in 1834. It was only with the derivation by Korteweg
and de Vries in 1895 of what is now called the Korteweg de
Vries (KdV) equation that the one soliton solution and hence
the concept of solitary waves was put on a firm basis [34].

In addition, Langevin dynamics simulations have been per-
formed to study the reflection and transmission of the solitary
waves at the low damping regime, which was not realizable in
the experiments due to the two-steam instability at low neutral
gas pressure [35–38].

In this article, we conduct a theoretical investigation on
the propagation of a solitary wave in a phase-separated bi-
nary complex plasma. By assuming that the complex plasma
is a viscous fluid composed by microparticles, we give ap-
proximated analytical results of both the transmitted and the
reflected waves due to the incident wave, using the reductive
perturbation method. The analytical results are compared with
the simulations and experiments and a qualitative agreements
is found.

II. THEORETICAL MODEL

In order to understand the transmission and the reflec-
tion due to the incident wave at an interface, we consider a
three components complex plasmas consisting of extremely
massive, highly negatively charged inertial dust particles,
inertialess Boltzmann distributed free electrons as well as
inertialess Boltzmann distributed ions. Charge neutrality at
equilibrium requires that ni0 = Zd0nd0 + ne0, where nα0 is the
unperturbed number density of the species α, α = e, i, d cor-
respond to the electrons, ions, and dust particles, respectively,
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Zd0 is the number of charges of the electrons residing on the
dust particle.

We use the equation of state of strongly coupled complex
plasma proposed by Feng and his coworkers in a simple an-
alytic expression [21,39–42]. The complex plasma pressure
is the sum of a potential term and a kinetic term: P = αd +
βd Td , where αd = Q2

d

4πε0λ
3
D
{2.29 exp[−2.45(a/λD)2] + 0.34

(a/λD )5 }
and βd = kB

λ2
D
{0.14 exp[−0.37(a/λD)] + 1.30

(a/λD )2 } [39]. The first
term αd is attributed to the potential contribution of the par-
ticles, while the second term βd T comes from the kinetic
contribution. We assume that the equation of state proposed by
Feng is applicable for our model. Then we have the following
equations in the international unit:

∂nd

∂t
+ ∂ (nd ud )

∂x
= 0, (1)

∂ud

∂t
+ ud

∂ud

∂x
= −Qd

md

∂φ

∂x
− 1

nmd

∂P

∂x
− νd ud , (2)

∂2φ

∂x2
= e

ε0
(Zd0nd + ne − ni ), (3)

where nd , ud , md , P, and νd refer to the number density,
the velocity, the mass, the pressure and the damping rate of
the dust particles, respectively; Qd = −eZd , where Zd > 0
is the charge number of dust particles measured in unit of
electron charge −e and is assumed that it is a constant; ne =
ne0 exp( eφ

kBTe
) and ni = ni0 exp(− eφ

kBTi
) are the electron number

density with temperature Te and the ion number density with
temperature Ti; φ is the electrostatic potential; and kB is the
Boltzmann constant.

For three-dimensional case, a = n−1/3
d . The equation of

state is actually P = P(nd , Td ), i.e., P is a function of both
nd and Td . Then, we obtain a dispersion relation by assum-
ing that the quantities of nd , ud , and φ vary in the form
exp[i(kx − ωt )],

ω2

k2
= nd0δ + nd0Q2

d

ε0md
(

1
λ2

ie
− k2

) , (4)

where δ = − 1
2

κ

md n2
d0

∂Pd
∂κ

, κ = a
λD

, ∂Pd
∂κ

= − Q2
d

4πε0λ
3
D

[11.221

exp(−2.45κ2) + 1.7
κ6 ] − kBTd

λ2
D

[0.0518 exp(−0.37κ ) + 2.6
κ3 ], and

λie = [ ne0e2

ε0kBTe
+ ni0e2

ε0kBTi
]1/2. For a long-wavelength approxi-

mation, kλie � 1, we have the dust acoustic wave speed

C2
d = nd0δ + nd0Q2

dλ
2
ie

ε0md
, (5)

or

C2
d = nd0δ + kBZd0Teff

md
, (6)

where Teff = TeTi
μTe+νTi

(effective temperature), ν = ne0
Zd0nd0

, μ =
ni0

Zd0nd0
.

