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Local field correction to ionization potential depression of ions in warm or hot dense matter
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An analytical self-consistent approach was recently established to predict the ionization potential depression
(IPD) in multicomponent dense plasmas, which is achieved by considering the self-energy of ions and electrons
within the quantum statistical theory. In order to explicitly account for the exchange-correlation effect of
electrons, we incorporate the effective static approximation of local field correction (LFC) within our IPD
framework through the connection of dynamical structure factor. The effective static approximation poses
an accurate description for the asymptotic large wave number behavior with the recently developed machine
learning representation of static LFC induced from the path-integral Monte Carlo data. Our calculation shows
that the introduction of static LFC through dynamical structure factor brings a nontrivial influence on IPD at
warm/hot dense matter conditions. The correlation effect within static LFC could provide up to 20% correction
to free-electron contribution of IPD in the strong coupling and degeneracy regime. Furthermore, a new screening
factor is obtained from the density distribution of free electrons calculated within the average-atom model,
with which excellent agreements are observed with other methods and experiments at warm/hot dense matter
conditions.
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I. INTRODUCTION

In a many-body environment, the properties of a bound
electron are not only affected by its nucleus and other bound
electrons, but also by the surrounding free electrons and other
neighboring ions. For dense plasma systems, a well-known
phenomenon among these properties is the ionization po-
tential depression (IPD). Detailed knownledge of IPD is of
essential importance for the description of physical processes
related to bound-free transitions, since the ionization balance
[1–3] and also rate coefficients [4–7] are significantly altered
by the IPD. Therefore, accurate prediction of IPD plays a
key role for determination of the thermodynamic and optical
properties of the plasma system and for fully understanding a
wide range of atomic processes within plasma environments
[8], i.e., for studies on warm dense matter (WMD) [9,10] such
as shock experiments [11,12], planetary science [13,14], iner-
tial confinement fusion [15,16], and nonequilibrium plasmas
created with x-ray free-electron lasers [17,18].

In the last few years, the rapid development of high-intense
laser facilities [19–23] makes it possible to access precise and
valuable experiment data on IPD under extreme conditions
in the high energy density regime [24–26]. The experimental
outcomes can be used to benchmark the IPD models and
the associate physical assumptions. Comparison of the ex-
perimental observation to the widespread Ecker and Kröll
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(EK) [27] and Stewart and Pyatt (SP) [28] models reveals
the invalidity of these analytic models, since these models
always fail to correctly describe the effective screening length
as well as the structure of dense plasmas and therefore, usually
break down one way or another. Theoretical methods beyond
the classical analytic models, including the two-step Hartree-
Fock-Slater model [29], density functional theory molecular
dynamics [30,31], Monte Carlo method [32], the fluctuation
model [33], and atomic-solid-plasma model [34], have had
great success in explaining the new experiment results. More
recently, a consistent approach is developed to determine
the screening potential in dense plasmas, whereby the IPD
information is also obtained simultaneously [3,35]. Further-
more, a nonlocal thermal equilibrium approach by combining
a quantum-mechanical electronic-structure calculation and a
Monte Carlo molecular-dynamics simulation has been pro-
posed to calculate the IPD effect under nonthermal situations
[36]. These state-of-the-art methods indicate that the trend in
IPD prediction gradually transforms into the combination of
theoretical modeling with ab initio simulation.

Based on the quantum statistical theory, an analytical
self-consistent approach was established for the IPD effect
[37,38], and had been extended to describe the realistic mul-
ticomponent mixture [39]. Investigation on different chemical
elements in a wide range of temperatures and densities dis-
played good agreements between theoretical predictions and
the corresponding experiments. However, in the previous
study the Debye-Hückel (DH) model is employed to describe
the electron-electron response, which only becomes valid in
the low-density and the high temperature limits. At WDM
conditions, the intricate interplay of Coulomb correlations,
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thermal excitations, and quantum exchange effects makes
theoretical modeling for WDM systems very challenging. In
particular, an accurate description of an electronic subsystem
is of essential relevance at WDM conditions, in which case
the DH model for electron-electron response is inadequate
to capture dynamical properties of electrons. To incorporate
dynamical correlations as well as quantum degeneracy effects
into the previously proposed IPD model, more advanced re-
sponse function for electrons is necessary.

