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Onset of inverse magnetic energy transfer in collisionless turbulent plasmas

Z. H. Zhao ,1 Y. Xie ,1 Z. Lei ,1 J. L. Jiao ,1 W. M. Zhou ,2 C. T. Zhou,3 S. P. Zhu,4 X. T. He,1,4 and B. Qiao 1,*

1Center for Applied Physics and Technology, HEDPS, and SKLNPT, School of Physics, Peking University, Beijing 100871, China
2Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics,

Mianyang 621900, China
3Center for Advanced Material Diagnostic Technology, Shenzhen Technology University, Shenzhen 518118, China

4Institute of Applied Physics and Computational Mathematics, Beijing 100094, China

(Received 11 March 2021; accepted 28 July 2021; published 9 August 2021)

Inverse magnetic energy transfer from small to large scales is a key physical process for the origin of
large-scale strong magnetic fields in the universe. However, so far, from the magnetohydrodynamic perspective,
the onset of inverse transfer is still not fully understood, especially the underlying dynamics. Here, we use
both two-dimensional and three-dimensional particle-in-cell simulations to show the self-consistent dynamics
of inverse transfer in collisionless decaying turbulent plasmas. Using the space filtering technique in theory and
numerical analyses, we identify magnetic reconnection as the onset and fundamental drive for inverse transfer,
where, specifically, the subscale electromotive force driven by magnetic reconnection do work on the large-scale
magnetic field, resulting in energy transfer from small to large scales. The mechanism is also verified by the
strong correlations in locations and characteristic scales between inverse transfer and magnetic reconnection.
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I. INTRODUCTION

One of the most puzzling problems in the universe is the
origin of large-scale strong magnetic fields that exist widely
in planets, stars and galaxies [1]. These magnetic fields are
of great significance on many astrophysical events [2] such as
accretion, star formation, and cosmic rays. In principle, two
main processes play key roles in formation of such fields:
inverse cascade [3] of magnetic energy from small (seeded
kinetic) to large magnetohydrodynamic (MHD) scales that
increases the spatial scale of the magnetic field and afterwards
the dynamo generally in MHD scale [4–6] that amplifies the
field intensity. In addition, the kinetic instabilities may also
contribute to amplification of magnetic fields if the pressure
anisotropy is excited [7,8].

A large number of investigations [9–11] on inverse
cascade have been carried out from the MHD perspective.
Three-dimensional MHD simulations show that [12,13]
inverse transfer always exists in helical turbulences, where
the magnetic helicity keeps conserved [14–16]. For nonhelical
turbulences, inverse transfer was not expected to occur in
early studies, however, recent high-resolution simulations
have also seen it happens in either nonrelativistic [17] or
relativistic [18] regimes. This contradiction clearly implies
that magnetic helicity is not the decisive condition for onset
of inverse transfer. The fundamental drive and essential
mechanism of inverse magnetic energy transfer is still not
fully understood yet, so far.

However, in astrophysics most seed magnetic fields are
generated at small kinetic scale in collisionless or weakly
collisional regimes, such as those generated by Biermann
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battery [19] and Weibel instabilities [20]. Inverse transfer
should enable the kinetic-scale seed fields to develop spatial
coherent structures on larger and larger scales till into MHD
scenario, which are further amplified by turbulent dynamo.
Therefore, to give a self-consistent description of the onset
and dynamics of inverse transfer requires a kinetic simulation
[21–23] that does not depend on a specific closure condition
required for MHD.

In this paper, we present two-dimensional (2D) and three-
dimensional (3D) kinetic particle-in-cell (PIC) simulations for
a collisionless decaying turbulent plasma with random seed
magnetic fields and/or flux tubes, where the self-consistent
dynamics of inverse magnetic energy transfer is shown. By
using the space filtering technique [24] in both theoretical
derivations and numerical analyses, we identify magnetic
reconnection [25–28] as the fundamental drive for inverse
transfer. More essentially, we demonstrate that the subscale
convective and Hall electromotive force driven by recon-
nection do work on large-scale magnetic fields, resulting in
energy transfer from small to large scales. We also find that
both the locations and the characteristic scales of inverse
transfer have strong correlations with those of magnetic re-
connection, instead of only the spectral similarity [29–32] got
in MHD simulations, which further verifies the mechanism.