We now normalize all the physical quantities. The densities
of electrons and ions are normalized by Zd0nd0, and the dust
particle density is normalized by nd0. Space coordinates x
is normalized by the Debye length λDd = (λ2

Dd1 + λ2
Dd2)1/2,

where λDd1 = [ nd0δ

ω2
pd

]1/2, λDd2 = ( kBZd0Teff

md ω2
pd

)1/2, and β = Ti
Te

is the

ratio of the ion temperature to electron temperature. Time t is
normalized by the inverse of dusty plasma frequency ω−1

pd =
( 2ε0md

nd0Z2
d0e2 )1/2. Velocity is normalized by the dust acoustic speed

Cd . The electrostatic potential φ is normalized by φ0 = mdC2
d

Qd
.

Then the normalized equations are given by

∂n

∂t
+ ∂ (nu)

∂x
= 0, (7)

∂u

∂t
+ u

∂u

∂x
= ∂φ

∂x
− δp

n2

∂P

∂x
− νd u, (8)

∂2φ

∂x2
= δφ[n + ν exp(βsφ) − μ exp(−sφ)], (9)

where δp = − κ

2md nd0C2
d

∂P
∂κ

, s = eφ0

kBTi
, and δφ = nd0Qd λ2

Dd
ε0φ0

= 2.

Now we consider a model in which there are two regions.
The plasma with smaller dust particles is in the region x < 0,
while that with larger dust particles is in the region x > 0, i.e.,
the dusty plasma in the region x < 0 is different from that in
the region x > 0. Suppose that there is an incident solitary
wave propagating in the positive x direction in the region x <

0 initially. As it propagates, it will be reflected and transmitted
at the interface x = 0. Due to this reason, we must consider
both the reflected wave and the incident wave in the region
x < 0, while we only need to consider the transmitted wave in
the region x > 0. For simplicity, we use superscripts “I”, “R”,
and “T ” to represent the incident wave, the reflected wave,
and the transmitted wave, respectively.

In order to understand the nonlinear solitary waves in the
system, we will use the results of the inverse scattering method
[43,44]. As is well known, the number of the solitary waves
and their amplitudes can be given from the standard KdV
equation and its “initial conditions” by using the inverse scat-
tering method [43,44]. The “inverse scattering method” is a
theoretical method to determine how many solitary waves are
produced and what are their amplitude from an arbitrary initial
condition.

For a standard KdV equation,

∂ϕ

∂t
− 6ϕ

∂ϕ

∂ξ
+ ∂3ϕ

∂ξ 3
= 0, (10)

and its “initial condition,”

ϕ |t=0= −A0

L2
0

sech2 ξ

L0
, (11)

where A0 > 0 is the characteristic width of the initial pulse,
while A0/L2

0 is the characteristic amplitude of the initial pulse.
The number N of generated solitary waves and their wave
amplitudes for each solitary wave can be given by the inverse
scattering method [43,44]. The number N is the maximum
integer which satisfies [43,44],√

A0 + 1

4
+ 1

2
− N > 0 (12)

and the amplitude of the jth generated solitary waves are

2

(√
A0 + 1

4
+ 1

2
− j

)2

L−2
0 , (13)
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where j = 1, 2, . . . , N . However, it takes times to evolve soli-
tary waves from an arbitrary initial condition.