Therefore, performing research to fill this gap is of great
practical significance for matters under WDM conditions. To
accomplish this goal, local field correction (LFC) is intro-
duced to account for the correlation effects in the present
work. Including the LFC in the density response function
of collisionless electron gas provides a way to describe
the exchange and correlation effects between electrons. The
connection of exchange-correlation effects, LFC, and other
related quantities within uniform electron gases at WDM con-
ditions is recently studied in detail in Refs. [40–48] based on
the quantum Monte Carlo (QMC) simulations. In this work, a
machine learning representation of static LFC [49] is utilized
to calculate the electronic dynamical structure factor, which is
an essential ingredient of the proposed IPD model. In this way,
the electronic exchange-correlation effects is fully accounted
in our proposed approach. As demonstrated in this paper,
a nontrivial influence is discovered by introducing the LFC
on IPD at WDM conditions. The correlation effect of free
electrons introduced by static LFC could provide up to 20%
correction to free-electron contribution of IPD in the strong
coupling and degeneracy regime.

The present work is organized as follows: In Sec. II A,
we outline the approach for our calculation and describe the
relation between IPD and structure factor (SF); in Sec. II B,
we review different approaches to obtain the static SF of free
electrons as well as the LFC involved in the calculation of SF;
in Sec. II C, we focus on the ionic SF and screening function.
In Sec. III A, we show the influence of LFC and dynamical
effect on the free-electron contribution to IPD. Then, we
calculate the IPD at moderate coupling and nondegenerate
region (Sec. III B) and strong coupling and degenerate region
(Sec. III C). Finally, conclusions are drawn in Sec. IV.

II. METHODS

A. Quantum statistical framework for the determination of IPD

The physical system investigated in the present work is
a multicomponent mixture constructed of Ne free electrons
and Nα ions with charge zα in a box with volume V . The
partial particle number density is defined as nc = Nc/V with
c = e, α. The change of the ionization potential (IP) of an
atomic/ionic system with charge zα in a plasma environment
in comparison to that of the corresponding isolated case is
described by IPD, which is defined as

I IPD
α = IPenv

α − IPiso
α , (1)

where IPiso
α = E iso

α − E iso
α+1 is the IP in the isolated system, E iso

α

is the total energy of isolated ion α; IPenv
α = E env

α − E env
α+1 − �e

is the IP in a plasma environment, where E env
α = E iso

α + �α is
the total energy of ion α in a plasma environment. �α is the

self-energy (SE) of ion α, which describes the influence of the
surrounding environment, including free electrons and other
neighboring ions, on the ionized ion. Accordingly, the total
energy of the involved electron is �e. Then it is straightfor-
ward to express the IPD in terms of self-energy

I IPD
α = (

E env
α − E iso

α

) − (
E env

α+1 − E iso
α+1

) − �e

= �α − �α+1 − �e. (2)

In the framework of the Green’s function method, the self-
energy of ion α can be further divided into the Hartree-Fock
(HF) term �HF

α and correlation term �corr
α , which describe

the quantum exchange effect and dynamical correlation ef-
fect between ion α and other particles, respectively. In the
warm/hot dense regime, correlation term �corr

α plays an im-
portant role. In the remainder of this work, we concentrate on
the dynamical correlation effect to the IPD. Within the G0W
approximation, the resulting dynamical correlation contribu-
tion to the IPD can be expressed as an integral of the dielectric
function of the system

Idc
α = �corr

α − �corr
α+1 − �corr

e

=
∫

d3k
(2π )3

∫ ∞

−∞

dω2

2π

2(zα + 1)e2

ε0k2ω2
Im

[
nB(ω2) + 1

ε(k, ω2)

