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Uncovering turbulent plasma dynamics via deep learning from partial observations
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One of the most intensely studied aspects of magnetic confinement fusion is edge plasma turbulence which
is critical to reactor performance and operation. Drift-reduced Braginskii two-fluid theory has for decades been
widely applied to model boundary plasmas with varying success. Towards better understanding edge turbulence
in both theory and experiment, we demonstrate that a physics-informed deep learning framework constrained
by partial differential equations can accurately learn turbulent fields consistent with the two-fluid theory from
partial observations of electron pressure which is not otherwise possible using conventional equilibrium models.
This technique presents a paradigm for the advanced design of plasma diagnostics and validation of magnetized
plasma turbulence theories in challenging thermonuclear environments.
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I. INTRODUCTION

Predicting turbulent transport in the edge of magnetic
confinement fusion devices is a longstanding goal spanning
several decades currently presenting significant uncertainties
in the particle and energy confinement of fusion power plants
[1,2]. The boundary region is critical in determining the fu-
sion device’s overall viability since edge plasma conditions
strongly influence a myriad of reactor operations ranging
from core fueling to power output to wall safety [3–5]. Yet,
edge modeling continues to need improvement: comprehen-
sive gyrokinetic codes suitable for the boundary of tokamaks
are still under development and fluid simulations commonly
lack essential physics necessary to study collisionless sys-
tems. One particular transport theory relevant to boundary
plasmas and widely applied to analyze edge turbulence is
the drift-reduced Braginskii model [6–8]. Various adaptations
of these equations have been recently taken to investigate
several important edge phenomena including pedestal physics
[9], blob dynamics [10], neutral effects [11], and heat fluxes
impinging plasma-facing components [12]. And while var-
ious trends are at times reproduced in these works, direct
quantitative agreement between the two-fluid turbulence the-
ory and observations is generally lacking on a wide scale
due to difficulty in aligning global simulations with intricate
plasma experiments where relevant measurements may be
sparse or missing altogether. Yet, this is a crucially important
endeavor since gathering sufficient information to effectively
test reduced turbulent transport models is vital to developing
predictive capability for future fusion devices. These ma-
chines will access burning plasma regimes and operate with
some of the largest temperature gradients in the universe,
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but our existing models may be inaccurate and standard di-
agnostics incapable of surviving such harsh thermonuclear
environments [13]. Fusion plasma diagnostic measurements
accordingly require suitable analysis techniques as they are
inherently noisy and limited in their spatiotemporal scope
such as one- or two-dimensional profiles of electron den-
sity and temperature [14–17]. Furthermore, it is essential to
know the turbulence-generated edge electric field since E × B
drifts, which strongly affect perpendicular transport, influence
plasma stability, and structure across the edge [18–20]. Resul-
tant downstream interactions from turbulent particle and heat
fluxes striking surfaces therein pose significant risk to safe
operation, e.g., the control of radiative regimes such as de-
tached divertor schemes, in upcoming fusion reactors [21,22].
To this end, we demonstrate a physics-informed deep learn-
ing technique capable of diagnosing unknown turbulent field
fluctuations directly consistent with drift-reduced Braginskii
theory from limited electron pressure observations.

We represent the drift-reduced Braginskii model via
physics-informed neural networks (PINNs) [23–26], highly
expressive function approximators trained to solve supervised
learning tasks while respecting nonlinear partial differential
equations, to infer unobserved field dynamics from partial
measurements of a synthetic plasma. As illustrated through
a readily adaptable multinetwork machine learning frame-
work, this paradigm is transferable to the broad study of
quasineutral plasmas in magnetized collisional environments
and presents pathways for the artificial intelligence-assisted
design of plasma diagnostics. In ways previously inaccessi-
ble with classical analytic methods, this framework has the
ability to improve the direct testing of reduced turbulence
models in both experiment and simulation to inform discovery
of the equations necessary to model the edge. The overall
computational technique introduces significant advances in
systematizing the quantitative validation of plasma turbulence
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theories and is to date among the most complex nonlinear
systems applied in physics-informed deep learning codes.

To demonstrate this framework, we proceed with a de-
scription of drift-reduced Braginskii theory and computational
modeling of a synthetic plasma in Sec. II, outline a physics-
informed machine learning architecture suited for the analysis
of multifield plasma turbulence in Sec. III, present results in
the robust learning of unknown turbulent fields in Sec. IV, and
conclude with a summary and future outlook in Sec. V.