We use the following reductive perturbation method
[45–49] for the normalized equations of (7), (8), and (9):

ξ = ε(x − vst ) + ε2P(η, τ ) + · · · , (14)

η = ε(x + vst ) + ε2Q(ξ, τ ) + · · · , (15)

τ = ε3x, (16)

where ε is a small parameter introduced in the perturbation
process and ξ and η denote the trajectories of two solitary
waves traveling in two different directions. Expand the physi-
cal quantities are as follows: n = 1 + ε2n1 + ε4n2 + · · · , u =
ε2u1 + ε4u2 + · · · , and φ = ε2φ1 + ε4φ2 + · · · . Substituting
these equations into Eqs. (7), (8), and (9), we obtain the
following equations in the lowest order (translated in the ex-
perimental coordinate):

nI

n−
d0

= uI

C−
D

= − φI

(T −
eff/e)

, (17)

nR

n−
d0

= − uR

C−
D

= − φR

(T −
eff/e)

, (18)

nT

n+
d0

= uT

C+
D

= − φT

(T +
eff/e)

, (19)

and in the next highest order, three KdV equations for the
incident wave, the reflected wave, and the transmitted wave
respectively as follows:

∂φI
1

∂τ
+ A−φI

1
∂φI

1

∂ξ
+ B− ∂3φI

1

∂ξ 3
= 0, (20)

∂φR
1

∂τ
+ A−φR

1
∂φR

1

∂η
+ B− ∂3φR

1

∂η3
= 0, (21)

∂φT
1

∂τ
+ A+φT

1
∂φT

1

∂ξ
+ B+ ∂3φT

1

∂ξ 3
= 0, (22)

where A±= − 3
2 − δ±

p

2(1−δ±
p ) − ν±(β± )2−μ±

2(μ±+ν±β± )2 , B± =
1

4[s±(μ±+ν±β± )]2 , φγ = ε2φ
γ

1 , γ = I, R, T , φγ represent the
electrostatic potential of the wave γ in the experimental
coordinate, the superscript “–” represents the values in the
region x < 0, while the superscript “+” represents the values
in the region x > 0.

There are many solutions of Eqs. (20), (21), and (22).
However, we are only interested in one solitary wave solution.
As an example, we give one solitary wave solution of Eq. (20)
as follows:

φI
1 = φI

1msech2 ξ − u0τ

D
, (23)

where φI
1m = 3u0

A− , D = 2
√

B−
u0

, and u0 is a modulational pa-

rameter which can adjust the wave amplitude. In order to
compare the solitary wave solution of Eq. (23) with the exper-
imental results, we use the experimental coordinate. By using
the Eqs. (14)–(19), we have one incident solitary wave for the
particle velocity in the experimental coordinate

uI = uI
msech2 x − V It + εP(η, τ )

DI
. (24)

Similarly, one reflected solitary wave and one transmitted
solitary wave for the particle velocity in the experimental
coordinate are, respectively, as follows [48,49]:

uR = uR
msech2 x − V Rt + εQ(ξ, τ )

DR
, (25)

uT = uT
msech2 x − V T t + εP(η, τ )

DT
, (26)

where uγ
m = uγ

m0 exp(− νd
2 t ), namely uγ

m = uγ

m0 exp(− νd
2Cd

x)
[48,49], and uγ

m0 is the initial wave amplitude. Notice that the
amplitude decays exponentially due to the viscosity. However,
the amplitude remains a constant if we neglect the viscosity of
the dusty plasma, i.e., νd = 0.

There is an arbitrary constant to control the strength of
the solitary wave. We can choose this constant as the wave
amplitude of uγ

m. Then both the wave propagation velocity
and the wave width depend on the wave amplitude, we have

V γ = C∓
d + uγ

m
2 and Dγ = (1 − uγ

m

2C∓
d

)
√

4C∓
d

uγ
m

λ∓
Dd .

For convenience, the standard KdV equation (10) can be
translated into general KdV equations (20), (21), and (22) by
the transformations of φ

γ

1 = − 6B
A ϕ and τ = 1

Bt .

III. REFLECTION AND TRANSMISSION AT AN
INTERFACE DUE TO INCIDENT WAVE

A. Continuity conditions

Neglecting higher-order quantities, we give the continuity
conditions at the interface x = 0 for the electric potential,
[φI + φR] |x=0= φT |x=0, and conservation of the dust fluid
momentum m−

d n−
d0[uI + uR] |x=0= m+

d n+
d0uT |x=0 (all physi-

cal quantities are in experimental coordinates), we then have

φT |x=0= 2

1 + χ
φI |x=0, (27)

φR |x=0= 1 − χ

1 + χ
φI |x=0, (28)

where χ = m+
d n+

d0C+
d T −

eff

m−
d n−

d0C−
d T +

eff
. Notice from Eq. (27) and Eq. (28)

that the “initial conditions” of the transmitted wave and the
reflected wave can be given from the incident wave at the
interface x = 0.