]

(3)

with nB(ω) = 1/(exp[β(h̄ω − μ)] − 1) the Bose-distribution
function. According to the fluctuation-dissipation theorem,
the effective charge-charge response to an external pertur-
bation, i.e., ε(k, ω), can be represented in terms of the
charge-charge dynamical SF SZZ (k, ω),

Im

[
nB(ω) + 1

ε(k, ω)

]
= πkBT

h̄k2
κ2

scrSZZ (k, ω). (4)

The total charge-charge dynamical SF SZZ (k, ω) consists of
two parts: the dynamical SF of free electrons S0

ee(k, ω) and
effective ionic charge-charge dynamical SF Sion

ZZ (k, ω):

SZZ (k, ω) = 1

1 + zp
S0

ee(k, ω) + zp

1 + zp
Sion

ZZ (k, ω). (5)

All the complexity in the plasma environment, including the
dynamical impact on the electronic dynamical SF See(k, ω)
due to the attraction of ions and the electron-ion dynami-
cal SF Seγ (k, ω), are all contained in the latter contribution
Sion

ZZ (k, ω).
Combining Eqs. (3)–(5), we finally arrive at a practical

form for the dynamical correlation contribution to the IPD:

Idc
α = 1

1 + zp
Idc,el

α + zp

1 + zp
Idc,ion

α , (6)

with the free-electron contribution:

Idc,el
α = (zα + 1)e2κ2

effa0

2π2ε0r2
α

∫ ∞

0

dk0

k2
0

S0
ee(k0), (7)

and the screened ionic contribution:

Idc,ion
α = (zα + 1)e2κ2

effa0

2π2ε0r2
α

∫ ∞

0

dk0

k2
0

Sion
ZZ (k0), (8)
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with k0 = ka0 in terms of the Bohr radius a0. κeff is
the effective inverse screening parameter and rα = [3(zα +
1)/(4πne)]1/3 is the ionic radius.

As a direct consequence of the decomposition in Eq. (5),
the total IPD is also divided into two corresponding compo-
nents. The free-electron part only covers the influence of the
dynamic response induced by the fast oscillating electrons.
The slowly moving part of the surrounding plasma environ-
ment is included in the screened ionic contribution, which
describes the ion-ion correlation as well as the electron-ion
screening effect within the plasmas. In this way, a direct
connection between the IPD and the SF of the plasma system
is established. Another advantage of the currently proposed
model is the decomposition of the screened ionic and the
free-electron contribution. Such splitting makes it convenient
for us to investigate different physical effects on IPD and
to benchmark the validity of different approximations, which
will be discussed in detail in the subsequent sections.

B. Structure factor of free electrons and local field correction

In dense plasma systems, electron-electron static response
can be characterized by the static SF of electrons. Reasonable
and accurate evaluation of static SF for warm dense electron
systems is still an ongoing research theme. In the nonde-
generate and weakly coupling regime, the electron-electron
response can be calculated on the basis of the Debye-Hückel
theory, which leads to the Debye-Hückel form for the static
SF of free electrons

S0
ee(k) = k2

k2 + κ2
e

, (9)

where κe is the inverse of the electron Debye length. With
the increase of the electron coupling parameter, strong cor-
relations between free electrons can be accounted for by
modifying the bare Coulomb potential with LFC. In the WDM
regime, however, the Debye-Hückel SF (9) and its modified
version with the LFC extension cannot catch the quantum
exchange effect and dynamical correlation effect within the
electron gas systems.