II. SYNTHETIC PLASMA CONSTRUCTION

The synthetic plasma analyzed is numerically simulated
by the global drift-ballooning (GDB) finite difference code

[27,28] which solves the two-fluid drift-reduced Braginskii
equations in the electrostatic limit relevant to low-β condi-
tions. This is a full- f [29–31] fluid model in the sense that the
evolution of the equilibrium and fluctuating components of the
solution are not separated and relative perturbation amplitudes
can be of order unity as found in experiments [32]. The plasma
is magnetized and quasineutral with the perpendicular fluid
velocity given by E × B, diamagnetic, and ion polarization
drifts. After neglecting collisional drifts, as well as terms of
order me/mi, one arrives at the following set of equations
(in Gaussian units) governing the evolution of the synthetic
plasma’s density (n ≈ ne ≈ ni), vorticity (ω), parallel electron
velocity (v‖e), parallel ion velocity (v‖i), electron temperature
(Te), and ion temperature (Ti) [28]:
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whereby the field-aligned electric current density is j‖ =
en(v‖i − v‖e), the stress tensor’s gyroviscous terms contain
Gs = ηs

0{2∇‖v‖s + c[C(φ) + C(ps )/(qsn)]}, and ηs
0, �s, and qs

are the species (s = {e, i}) viscosity, cyclotron frequency, and
electric charge, respectively. The convective derivatives are
ds f /dt = ∂t f + (c/B)[φ, f ] + v‖s∇‖ f with [F, G] = b0 ×
∇F · ∇G and b0 representing the unit vector parallel to
the magnetic field. The field’s magnitude B decreases over
the major radius of the torus (B ∝ 1/R), and its curvature
is κ = −R̂/R. The curvature operator C( f ) = b0 × κ · ∇ f ,
∇‖ = −∂/∂z, and b0 = −ẑ follow past convention [28]. The
coefficients κs

‖ and ηs
‖ correspond to parallel thermal conduc-

tivity and electrical resistivity, respectively. Time-independent
Gaussian density (Sn) and energy sources (SE ,s) are placed at
the left wall while zero external momentum (SM‖s) is explic-
itly forced upon the system. Explicit hyperdiffusion consisting
of both fourth-order cross field and second-order parallel
diffusion is applied for numerical stability in the form of
D f = χx

∂ f
∂x4 + χy

∂ f
∂y4 + χz

∂ f
∂z2 . Under quasineutrality, electric

fields arise not by local imbalance of charged particles, but by
the requirement that the electric current density is divergence
free [33,34]. Accordingly, the electrostatic potential φ is nu-
merically solved via the following boundary value problem:

∇ · nc

�iB

(
∇⊥φ + ∇⊥ pi

en

)
= ω. (7)

The three-dimensional simulation domain implemented is
a shearless field-aligned coordinate system where x̂ is the unit
vector along the radial direction (i.e., R̂), the helical magnetic
field is oriented along ẑ, and ŷ is perpendicular to both x̂ and ẑ.
The synthetic plasma consists of deuterium ions and electrons
with real masses (i.e., mi = 3.34 × 10−27 kg and me = 9.11 ×
10−31 kg) and on-axis magnetic field of Baxis = 5.0 T with
minor and major radius of a0 = 0.22 m and R0 = 0.68 m,
respectively, consistent with characteristics of discharges in
the high-field Alcator C-Mod tokamak [35] for which there
is notable evidence of fluid drift turbulence controlling edge
dynamics [36]. Moreover, drift-reduced fluid models, where
the ion gyration frequency is considered to be faster than
the evolving turbulent plasma fluctuations (i.e., �i � ∂

∂t ), are
generally good approximations to full velocity models when
studying edge turbulence [37].

This discretized toroidal geometry is a flux-tube-like do-
main on the outboard side (i.e., strictly bad curvature) of the
tokamak with field lines of constant helicity wrapping around
the torus and terminating on walls producing both resistive
interchange and toroidal drift-wave turbulence. Transport is
primarily along blobby field-aligned structures with increased
pressure propagating due to perpendicular drifts which polar-
ize the blob and yield outward E × B drift of the filament.
This is related to the Poynting vector representing the direc-
tional energy flux density of the electromagnetic field [33,38].
The physical dimensions of the entire simulation domain are
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[Lx = 7.7 cm, Ly = 5.5 cm, Lz = 1800.0 cm] with spatiotem-
poral resolution of [
x = 0.03 cm,
y = 0.04 cm,
z =
56.25 cm,
t = 4.55 × 10−11 s]. Periodic boundary condi-
tions are employed in the binormal direction for all quantities.
Homogeneous Neumann conditions are set in the radial coor-
dinate for n, v‖e, v‖i, Te, and Ti while homogeneous Dirichlet
conditions are used for ω and φ. By constraining φ = 0 along
the walls, this in principle enforces radial E × B flows to go
to zero on the boundaries of the simulation domain. The lower
limit of the Bohm criterion is imposed as a sheath condition
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2
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mi
, (8)
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where � = ln
√