B. Reflection and the transmission due to the incident wave

Suppose that there is an exact incident solitary wave from
Eq. (10)

ϕ(I ) = − 2

D2
sech2

(
ξ

D
− 4τ

D2

)
, (29)

it propagates from the region x < 0 to the interface at x = 0,
it will be reflected and transmitted. The equivalent “initial
condition” for both the reflected wave and the transmitted
waves can be given by the boundary conditions of Eq. (27)
and Eq. (28),

ϕ(T )(tT , 0) = AT

(LT )2
sech2

( tT
LT

, 0
)
, (30)

ϕ(R)(tR, 0) = AR

(LR)2
sech2

( tR
LR

, 0
)
, (31)
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where AT = 2A0
1

1+χ

T −
eff

T +
eff

, LT = L0, AR = A0
1−χ

1+χ
, and LR = L0,

A0 = 2. As a result, we can obtain the numbers of both the
reflected solitary waves and the transmitted solitary waves, as
well as the amplitudes of all solitary waves produced by the
incident solitary wave.

C. Reflection due to the incident wave

Now we try to know whether there is a reflected solitary
wave. The parameter χ can be written in the other form

χ = n+
d0

n−
d0

√
ρ+
ρ− ( r+

r− )2, here we use the results of m±
d ∼ ρ±(r±)3

and Zd ∼ T ±
effr

± [50,51], where n+
d0, ρ+, and r+ are the density

of the dust particles, density of the dust materials, and the
radius of the dust particles in the region x > 0, while n−

d0, ρ−,
and r− are those in the region x < 0. The existing condition
of the reflected solitary wave is χ < 1, i.e., (r−)2

√
ρ−n−

d0 >

(r+)2
√

ρ+n+
d0. It seems that whether there is a reflected soli-

tary wave depends on the system parameters such as the dust
particle number density, mass of dust particles, and charge of
a dust particles in both regions.

D. Transmission due to the incident wave

We now try to know about the transmitted wave due to the
incident wave. It is certain that there is at least one transmitted
solitary wave. The largest amplitude of the transmitted solitary

wave (the first transmitted solitary wave) is 2(
√

AT + 1
4 −

1
2 )L−2

T . A second transmitted solitary wave may also be pro-
duced due to the incident solitary wave. The amplitude of

the second transmitted solitary waves is 2(
√

AT + 1
4 − 3

2 )L−2
T .

It seems that no second transmitted solitary wave can be
produced when AT < 2. Notice that the numbers of the trans-
mitted solitary waves and their amplitude also depend on the
system parameters in both regions.

IV. COMPARISONS WITH THE NUMERICAL
AND EXPERIMENTAL RESULTS

The analytical results can be directly compared with the
experimental and numerical results. The experiments were
performed in the PK-3 Plus laboratory on board the ISS. The
detailed description of the set up can be found in Ref. [52].
The argon plasma was produced by a capacitively coupled
radio-frequency (rf) discharge at 13.56 MHz. Under micro-
gravity conditions, a binary complex plasma was formed by
injecting two types of particles. One of them is melamine
formaldehyde particles of a diameter of 2.55 μm with a mass
mb = 1.34 × 10−14 kg, while the other is SiO2 particles of
a diameter of 1.55 μm with a mass ms = 3.6 × 10−15 kg.
An interface emerged between two different particles as they
were phase separated [23]. The motions of individual particles
are recorded using video micorscopy with a frame rate of 50
frames per second. Here we focus on the part of the cloud
above the particle-free central void region. The big particles
were confined in the upper part (where we assume that it is
in the region x > 0), while the small particles were located
in the lower part (where we assume that it is in the region
x < 0). The neutral gas pressure was set as 10 Pa. The solitary

t=0.02 s t=0.08 s t=0.14 s

1 mm

FIG. 1. Propagation of a solitary wave in a phase-separated bi-
nary complex plasma in the experiment performed in the PK-3 Plus
laboratory on board ISS under microgravity conditions [23]. In each
panel, three consecutive recorded images with a interval of 0.02 s are
filtered and overlayedand are in blue, green, and red, respectively.
The approximate locations of the solitary wave are highlighted by
the yellow boxes. Gas pressure is 10 Pa.