II. SIMULATION SETUP

The PIC simulations are performed with the code
“EPOCH” [33]. The simulation box is composed of 20482

cells in 2D and 5123 cells in 3D, constituting a domain size
(16πdi )2 and (8πdi )3, respectively, where di is the ion skin
depth. The whole simulation box is filled with a Maxwellian
distributed plasma with density n0 and temperature T0, where
128 (in 2D) and 4 (3D) macroparticles per cell are used.
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FIG. 1. Distributions of out-of-plane current density Jz (blue-red colors) and magnetic vector potential Az (contour lines) at times (a) t = 5,
(b) 15, (c) 40 ω−1

ci in 2D, and (d) 20 ω−1
ci in 3D simulations of collisionless turbulences with random seed fields. The triangular symbols in

panel (c) represent the extreme points (O-points) of Az with maximum in red and minimum in blue colors.

Due to the limitation of the computational resources, we
have also checked the convergence of the simulation by using
more particles (8 particles) in the smaller 3D simulation box
[(4πdi )3], where the same main physics are shown. Periodic
boundary conditions are taken in all directions. A uniform
background magnetic field Bz = B0ẑ is applied, where B0 is
the normalized strength. The ratio of plasma thermal pres-
sure to magnetic pressure β = n0T0/(B2

0/2μ0) = 0.2 and the
Alfvén speed vA/c = 0.05 are chosen. To save computational
resources, we choose ion to electron mass ratio mi/me =
25, correspondingly, the electron gyration radius becomes
rce/di = 0.09 and the ratio of plasma frequency to gyration
frequency ωpe/ωce = 4.

The common method for random seed magnetic field
setup in turbulence simulations [34,35] is used, where
multiple kinetic-scale magnetic islands are distributed as
δBx = ∑

m,n bmnn sin(kmx + ψmn) cos(kny + φmn) and δBy =∑
m,n −bmnm cos(kmx + ψmn) sin(kny + φmn). The subindex

m, n ∈ [lmin, lmax] are Fourier mode numbers along x and y
directions, and the wave numbers are km = 2πm/L and kn =
2πn/L, where L is the size of simulation box. ψmn and φmn are
random phases. The coefficient bmn = 2B0/[(m2 + n2)(l2

max −
l2
min)]1/2 is set to satisfy 〈δB2

x + δB2
y〉 ≈ B2

0, where 〈· · · 〉 repre-
sents the spatial average operator. In 2D simulations, lmin =
8 and lmax = 16 are chosen so that the simulated turbulent
system initially contains hundreds to thousands of magnetic
islands. In 3D simulations, the random field is setting as a
straightforward extension of 2D in the z direction to form the
flux tubes, which can be used to mimic the elongated current
filaments induced by the Weibel-type instabilities occurring
widely in the astrophysical counter-streams. Here lmin = 4 and
lmax = 8 are taken. Hereafter, the normalizations with space to
di, time to ω−1

ci , magnetic field to B0, electric field E0 = vAB0,
current density J0 = en0vA, energy transfer and dissipation
rate to P0 = J0E0 are used for all physical quantities.

III. SIMULATION RESULTS

First, let us show the overall picture of inverse transfer
occurring in simulations. Figure 1 plots distributions of

out-of-plane current density Jz (blue-red colors) and magnetic
vector potential Az (contour lines) at different times. We see
that due to conservation of |Az|2, the plasma spontaneously
evolves to form an ocean of small-scale magnetic islands
from initial random seeds, where Jz and Az are self-organized
[Fig. 1(a)]. Afterwards, some neighboring magnetic islands
gradually merge together, resulting in enlargement of their
scales and decrease of their numbers, see Fig. 1(b) [where
the number of magnetic islands is reduced to 1/2 of that in
Fig. 1(a)] and Fig. 1(c) (reduced to 1/4). The number and
positions of islands are calculated by counting the extreme
points of Az [36], illustrated by the triangular symbols in
Fig. 1(c). Further, we see the current densities decrease
from Fig. 1(a) to Fig. 1(c) because the turbulence has no
external drive. The 3D simulation results in Fig. 1(d) show
overall similar picture of inverse transfer. We also see that, in
addition to merging, the flux tubes suffer from current-driven
kink-mode instabilities in the elongated direction, which
enhances interactions between plasmas and magnetic
fields.