mi/[2πme(1 + Ti
Te

)]. Since the direction of the
flows at the sheath entrance is known, ghost cells in the z
direction are filled such that an upwind stencil ensues to
evolve n, ω, Te, and Ti [28]. For Te and Ti specifically, fi-
nite conductive heat fluxes entering the sheaths are applied
according to q‖,s = −κs

‖∇‖Ts = ±γsnv‖,sTs, where the upper
(lower) sign corresponds to the top (bottom) sheath and γs

is the sheath transmission coefficient. Its value for ions and
electrons is taken to be γi = 5Ti/2Te and γe = 2 + |eφ|/Te,
respectively [28]. Collisional coefficients and diffusivities are
kept constant in the direct numerical simulation as they can
be unphysically large at high temperatures due to the lack
of kinetic effects and generally require closures going be-
yond Chapman-Enskog. To start the numerical simulation,
electrons and ions are initialized with zero parallel velocity
and vorticity fields along with truncated Gaussian density
and temperature profiles. A second-order trapezoidal leap-
frog time-stepping scheme evolves the system of equations
forward with subcycling of parabolic terms (e.g., ∇‖κs

‖∇‖Ts)
due to the low frequency turbulence structure changing slowly
over the thermal diffusion timescale. The commonly applied
Boussinesq approximation [39] in Braginskii solvers is also
used when evolving the generalized vorticity ω. The normal-
izations applied to solve these partial differential equations in
both the finite difference code and deep learning framework
are sketched in the Appendix. A complete treatment of the nu-
merical solver and greater specificity regarding the turbulence
simulations can be found in [27,28].

III. MACHINE LEARNING PLASMA THEORY

Neural networks are operationally computational programs
composed of elementary arithmetic operations (e.g., addi-
tion, multiplication) and functions (e.g., exp, sin, log) which
can be differentiated to arbitrary order up to machine pre-
cision via application of chain rule [40,41]. While biases
are presently inevitable [42], these regression models are
in theory constructed without necessarily committing to a
designated class of basis functions (e.g., polynomial, trigono-
metric). Automatic differentiation in conjunction with this
adaptive capacity of neural networks permits them to effec-
tively address nonlinear optimization problems in physics

FIG. 1. These two-dimensional measurements of turbulent elec-
tron density and temperature over a short temporal window are the
only observed variables from the three-dimensional synthetic plasma
exhibiting bloblike filaments.

and engineering by training upon both partial differential
equations and observational data via multitask learning [24].
Constraining classically underdetermined systems by physical
laws and experimental measurements in this way presents an
emerging technique in computational mechanics which we ex-
tend to the deduction of unknown turbulent plasma dynamics.
In this deep learning framework, every dynamical variable
in Eqs. (1)–(6) is approximated by its own fully connected
neural network, which is commonly known as a data-efficient
universal function approximator [43] since its high plasticity
enables it to be molded given sufficient training.

For analysis in the multinetwork framework, partial mea-
surements of ne and Te over time only come from a smaller
two-dimensional field-aligned domain in the interior of the
synthetic plasma to emulate experiment (e.g., gas puff imag-
ing [44]) with dimensions of [L∗

x = 3.8 cm, L∗
y = 3.8 cm]

and spatiotemporal resolution of [
∗x = 0.03 cm, 
∗y =
0.04 cm, 
∗t = 7.27 × 10−7 s] as depicted by a snapshot
in Fig. 1. Each network consequently takes the local spa-
tiotemporal points (x, y, t ) from the reduced domain for
measurements as the only inputs to the initial layer while
the dynamical variable being represented is the sole output.
In the middle of the architecture, every network consists
of 5 hidden layers with 50 neurons per hidden layer and
hyperbolic tangent activation functions (σ ) using Xavier
initialization [45].

In actuality, the repeated differentiation and summation of
networks to construct every single term in the partial differ-
ential equations trained upon subsequently constructs a far
larger resultant computation graph representing the collective
model beyond the five hidden layers in each dynamical vari-
able’s individual network. The cumulative graph is therefore
a truly deep approximation of the turbulent plasma theory.
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FIG. 2. A local time trace of the turbulent ne over 200 μs from
the simulated plasma at [x = 1.0 cm, y = 0.0 cm, z = −28.1 cm].
The observed synthetic data analyzed in the machine learning frame-
work only come from the small temporal window (green) which
corresponds to just four points in time.