wave was excited at the lower boundary using function gen-
erator (FG), shown in Fig. 1. In the experiment, the FG was
switched off and the particle cloud was pressed downwards.
As the cloud hit the edge of the central void, the downwards
motion stopped. A quasisolitary wave was instantaneously
excited and propagated upwards. The approximate locations
of the solitary wave at three time periods (centered at t =
0.02, 0.08, 0.14 s) are highlighted by yellow boxes in Fig. 1.
The motions of individual small particles close to the lower
boundary can be clearly seen as each particle appears as three
connecting clusters of pixels in blue, green, and red, repre-
senting its trajectory. However, such motions of big particles
can be barely visible in the overlayed images after the wave
propagates across the interface, accompanied by a dramatic
drop of the particle velocity in the wave [53]. Dedicated par-
ticle tracking was applied to the experiment analysis in order
to obtain the dynamics of individual particles.

The propagation of the solitary wave is revealed in the pe-
riodogram in Fig. 3(e) in terms of z velocity vz. However, this
propagation cannot be directly seen via the evolution of the
particle number density n in Fig. 3(j), presumably due to the
collective motion of the whole particle cloud. The propagation
speed was directly estimated as the slop of the trajectory of the
solitary wave, highlighted by the dashed lines. As result, the
propagation speed in the region composed by small particles
was 25 mm/s, while it was 15 mm/s in the region of big
particles [23].

Besides the experiments, Langevin dynamics simulations
were also performed using LAMMPS [54,55] in microcanon-
ical (NVE) ensemble. The force acting on each particle
includes three components. The first component results from
the sum of Yukawa interaction with neighboring particles. The
second component is the ion drag force directed in the positive
z direction. We assumed two constant ion drag forces for small
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FIG. 2. Propagation of a solitary wave in a phase-separated bi-
nary complex plasma in the Langevin dynamics simulation [23]. Gas
pressure is 5 Pa. The vertical velocity vz is exhibited by the color.
The interface is marked by a gray square sheet.

and big particles, respectively, leading to a phase-separated bi-
nary complex plasma [32]. The third component is associated
with the plasma potential, which provides a parabolic confine-
ment. The joint effect of the latter two components confines
the particle cloud of two types together and their magnitude
determines the gap size at the interface. The heating is imple-
mented via a Langevin heat bath where the temperature is set
as T = 300 K in the simulation.

The simulations were performed for 4000 small particles
and 4000 big particles with periodic boundaries in x and y di-
rections. We chose plasma and particle parameters according
to typical parameters in experiments. Two types of particles
were selected (the same as in the experiment). The charge for
small and big particles are Qs = 2700e and Qb = 4500e [23],
respectively. In order to study the propagation of solitary wave
at low damping regime, we selected another gas pressure of
5Pa in addition to the pressure achieved in the experiments.
The damping rate was calculated based on the Epstein for-
mula for the argon gas [56–58]. They are μs = 57 s−1 and
μb = 42 s−1 corresponding to a gas pressure 10 Pa [23],
while μs = 28.5 s−1 and μb = 21 s−1 corresponding to a gas
pressure 5 Pa. The Debye lengths in both regions were as-
sumed to be λ±

Dd = 100 μm. Note that in reality the discharge
conditions change considerably as the gas pressure is lower.
The change of the plasma parameters such as the electron
temperature and density inevitably leads to the change of the
Debye lengths as well as the particle charge [59]. However,
to study the impact of damping rate alone and leave out other
effects, we simplified the model and assumed that the particle
charge and Debye length do not change accordingly.