Figure 2(a) shows magnetic field energy spectra EB(k)=
|B(k)|2 at various times in 2D simulation, where k is the
wave number. We see that the peak wave number kpeak [where
EB(k) has the maximum value] decreases with time, i.e.,
Bose-Einstein condensation [37–39] in low-k modes. This
means the magnetic field energy moves gradually from small
to large scales, i.e., inverse magnetic energy transfer. Further-
more, for k <kpeak in the subinertial range, we see that the
growth of field energy slows down with time, indicating that
inverse transfer efficiency drops with time in such decaying
turbulence, and the spectra eventually evolves to have a fitting
k3.8, which is close to the k4 Batchelor spectrum, in agreement
with the causality requirement ∇ ·B = 0 [40]. While in the
inertial range k >kpeak, the spectral converges to k−2.5, which
is significantly deeper than k−2.0 of weak turbulence in MHD
[17,18,30], but close to k−8/3 obtained in kinetic turbulence
simulations [41]. The inset shows that the energy spectra of
2D and 3D are highly similar, except for some minor spectral
index differences. Note that the Goldreich-Sridhar spectrum
k−5/3 [42] is expected to appear when kpeakdi drops below
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FIG. 2. (a) Magnetic field energy spectra EB(k) = |B(k)|2 at vari-
ous times in 2D simulation, inset shows the comparison of 2D and 3D
energy spectra at t = 40ω−1

ci ; (b) the total field energy EB = �k |Bk |2
in 2D and 3D; (c) the number of magnetic islands (2D) and flux tubes
(3D) N , where the 3D results are multiplied by a factor of 4 because
the spatial lengths in the 3D simulation are reduced by 2 times of
those in 2D in both x and y direction (the magnetic reconnection and
the corresponding inverse cascade occur dominantly in this perpen-
dicular (x, y) plane); (d) the peak wave number kpeak evolving with
time (t + τ0 )/τ0 in 2D and 3D, where τ0 = 5ω−1

ci .

0.1, indicating that our simulation has not yet entered into the
completely MHD-scale turbulent state.

Figures 2(b)–2(d) show, respectively, the total magnetic
field energy EB = �k|Bk|2, the number of magnetic islands
(2D) and flux tubes (3D) N , and kpeak evolving with time
(t + τ0)/τ0 in both 2D and 3D, where τ0 refers to the time
interval for N drops by half of that at initial time. From
Figs. 1(a)–1(c), we obtain averagely τ0 ≈5ω−1

ci , which cor-
responds to a reconnection rate βrec,0 = R0/vAτ0 ≈ 0.14 (R0

is the average initial island radius), close to the typical value
0.1 of collisionless reconnections [43,44]. We see that the
self-similarity of inverse transfer also keeps in collisionless
turbulent plasmas, where all three physical quantities show a
power-law decay whether in 2D or 3D, although their power-
law indexes are slightly deviated from those in MHD [30].
This is because that the self-organization process of magnetic
reconnection has nothing to do with the specific dissipation
mechanisms, regardless of whether in collisional MHD or
collisionless kinetic regimes.

Next, we analyze the simulation results in more details to
give the fundamental drive and essential mechanism of inverse
transfer. We employ the space-filter approach [45–49] with
the low-pass filtered field as Ũ(x, t ) ≡ ∫

drGl (x − r)U(r, t ),
where U(x, t ) is any scalor or vector field, Gl is the filter (con-
volution kernel), so that Ũ only contains information at scale
length > l . The normalized boxcar window filter [46] is used,
and other filter functions (e.g., Gaussian kernel) give similar
results. For mass dependence, the mass-weighted-filter (Favre
filter [50]) is taken as �̂ ≡ ñ�/̃n with n number density. In
3D simulations, the isotropic filtering kernel with the same
scale length l is used here for all three dimensions. We have
checked the results with the anisotropic kernel function with
l⊥ and l‖, which show that in the highly anisotropic flux-tubes,
the filtering is insensitive to l‖ in the elongated direction and
resultantly an isotropic kernel l‖ = l⊥ is sufficient to show the
main physics of inverse cascades here. From the combination

of Faraday’s, Ampere’s, and Ohm’s laws, we obtain that the
evolution of the filtered electromagnetic field energy at scale
length> l obeys [47,48]

∂

∂t

(
1

2

B̂2

μ0
+ 1

2
ε0Ê2

)
+∇ ·

(
1

μ0
Ê×B̂

)
= −Ĵ·Ê, (1)

Ê = −(̂
u×B̂ − Ĵ × B̂/ẽn

)−(Tu×B−TJ×B)

−
(

me

e

dũe

dt
+ 1

ẽn
∇ ·P̃

)
. (2)

Eqs. (1) and (2) together describe the evolution of electromag-
netic field energy at scale length > l . We see that, in addition
to the original counterparts of all physical quantities at the
same scale length > l , two new subscale terms (scale length
< l) appear, namely, the subscale convective electromotive
force Tu×B = ̂u × B − û × B̂ and the subscale Hall electromo-

tive force TJ×B = (˜J × B − Ĵ × B̂)/ẽn. Note that if no filter
operation is used, i.e., l = 0, these two terms disappear.