Physical constraints are learned by the networks via mini-
mization of ascribed loss functions encompassing both limited
measurements of the plasma and two-fluid turbulence model.
In particular, partial observations of the simulated plasma
consist of only ne and Te measurements of two-dimensional
spatial extent as visualized in Fig. 1 over just four separate
time slices (i.e., 2.9 μs). For reference, the synthetic plasma’s
fluctuations have an approximate autocorrelation time of 1.5
μs and radial autocorrelation length of 0.4 cm. The narrow
temporal extent of the strongly fluctuating ne observations at a
local spatial point is further visualized in Fig. 2. Properties of
all other dynamical variables in the six-field turbulence theory
are taken to be unknown, and the networks are simultaneously
optimized against the drift-reduced Braginskii equations and
observed data to better approximate the unmeasured quanti-
ties. To be precise, partial synthetic measurements are learned
by training the ne and Te networks against the average L2 norm
of their respective relative errors
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i=1 correspond to the set of ob-

served data and the variables n∗
e and T ∗

e symbolize predicted
electron density and temperature, respectively, by the net-
works. The theory enforcing physical constraints in the deep
learning framework is expressed by evaluating the individual
terms in the model by differentiating the neural networks
with respect to input spatiotemporal coordinates via appli-
cation of chain rule through automatic differentiation [46].
Correspondingly, model loss functions are embedded during

training by recasting the evolution equations of (1) and (5) in
the following implicit form:
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and then further normalized into dimensionless form match-
ing the numerical code as in (A4) and (A8) [28]. This
normalized implicit formulation is vital to learning via op-
timization since all physical terms collectively sum to zero
when the equations are ideally satisfied. These physical con-
straints provided by the unitless evolution equations of ne and
Te from the two-fluid model are jointly optimized using loss
functions defined by
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i=1 denote the set of collocation points,
and f ∗

ne
and f ∗

Te
are the null partial differential equations

prescribed by (12) and (13) in normalized form directly evalu-
ated by the neural networks. Optimization against the applied
plasma theory is central to the methodology and enforces
physical constraints in the deep learning framework by en-
suring each subnetwork respects the multifield turbulence
model’s constraints as visualized in Fig. 3. This enables fine
tuning of each neural networks’ weights and biases (θ ) by
adjusting them in this generalized regression model to satisfy
the physical laws governing the nonlinear connection sought
between the subnetworks. The set of collocation points over
which the partial differential equations are evaluated can be
arbitrarily large and span any extent over the physical do-
main, but are taken in this example to correspond to the
positions of the synthetic measurements being trained upon,
i.e., {xi

0, yi
0, zi

0, t i
0}N0

i=1 = {xi
f , yi

f , zi
f , t i

f }Nf

i=1. It should be once
again noted that the only observed dynamical quantities in
these equations are two-dimensional views of ne and Te with-
out any explicit information about boundary conditions nor
initializations. All analytic terms encoded in these equations
including high-order operators are computed exactly by the
neural networks without any approximation (e.g., lineariza-
tion) nor discretization. This machine learning framework
with a collocation grid of arbitrarily high resolution uses a
continuous spatiotemporal domain without time stepping nor
finite difference schema in contrast with the numerical code.
To handle two-dimensional data, we assume slow variation of
dynamics in the z coordinate and effectively set all parallel
derivatives to zero (i.e., ∂

∂z → 0). Notwithstanding, parallel
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FIG. 3. Visualization of the physics-informed framework with individual networks being selectively trained against loss functions compris-
ing both partial observations Lne and LTe and reduced theory L fne

and L fTe
to infer unobserved turbulent dynamics. All spatial gradients and

time derivatives in fne and fTe are represented using automatic differentiation of each individual variable’s network which in practice extends
the size of the computation graph being evaluated. To handle reduced two-dimensional data from the three-dimensional synthetic plasma, the
z coordinate is removed from the networks for simplicity and as a test for determining the minimal information necessary to learn φ. If noisy
data are observed, then θne (and θTe if Te measurements are available) should be additionally trained against L fne

(and L fTe
).

flows and Ohmic heating terms in the model are still kept.
If measurements in the z direction are available or more
collocation points utilized during training with observational
data of reduced dimensionality, this procedure may be re-
laxed: it is partly a tradeoff between computational fidelity
and stability. It is noteworthy that the temporal resolution of
the data observed by the neural networks is several orders of
magnitude lower than the time steps taken by the finite differ-
ence solver as required for numerical stability, i.e., 
∗t � 
t .
Also, if sought, training on data sets viewed at oblique angles
in three-dimensional space over long macroscopic timescales
can be easily performed via segmentation of the domain
and parallelization, but a limited spatial view with reduced
dimensionality is taken to emulate experimental conditions
for field-aligned observations [44] and theoretically test what
information is indispensable to learn unobserved turbulent
dynamics.