In the simulation, the particles moved to an equilibrium
position from their initial positions, where the small particles
were placed close to a piston with big particles above them.
The solitary wave was excited by a push of the piston at the
lower boundary of the small particles. The form of the piston
motion can be described as a sinus function and the push
lasted for the first quarter period. The details of the simulation

and the rest of the parameters can be found in Ref. [23]. As
result, the propagation of the solitary wave in the simulation
is comparable with that in the experiment, see Fig. 2. For
a detailed analysis of the propagation characteristics, we di-
vided the particle cloud into cells in z direction and plot the
evolution of the averaged vz over the particles in each cell.
The results are shown in Figs. 3(c), 3(d) 3(h), and 3(i). The
amplitude of the solitary wave, in terms of the z velocity vz of
individual particles, decreases considerably as it propagates
upwards, as also demonstrated in Fig. 2.

If we consider the dissipation effect to all the solitary waves
of Eq. (24), Eq. (25), and Eq. (26), then the amplitude of the
solitary waves are in the following forms [48,49]:

uI
m = uI

m0 exp

(
−1

2
ν−t

)
, (32)

uR
m = uR

m0 exp

(
−1

2
ν−t

)
, (33)

uT
m = uT

m0 exp

(
−1

2
ν+t

)
, (34)

where uI
m0 is the initial wave amplitude at the point t = 0 for

the incident wave, uR
m0 and uT

m0 are the “initial wave ampli-
tudes” at the interface for the reflected and the transmitted
solitary waves, t is the propagation time, and ν− = 57 s−1 and
ν+ = 42 s−1 correspond to the case of gas pressure 10 Pa [23]
in the region x < 0 and x > 0, respectively. It seems that the
wave amplitude decreases as the wave propagates away.

The maximum dust particle speed (the initial dust par-
ticle speed) of the incident wave is uI

m0 ≈ 5 mm/s (see
Fig. 3(a) in the Ref. [23]) in the region x < 0, then uI

m ≈ 5 exp
(−28.5t ) mm/s. We obtain uI

m |t=t0≈ 1.25 mm/s, the am-
plitude of the dust particle speed of the incident wave at
the interface, where t0 = 0.05 s, which will be the “initial
conditions” for both the reflection and the transmission. We
then have that χ ≈ 1.33 and AT ≈ 2.1 by using the above
parameter. The reflected wave and the transmitted wave from
the incident wave by the interface will be produced. By using
the inverse scattering method [43,44], we obtain that there
is only one transmitted solitary waves (the amplitude of the
second solitary wave is about 0.03, which is so small that
it is negligible) with the amplitude uT

m |t=t0= (
√

AT + 0.25 −
0.5)C+

D T −
eff

C−
D T +

eff
uI

m |t=t0≈ 0.76uI
m |t=t0 at the interface (x = 0, t =

t0), while there are no reflected solitary wave since χ > 1.
Notice that the continuity condition is not satisfied if we

only consider the incident solitary wave and the transmit-
ted solitary wave. Actually reflection exists but results in
smaller-amplitude linear waves (radiations or ripples [43,44]).
By assuming that φ− |x=0= φI |x=0 +φR |x=0 +φr |x=0 in the
region x < 0 at the interface, and φ+ |x=0= φT |x=0 +φt |x=0

in the region x > 0, where φI |x=0, φ
R |x=0, φ

r |x=0, φ
T |x=0

, φt |x=0 are the incident solitary wave, the reflected solitary
wave, the reflected linear wave, the transmitted solitary wave,
and the transmitted linear wave, respectively, we obtain the
“initial conditions” of both the reflected linear wave and the
transmitted linear wave by using the continuity condition at
the interface: φr |x=0= −χ−1

χ+1φI |x=0, φt |x=0= 0, i.e., there
are reflected linear waves, but there are no transmitted linear
wave. Then we have ur |x=0= 1−χ

1+χ
um |x=0 sech2 V I (t−t0 )

DI .
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FIG. 3. Propagation characteristics of solitary waves in terms of particle z velocity vz [(a)–(e)] and number density n [(f)–(j)] in phased-
separated binary complex plasmas. The analytical results are shown in columns 1 and 2. The results obtained from Langevin dynamics
simulations are shown in columns 3 and 4. The experimental results are shown in column 5.