In nonrelativistic magnetized plasmas, the electric field
energy is much smaller than the magnetic field, so we ignore
ε0Ê2/2 in Eqs. (1) and (2). Then we see three source or
sink terms do work −Ĵ · Ê on magnetic fields. The first term
Fl = (̂u × B̂) · Ĵ represents the energy conversion caused by
large-scale field-plasma interactions, leading to magnetic field
compression/stretching, which plays a dynamolike role in
small scale converting kinetic to magnetic energy and vice
versa. The second term Tl =Tl1+Tl2 =Tu×B · Ĵ−TJ×B · Ĵ is
the cross-scale energy transfer driven by the subscale elec-
tromotive forces, where a positive (negative) value indicates
an inverse (direct) energy transfer, resulting in formation of
large-scale magnetic fields. Last, Dl =Dl1+Dl2 = me

e
dũe
dt · Ĵ+

1
ẽn∇ · P̃ · Ĵ corresponds to the nonideal energy dissipation,
where Dl1 and Dl2 are driven by the electron inertia and stress
tensors. If l = 0, Tl=0 = 0, while Dl=0 ≈ −De = −γe[J ·
(E + ve × B)−ρe(ve · E)], the Lorentz invariant scalar quan-
tity [51] being used for characterization of local energy
dissipation of collisionless reconnection [52] at l < di. In
other words, Dl can be regarded as energy dissipation of
magnetic reconnection in a large-scale area including both
upstream and downstream regions instead of only localized
reconnection points.

Figures 3(a)–3(c), respectively, plot distributions over scale
lengths l of Fl , Tl , and Dl . Both Fl and Dl show mostly
negative values, leading to decrease of the field energy with
scale length> l , however, Tl show positive values [Fig. 3(b)],
resulting in inverse transfer of magnetic energy from sub-
scales (< l) to the large scale (> l). From the sum of them
shown in Fig. 3(d), we see that the magnetic energies in a large
scale with l > 2di always show positive values and the char-
acteristic scale length where the peak value of Fl + Tl + Dl

locates, lpeak, increases with time [see also Fig. 3(f)], which
both indicates that the field energy is transferred from small
to large scales, resulting in developing of large-scale coherent
field structures. The insets show consistencies of 2D and 3D
simulations, where the deeper Fl in 3D indicates stronger
plasma-field interaction, and if dynamo exists, Fl even pro-
vides a positive value. In view of these, we conclude that
increase of magnetic energy in large scales is mostly due
to cross-scale inverse transfer driven by the subscale elec-
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FIG. 3. Distributions over scale lengths l of three source and
sink terms in Eqs. (1) and (2) at different times: (a) field-plasma
interaction Fl , (b) cross-scale energy transfer Tl , (c) nonideal energy
dissipation Dl , and (d) Fl + Tl + Dl , where the inset figures show
comparisons of 2D and 3D results at t = 5ω−1

ci and all values are
multiplied by a factor of 100. (e, f) Time evolutions of the peak
T peak

l and the corresponding lpeak as well as the characteristic scale
length lAz of Az.

tromotive force Tl . Furthermore, for the decaying turbulence
here with no fluid drives βram = 1

2ρu2
rms/(B2

0/2μ0) = 0, the
absolute intensities of all terms decrease with time, and a
relatively slow inverse transfer occurs. If adding a fluid drive
(such as βram = 1), i.e., initial random velocity field urms 	= 0,
both the magnetic reconnection and inverse cascade rates sig-
nificantly increase, see insets of Figs. 3(a)–3(d). In the context
of magnetic reconnection, the reason is that the fluid drive ac-
celerates the inflow of the magnetic field, thus speeding up the
reconnection. To show how the large-scale fluid drive promote
the inverse energy transfer and field dynamo processes, a self-
consistent combination of both the kinetic PIC simulation and
the MHD simulation (and/or a hybrid fluid-PIC simulation) is
required, which will be studied in the near future.

Temporal evolutions of the peak intensity T peak
l and the

corresponding scale length lpeak of, respectively, 2D and
3D are shown in Figs. 3(e) and 3(f). T peak

l shows a fitting
power of t−2.15, which is basically consistent with our the-
ory since Tl1 = Tu×B ·̂J∝B3/L ∝ t−2 and Tl2 = −TJ×B ·̂J∝
B3/L2 ∝ t−2.5. More importantly, see Fig. 3(f), lpeak, the scale
where the large-scale magnetic energy starts to increase, is
almost identical to the characteristic scale lAz of magnetic
islands in 2D and flux tubes in 3D (obtained by Fourier
transform of Az) at various times, which both show a fitting
of t0.6. It is also worth noting that Dl [Fig. 3(c)] dominates
at l < di, in consistence with our theoretical analysis above
for collisionless reconnection. So, all of these indicate a high
correlation of inverse transfer with magnetic reconnection.