Loss functions are optimized with minibatch sampling
where N0 = Nf = 500 using stochastic gradient descent
via Adam [47] and the limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) algorithm, a quasi-Newton op-
timization algorithm [48], for 20 h over 32 cores on Intel
Haswell-EP processors which corresponds to approximately
8694 full iterations over both optimizers. If observing noisy
data, we find that expanding to larger sample sizes with
N0 = Nf = 2500 and training solely via L-BFGS is optimal
for learning. Removing L fne

and L fTe
from the optimization

process (i.e., setting Nf = 0) would correspond to training of
classical neural networks without any knowledge of the un-
derlying governing equations which would then be incapable
of learning turbulent field fluctuations. Setting N0 = 0 instead
while providing initial and boundary conditions for all dy-
namical variables would alternatively correspond to regularly
solving the equations directly via neural networks. Overall,
priming networks by first training in stages on observed data
or prior constraints is useful to enhance stability and con-
vergence in this multiobjective task. Additionally, encoding
domain expertise such as subsonic bounds on parallel flows
or regularizing temperature to be strictly positive via suitable
output activation functions can assist training by constraining
the admissible landscape of solutions. Networks constructed
in this way can intrinsically abide by physical laws which is
especially useful to uncover unknowns like v‖e and Ti.

A fundamental goal in computational plasma modeling is
determining the minimum complexity necessary (and no less)
to develop sufficiently predictive tokamak simulations. With
sparse availability of measurements in fusion experiments,
designing diagnostic techniques for uncovering such informa-
tion is crucial. On this point, we emphasize that training is
from scratch over just a single synthetic plasma discharge with
no extraneous validation nor testing sets required since over-
fitting is technically not encountered in this physics-informed
paradigm. The multinetwork deep learning framework simply
utilizes a single set of ne and Te measurements over a period
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FIG. 4. The synthetic plasma’s unobserved electric potential
(top) is learned approximately up to an additive constant as predicted
by the physics-informed neural network (bottom).

of microseconds which corresponds to the small data regime
of machine learning. Merging partial observational data of
ne and Te along with physical laws in the form of partial
differential equations governing the time-dependent evolution
of ne and Te sufficiently constrains the set of admissible so-
lutions for the previously unknown nonlinear mappings the
neural networks ultimately learn. It is also quite general: due
to quasineutrality, no significant adjustments are necessary to
generalize the technique when multiple ions and impurities
may be present in boundary plasmas beyond the inclusion
of appropriate collisional drifts and sources in multispecies
plasmas [49]. This deep learning technique for diagnosing
turbulent fields is hence easily transferable, which permits
its systematic application across magnetic confinement fusion
experiments whereby the underlying physical model funda-
mental to the turbulent transport is consistent. The framework
sketched can also be readily extended to different settings in
the interdisciplinary study (both numerical and experimental)
of magnetized collisional plasmas in propulsion engines and
astrophysical environments.

IV. NUMERICAL EXPERIMENTS

Accurate turbulent edge electric field fluctuation charac-
terization is particularly significant to magnetic confinement
fusion devices. By constraining the deep learning framework
with the two-fluid turbulence theory and strikingly little em-
pirical information in the form of partial two-dimensional
observations of ne and Te, we find that physics-informed
neural networks can accurately learn the plasma’s turbulent
electric potential without the physics-informed computa-
tional framework ever having observed it, as displayed in
Figs. 4 and 5.