In order to understand the reflected linear waves, we
expand the function of ur |x=0 to cosine series in the
region −DI

V I < (t − t0) < DI

V I with period of 2 DI

V I . We then
have ur |x=0= 1−χ

1+χ
um |x=0 [ a0

2 + ∑∞
k=1 ak cos kπ (t−t0 )

DI /V I ],

where ak = 2V I

DI

∫ t0+ DI

V I

t0 [sech2 V I (t−t0 )
DI ] cos kπ (t−t0 )

DI /V I d (t − t0),
k = 0, 1, 2, . . . , from which we obtain a0 ≈ 0.76,
a1 = ∫ 1

0 sech2y cos πy
2 dy ≈ 0.5, a2 = ∫ 1

0 sech2y cos(πy)dy ≈
0.02. Finally, we have ur |x=0= 1−χ

1+χ
um |x=0 {0.38 +

0.5 cos[ω0(t − t0)] + 0.02 cos[2ω0(t − t0)]} in the region
−DI

V I < (t − t0) < DI

V I , where ω0 = πV I

DI .
The reflected radiations can be given approximately as

follows: ur (x, t ) = 1−χ

1+χ
um |x=0 {0.38 + 0.5 cos[k0x + ω0(t −

t0)] + 0.02 cos[2k0x + 2ω0(t − t0)]} exp(− νd

2C−
d

| x |), where

k0 = ω0

C−
d

, t > t0.

The evolutions of incident solitary wave, transmitted soli-
tary wave, and linear reflected wave of our analytical results
by particle velocity and the particle number density are shown
in Fig. 3. The incident solitary waves by particle velocity is
given by Eq. (24) in the region x < 0, where uI

m0 = 5, νd =
57 s−1, V I = 25 + 2.5 exp(−28.5t ) mm/s, and DI = [4.47 −
0.45 exp(−28.5t )]exp(14.25t )λ−

Dd . The linear reflected wave
by particle velocity is

ur (x, t ) = 1 − χ

1 + χ
um |x=0 exp

(
− νd

2C−
d

| x |
)

{0.38 + 0.5 cos[k0x + ω0(t − t0)]}(mm/s)

, (35)

where t0 ≈ 0.05 s.
In the region x > 0, the transmitted solitary wave by

particle velocity is given by Eq. (26), where uT
m0 = 0.76,

νd = 42 s−1, V T = 15 + 0.64 exp[−21(t − t0)] mm/s, DI =
{6.9 − 0.3 exp[−21(t − t0)]}exp[10.5(t − t0)]λ+

Dd , where we
have neglected the higher-order term εP(η, τ ) and using the
assumption of λ−

Dd = λ+
Dd = 100 μm.

The evolution of the incident solitary waves by dust particle
number density is also shown in Fig. 3, which can be given
from Eq. (17) as follows:

nI =1070

+ 214 exp(−28.5t )sech2 x − V It + εP(η, τ )

DI
(mm−3)

(36)

in the region x < 0.
The linear reflected wave by particle number density is

given from Eq. (18)

nr (x, t ) = 1 − χ

1 + χ
um |x=0 exp

(
− νd

2C−
d

| x |
)

{16.26 + 21.4 cos[k0x + ω0(t − t0)]} (mm−3).

(37)

In the region x > 0, the transmitted solitary wave by parti-
cle number density is from Eq. (19),

nT = 520 + 26.6uI
m |x=0 exp[−21(t − t0)]

sech2 x − V T (t − t0) + εP(η, τ )

DT
(mm−3).

(38)

Using the analytical method, the propagation of the solitary
waves is shown in Figs. 3(a), 3(b), 3(f), and 3(g) in terms
of z velocity and number density. The results can be directly
compared with the numerical simulation and experiments. As
we can see in the figure, the solitary waves propagate faster
in the small particle region than in the big particle region. The
propagation speeds obtained in the theoretical calculations are
slighter higher than those in the experiments and numerical
simulations. This is resulted possibly from our approximated
assumption such as the constant Debye length and the constant
dust charge, etc. For P = 10 Pa the velocity in z direction
decreases rapidly as the solitary wave propagates in the small
particle region. The rise of number density in the solitary wave
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FIG. 4. Particle z velocity vz in the solitary waves. For the exper-
iments and simulations, vz in the incident and transmitted waves are
shown in square and triangle symbols, respectively, while that in the
reflected waves is shown in circle symbols. The analytical results are
shown by lines.

is marginal in the small particle region and barely visible
in the big particle region. For P = 5 Pa the damping rate is
much smaller and the z velocity of particles decays in a slower
pace. The reflection starts to be visible, particularly in the
simulation.