FIG. 4. [(a), (b)] Spatial distributions of Tl and Dl in a por-
tion area of the simulation at t = 5ω−1

ci , where l = 2di is chosen,
contour lines show Az, cross symbols represent the saddle points
(X-points) in field topology. (c) Joint distribution of log |Tl=2di |
and log |Dl=2di |. (d) The Spearmann rank correlation coefficients ρ

between Tl and Dl , Dl and −De, Tl,X and Dl,X at different l . (e–
g) Schematic physical picture showing how magnetic reconnection
drives inverse transfer from the simple coalescence process of two
magnetic islands.

To further prove that inverse transfer is induced by mag-
netic reconnection, spatial distributions of Tl and Dl at t =
5ω−1

ci are plotted in Figs. 4(a) and 4(b), where l = 2di is
chosen, identical to the characteristic scale length of mag-
netic islands. We see a pronounced spatial correlation exists
between Tl and Dl (see the regions circled in red), and almost
all inverse transfers (in green color) occur at the locations
exactly around the reconnection points (see contours of Az and
X points marked by the cross symbols). The joint distribution
of log |Tl | and log |Dl | in Fig. 4(c) also confirms such intuitive
correlation. For quantitative description of this correlation, we
plot the Spearmann rank correlation coefficients ρ between
Tl and Dl (solid), and Dl and −De (dashed) varying with l
in Fig. 4(d). Obviously, Dl and −De show a high correlation
with ρ ≈ 0.8 (in 2D) and 0.65 (in 3D) at small scale l < di,
and with the increase of l , ρ drops heavily. Further, Tl and Dl

show a moderately strong correlation with the peak ρ ≈ 0.4
(in 2D) and 0.36 (in 3D) at l ≈ 2di, which is approximately
equal to the characteristic scale length of magnetic islands,
see also Fig. 3(f). Furthermore, there exists an even stronger
correlation between Tl and Dl at X points with ρ ≈ 0.6 (solid
black line), which is a more pronounced evidence that mag-
netic reconnection triggers inverse cascade. We have checked
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these correlations at other times (such as t = 15 and 40 ω−1
ci ),

which show the similar physics.
Last, we take the simple coalescence process of two mag-

netic islands as example, shown in Figs. 4(e)–4(g), to give a
schematic physical picture to understand how magnetic recon-
nection drives inverse transfer. The two magnetic islands with
the same inward current (blue color) are attracted to each other
by the J × B force [unfiltered islands, Fig. 4(e)], resulting
in formation of a Harris-like current sheet in the outward
direction (red color) in the central small scale with l < di and
eventually occurrence of magnetic reconnection. As a result,
an out-of-plane reconnection electric field E (black dots) is
induced, which dissipates the magnetic energy because gener-
ally −J · E < 0. However, if from the large-scale perspective
(islands after filtering with l = 2di here), see Fig. 4(f), the
Harris-like current sheet disappears, and two magnetic is-
lands becomes like one whole peanut-shaped island [18] with
the same inward current (blue). As a result, when magnetic
reconnection occurs, from the large-scale view we see that
the total work −̂J · Ê > 0 [also see Fig. 2(d)], leading to
inverse transfer. More exactly, as we analyzed above, the
subscale electromotive force induced by reconnection con-
tributes to this cross-scale energy transfer. Correspondingly,
the shape of the large magnetic island eventually self-evolves
from peanut to commonly circle with the smallest average
curvature [Fig. 4(g)]. In other words, from a small-scale view,
magnetic reconnection (energy dissipation) occurs, and from
a large-scale view, magnetic islands reorganize and expansion
(inverse transfer) are observed.

IV. SUMMARY AND DISCUSSION

In summary, we have self-consistently identified that
magnetic reconnection is the fundamental drive for in-

verse magnetic energy transfer in collisionless decaying
turbulences. The subscale electromotive force Tl driven by
magnetic reconnection do work on the large-scale magnetic
fields, resulting in field energy transfer from small to large
scales and consequently appearance of large-scale coherent
structures. We also find that both the locations and the charac-
teristic scales of inverse transfer have strong correlations with
those of magnetic reconnection, instead of only the spectral
similarity [29–32] got in MHD simulations, which further
verifies the mechanism.

In a more realistic astrophysical case, the fluid drive
from the large-scale environment may significantly acceler-
ate the inverse cascade process shown here, and the dynamo
effect becomes dominant as well in the large fluid scale,
whose modeling requires a self-consistent combination of
both the kinetic PIC and MHD simulations and/or a hybrid
fluid-PIC simulation.
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