It is notable that despite there being no knowledge of
ω, v‖e, v‖i, nor Ti [i.e., multiple unknowns existing in the

FIG. 5. One-dimensional radial profile of the true and predicted
φ at [y = 0.0 cm, z = −28.1 cm, t = 229.9 μs] corresponds to a
slice of Fig. 4. The ordinates have identical ranges spanning exactly
410 V with equivalent spacing for direct comparison.

partial differential equations and (7) never even being directly
invoked], the electric field is nonetheless learned consistently
with the physical theory encoded by the plasma turbulence
model. Since φ is a gauge-invariant quantity exact up to an
additive constant, it is accordingly uncovered up to a scalar
offset which varies randomly due to the stochastic nature of
the optimization employed in the machine learning frame-
work. This difference physically arises because no direct
boundary information was enforced upon the neural network
when learning φ, although it could be straightforwardly im-
plemented. By contrast, the numerical code imposed zero
potential on the outer walls of the simulation domain. General
agreement in both magnitude and structure in the learned ra-
dial electric field is evident in Fig. 6 with an average absolute
error of 26.19 V/cm while L fne

and L fTe
are 3.101 × 10−1

and 3.743 × 10−1, respectively, after 8694 full iterations.
In physical units, L fne

and L fTe
would be 3.472 × 1017 cm−3/s

and 1.273 × 106 eV/s.

FIG. 6. The learned turbulent Er (bottom) closely agrees with the
magnitude and structure of the true Er (top) despite ω, v‖e, v‖i, and Ti

being initially unknown.
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FIG. 7. The physics-informed deep learning framework is capa-
ble of recovering the true ne despite strong Gaussian noise (σ =
0.25) present. The classical solution corresponds to a standard feed-
forward neural network where Nf = 0.

To emphasize the experimental practicality of these results
based upon our synthetic plasma and a surprising feature
discovered, we note that the framework is robust to very
noisy measurements. For example, if only observing den-
sity fluctuations with strong Gaussian noise, one could still
largely recover the unmeasured radial and poloidal electric
fields and even resolve the true partially observed variables.
Namely, given just highly noisy ne measurements as in Fig. 7,
one can learn the true turbulent density in this physics-
informed deep learning framework to subsequently infer the
unmeasured electric field. If Er was already known, this tech-
nique could then precisely check the validity of the reduced
turbulence theory against observations from experiment or
kinetic simulations [50]. But, if using a standard feed-forward
neural network, one must be careful with convergence since

FIG. 8. Estimates of the turbulent φ and Er as expected by
the Boltzmann model ne(φ) = ne(φ0)ee(φ−φ0 )/Te [51], or neoclassi-
cal estimates ∇φ = −∇pi/Znie [52], where Z = 1 for deuterium
ions, yield markedly errant predictions in both structure and mag-
nitude when compared to the true values displayed at the top of
Figs. 4 and 6.

the objective of simply minimizing Lne without sufficient
regularization, as innately provided by L fne

, can result in
overfitting of noisy data.

For comparison, classical and oft-employed models for cal-
culating the electric potential with adiabatic electrons such as
the Boltzmann relation [51] fail when computing perpendic-
ular turbulent field fluctuations. Alternative approximations
of Er from simple ion pressure balance as expected neo-
classically [52] would yield highly incorrect estimates of the
turbulent electric field, too. Such methods ordinarily used in
magnetic confinement fusion are only applicable to discerning
equilibrium fields and dynamics parallel to the magnetic field
in steady-state scenarios, but are erroneous in the analysis
of microturbulence in nonquiescent plasmas as markedly ob-
served when comparing Fig. 8 to the true φ and Er as plotted
in Figs. 4 and 6, respectively. Our deep learning technique
based upon drift-reduced Braginskii theory therefore provides
a way to accurately measure the turbulent electric field in edge
plasmas from just the electron pressure. As a further point
of contrast compared to classical techniques, it is important
to note that the inverse learning scenario is not possible. In
particular, given observations of φ and Te, one cannot simply
infer the turbulent ne fluctuations with the machine learning
framework outlined. This one-way nature in learning indicates
a division exists between the two pathways when attempt-
ing to constrain the admissible solutions of (14) and (15)
to uncover unknown nonequilibrium dynamics. Training is
thus unidirectional and representative of asymmetries extant
in the partial data and turbulence theory being learned via
optimization in the physics-informed model.

To better interpret the learning process, we tabulate the
normalized loss functions being trained upon after M full
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TABLE I. Each normalized loss function optimized in the ma-
chine learning framework is tabulated after M full iterations, where
M = 8694 corresponds to the final iteration after 20 h of training
against both the partial observations of ne and Te and their implicit
evolution equations.