We directly compare the evolution of z velocity of particles
in the solitary wave in Fig. 4. To make the five cases directly
comparable, we set the propagation time t = 0 where the
solitary wave front is visible at z ∼ −0.8 mm in the figure. For
both pressures, we see a drop of vz at the interface as the soli-
tary wave transmits from the small particle region to the big
particle region. As to the reflection, the absolute values of vz

are low. The simulation and the analytical results show a rea-
sonable agreement. However, the experimental result shows
a clear deviation from the analytical and numerical results,
particularly for the incident wave. Nevertheless, as shown in
Fig. 1 (t = 0.02 s), the z velocity of individual particles at
the bottom of the cloud was rather high as the solitary wave
was initially excited, exhibited by the elongated trajectory of
individual particles. This feature is barely visible in Fig. 1
(t = 0.14 s), as the wave reached the big particle cloud. As
the mean value and the error bar for the experimental results
in Fig. 4 are calculated by the maximal position and the full
width at half maximum of the Gaussian fit of the particle ve-
locity in the selected cell, they may be underestimated to some
extent. This presumably was caused by the limited temporal
and spatial resolution of the cameras equipped in the PK-3
Plus laboratory and unfortunately can not be further improved.
Further careful experimental investigations with higher tem-
poral resolution are required to obtain a more precise results.

The total energy of a solitary wave in a dusty plasma in-
cludes both the kinetic energy and the potential energy, which

depend on the solitary wave amplitude. It is found that the
solitary wave amplitude decays exponentially with time in the
presence of collision and, therefore, it seems that the energy
of a solitary wave decreases with time in the presence of colli-
sion. However, the total energy of the system includes not only
the kinetic energy, the potential energy of all solitary waves
but also the linear radiation energy and the thermal energy
of the system. The sum of all the solitary wave energies, the
thermal energy, and the linear radiation energy of the system
is conserved.

V. CONCLUSION

Inspired by the experimental observations in the PK-3 Plus
Laboratory on board the ISS, we have theoretically investi-
gated the propagation of a solitary wave across an interface
in a binary complex plasma. By using the traditional reduc-
tive perturbation method, we obtain three KdV equations to
represent the incident solitary wave, the transmitted solitary
wave and the reflected solitary wave. Based on the continuity
conditions at the interface, we obtain the equivalent “initial
conditions” for both the transmitted nonlinear wave and the
reflected waves from the incident wave. We further obtain the
numbers of the reflected and the transmitted solitary waves as
well as all the wave amplitudes by using the inverse scattering
method. The ripples of both reflection and transmission have
also been given by using the Fourier series. It is found that the
number of the reflected and the transmitted solitary waves,
all the wave amplitudes and the ripples of both reflection
and transmission depend on the system parameters such as
the number density, electric charge, mass of the dust parti-
cles as well as the effective temperature in both regions. The
analytical results can explain the experimental and numerical
results, though there are differences between the analytical
results and the experimental ones which is possibly due to the
approximated assumption of several constant parameters such
as the Debye length, dust charge, as well as the approximation
of the equation of state.

The method and the results of the present paper can also
be applied to the other Yukawa system, such as liquid metals,
liquid metallic hydrogen, helium, screening of thermonuclear
reaction rates in astrophysical settings, and colloidal suspen-
sions. For the nonuniform Yukawa system, by measuring
the information of the reflected wave and the transmitted
wave by an incident pulse, we can determine the information
of the discontinuous regions and the system parameters, such
as the plasma number density, dust size, and dust charge, for
a dusty plasma.
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