Observational and physical model errors

M Lne (10) LTe (11) L fne
(14) L fTe

(15)

1 1.498 × 10−2 7.258 × 10−2 8.316 × 10−2 1.476 × 10−1

10 7.673 × 10−3 8.525 × 10−3 2.049 × 10−1 1.302 × 10−0

100 9.334 × 10−4 6.592 × 10−4 5.746 × 10−1 1.895 × 10−0

1000 6.489 × 10−5 3.203 × 10−5 4.123 × 10−1 9.171 × 10−1

8694 4.715 × 10−6 3.906 × 10−6 3.101 × 10−1 3.743 × 10−1

iterations by the optimizers in Table I. After one iteration,
(14) and (15) are relatively small in magnitude, and this would
correspond to a trivial result satisfying the partial differential
equations given the nonuniqueness of its solutions. As training
progresses, observational data are better captured in the deep
learning framework and the neural networks proceed to con-
verge toward the sought solution as opposed to trivial ones. A
difference in the rates of learning for ne, Te, and φ also exists
since the electric field is learned implicitly via the model
instead of being trained upon directly. Each individual loss
function being optimized therefore does not necessarily de-
crease perfectly monotonically, but it is instead the collective
training against partial differential equations in conjunction
with observational data that is key. Namely, while there are
many potential solutions to (12) and (13), and while they may
be more easily satisfied by trivial solutions, the limited ne and
Te measurements compel the optimizer towards the physical
solution of the partially observed plasma. In scenarios where
inconsistencies in the true and learned model Er exist, one can
repurpose this machine learning framework to iteratively test
and thereby discover the correct partial differential equations
altogether by quantitatively examining the proposed model’s
consistency with observations as in Table I. For example,
the analytic form of reduced source models in fluid theories
[11,38] can be inserted in the physics-informed deep learn-
ing framework to account for local turbulent ionization and
inelastic collisions with kinetic neutrals by observing such
measurements of ne, Te, and φ in global simulations [53] and
experiments [17].

V. CONCLUSION

These results illustrate a custom physics-informed deep
learning paradigm with the capacity to learn unknown
nonequilibrium dynamics in a multifield turbulent transport
model broadly relevant to magnetized collisional plasmas. We
specifically demonstrate the ability to determine unobserved
turbulent electric fields consistent with the drift-reduced Bra-
ginskii equations from partial electron pressure observations
in contrast with standard analytic techniques. This can be
applied to inferfield fluctuations that may be difficult to mea-
sure or when sought plasma diagnostics are simply lacking.
On the other hand, if experimental electric field measure-

ments exist, then the quantitative validity of the plasma
turbulence model embedded in the neural networks can be
expressly assessed. This technique is also quite robust since,
due to quasineutrality, it can be used to study ionized gases
in magnetized environments with multiple ions and impu-
rities present as commonly found in astrophysical settings
and fusion energy and space propulsion systems. From a
mathematical physics standpoint, it is significant that non-
linear dynamics can be accurately recovered from partial
data and theory in a six-field model. Inferring completely
unknown turbulent fields from just two-dimensional mea-
surements and representations of the evolution equations
given by (12) and (13) demonstrates a massive reduction in
the original three-dimensional turbulence model indicating
redundancy and the existence of reduced theory character-
izations. Going forward, this framework has the capability
to be generalized (e.g., to learn Te, Ti, v‖e, and v‖i in ad-
dition to φ using just one-dimensional ne measurements)
and transform how turbulence theories are systematically and
quantitatively validated in both plasma simulations and ex-
periments. The interpretable physics-informed methodology
outlined is also transferable across models (e.g., collision-
less fluids, gyrokinetic, electromagnetic, atomic physics) and
complex geometries. Furthermore, known limitations and un-
known corrections to Braginskii’s theory exist [54] which can
be introduced in the deep learning framework to automate
efficient testing and discovery of reduced plasma turbulence
models when high fidelity data are observed. These extensions
in theory and computing will be focused upon in future works.

Relevant data input files and codes can be found on
Github [55].
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APPENDIX: NORMALIZATION OF PLASMA THEORY

Converting the drift-reduced Braginskii equations from
physical units to a normalized form is essential to numerically
solve the model in both finite difference solvers and physics-
informed machine learning codes. For completeness, the full
normalization procedure is carried out whereby the physi-
cal variables and all associated quantities are transformed
according to [28]

n ← n/n0,

φ ← φ/φ0,

Ts ← Ts/Ts0,

v‖s ← v‖s/cs0,
(A1)
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where n0 = 5 × 1019 m−3, Ts0 = 25 eV, c2
s0 = Ts0/mi, φ0 =

B0a2/ct0, and t0 = √
a0Rc/2/ce0 is the interchangelike refer-

ence timescale. To match our simulation with experimental
edge parameters of the Alcator C-Mod tokamak, B0 =
BaxisR0/(R0 + a0) and Rc = R0 + a0. This in turn defines the
following dimensionless constants:

εR = 2a

Rc
,

εv = ce0t0
Rc

,

τ = Ti0

Te0
,

κ i = 3.9
2

3

Ti0t0
miR2

cνi0
,

η = 0.51νe0t0,

κe = 3.2
2

3

Te0t0
νe0meR2

c

,

αd = Te0ct0
eB0a2

,

εG = 0.08τ

νi0t0
,

εGe = 0.73

12νe0t0
,

(A2)

where c and νs0 denote the speed of light and collision rate
[56], respectively. The spatiotemporal coordinates are normal-
ized by the following conversions:

x ← x/a0,

z ← z/R0,

y ← y/a0,

t ← t/t0.
(A3)

Under these sets of transformations, the normalized two-fluid
equations numerically solved are

de ln n

dt
= −εR

[
C(φ) − αd

C(pe )

n

]
− εv∇‖v‖e + 1

n
Sn + Dln n,

(A4)

∂ω

∂t
= C(pe ) + τC(pi ) + εv

αdεR
∇‖ j‖ − εGC(Gi )

− ∇ ·
{

n

B3

[
φ,∇⊥φ + ταd

∇⊥ pi

n

]

+ √
τεv

n

B2
v‖i∇‖

(
∇⊥φ + ταd

∇⊥ pi

n

)}
+ Dω, (A5)

dev‖e

dt
= mi

me
εv

(
1

αd
∇‖φ − ∇‖ pe

n
− 0.71∇‖Te

)

+ 4εvεGe
mi

me

∇‖Ge

n
+ εRαd TeC(v‖e )

+ η
j‖

T 3/2
e

+ SM‖e + Dv‖i , (A6)

div‖i

dt
= − εv√

τ

(
1

αd
∇‖φ + τ

∇‖ pi

n
− 0.71∇‖Te

)

+ 4εvεG√
τ

∇‖Gi

n
− εRταd TiC(v‖i )

− me

mi

η√
τ

j‖
T 3/2

e

+ SM‖i + Dv‖i , (A7)

de ln Te

dt
= 5

3
εRαdC(Te ) + κe

pe
∇‖T 7/2

e ∇‖ ln Te

+ 2

3

{
−εR

[
C(φ) − αd

C(pe )

n

]
− εv∇‖v‖e

+ 1

n

[
0.71εv (∇‖ j‖ − j‖∇‖ ln Te)

+ me

mi
η

j2
‖

T 5/2
e

]}
+ 2

3

1

pe
SE ,e + Dln Te , (A8)

di ln Ti

dt
= − 5

3
τεRαdC(Ti ) + κ i

pi
∇‖T 7/2

i ∇‖ ln Ti

+ 2

3

{
− εR

[
C(φ) − αd

C(pe )

n

]
− √

τεv∇‖v‖i

+ εv

∇‖ j‖
n

}
+ 2

3

1

pi
SE ,i + Dln Ti , (A9)

where the normalized diffusivities applied for all dynami-
cal variables are χx = −4.54 × 10−10, χy = −1.89 × 10−9,
and χz = −8.91 × 10−3. The normalized evolution equations
given by (A4) and (A8) are the physical model constraints
learned in the machine learning framework as detailed above.
A few subtle yet important differences exist between the
physical theory posed and the construction of the synthetic
plasma. One deviation between the theorized plasma and the
one produced computationally is that the numerical code ac-
tually evolves the logarithmic form of n, Te, and Ti to enforce
positivity and the high order diffusion operators act on these
logarithmic quantities, too. While equivalent analytically, this
choice numerically forces the drift-reduced Braginskii equa-
tions to be posed and solved in nonconservative form by the
finite difference solver. Consequent errors due to numerical
approximation can manifest as unexpected artificial sources
or sinks in the simulation domain [28]. In addition, simula-
tion boundaries applied in practice only approximately satisfy
the zero flux conditions when employing even- and odd-
symmetry conditions on a cell-centered discretized grid [28].
These computational discrepancies can cause potential mis-
alignment between inferred dynamics using idealized theory
and numerical modeling of the synthetic plasma’s turbulent
fields. Physics-informed deep learning can overcome these
numerical limitations when representing plasma theory since
positivity can be intrinsically encoded in the network plus it
employs a continuous spatiotemporal domain and the non-
linear continuum equations represented by (12) and (13) are
consequently evaluated exactly up to computer precision [40].
Unphysical numerical dissipation in observational data can
therefore present deviations from reflecting the sought plasma
theory, but reasonable agreement is nevertheless found when
analyzing the synthetic measurements with the partial differ-
ential equations embedded in the physics-informed machine
learning framework.
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