The static SF can be also obtained via integrating out the
frequency in the dynamical SF

S0
ee(k) =

∫ ∞

−∞
dω S0

ee(k, ω). (10)

After the frequency integration of S0
ee(k, ω), the influence of

dynamical effects remains compared with the above static
models. The dynamical SF is defined as the Fourier transform
of density-density correlation function 〈ρ(k, t ) ρ(−k, 0)〉. In
the linear response theory, S0

ee(k, ω) can be obtained from dy-
namical density-response function of free electrons χ0

ee(k, ω)
given by the fluctuation-dissipation theorem:

S0
ee(k, ω) = − Imχ0

ee(k, ω)

πne(1 − e−βω )
, (11)

and the dynamical density-response function reads

χ0
ee(k, ω) = χ0(k, ω)

1 − Vee(k)[1 − G(k, ω)]χ0(k, ω)
, (12)

with the Lindhard density-response function of the nonin-
teracting system χ0(k, ω) and the dynamical LFC G(k, ω).
The response function χ0

ee(k, ω) in the well-known random
phase approximation (RPA) is recovered by ignoring the dy-
namical LFC. The essential problem going beyond the RPA
result is to determine the dynamical LFC G(k, ω) with high
accuracy. In this work, we perform Monte Carlo simulation
to obtain the SF of free electrons. It is demonstrated that
the QMC method is able to accurately describe the behavior
of SFs from ground state to classical Debye-Hückel limits
for warm dense homogeneous electron gas [41]. Combining
with the Singwi-Tosi-Land-Sjölander approximation [50–52],
path-integral Monte Carlo (PIMC) simulations can also pro-
vide the static SF of free electrons over the entire k range
[47].

In the PIMC simulation, the imaginary-time density cor-
relation function 〈ρ(k, τ ) ρ(−k, 0)〉 (with τ = −ih̄β) is
directly evaluated. The dynamical SF is then acquired in terms
of the inverse Laplace transform of the imaginary-time corre-
lation function. As pointed out by Groth et al. [44], numerical
implementation of the inverse Laplace transform connecting
the dynamical SF S0

ee(k, ω) and the imaginary-time density
correlation function is an ill-posed problem due to the the
statistical uncertainty in the corresponding QMC data. Instead
of an immediate evaluation of the dynamical SF through in-
verse Laplace transform, one can also calculate the dynamical
LFC G(k, ω), which provides additional constraints for the
reconstruction of the dynamical SF from the QMC data. Such
procedure for determination of dynamical SF is developed by
Dornheim et al. [48], where trial solutions Gtrial(k, ω) that
satisfy the symmetry properties and also different asymptotic
limits of the dynamical LFC are stochastically selected. Once
the final G(k, ω) is picked out according to the PIMC data,
the corresponding dynamical SF is obtained by Eqs. (11)
and (12).

A further simplification for the LFC of the response func-
tion is to take the static version of the dynamical LFC G(k) =
G(k, 0). The static LFC G(k) can be obtained directly from
PIMC data. Based on an extensive set of PIMC and CDOP
data [53], Dornheim et al. finally included 6.5 × 104 G(k)
samples into their training set to train a fully connected deep
neural network (40 hidden layers with 64 neurons each),
and achieved a machine learning representation of G(k; rs, θ )
with respect to continuous wave vectors, densities, and tem-
peratures over the entire WDM regime [49]. Moreover, in
order to correctly describe the large wave number limit of
static LFC G(k), accurate asymptotic expression is added into
the above machine learning representation. Such combination
leads to the effective static approximation (ESA) for the LFC
of free electrons [45]. In the majority of the WDM regime, the
dynamical SF S0

ee(k, ω) based on the static LFC G(k) is man-
ifested to be adequate for most calculations [48] to capture
the impact of dynamical correlation within the warm dense
systems. To investigate the dynamical effects and short-range
correlation effects of the electronic subsystem, we will apply
the ESA version of static LFC to calculate the dynamical SF
S0

ee(k, ω) of free electrons. The corresponding static SF is
established by integration over the frequency variable of the
resulting S0

ee(k, ω).
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C. Effective ionic charge-charge structure factor
and screening function

The effective ionic charge-charge SF Sion
ZZ (k) describes the

ionic correlation and the electron screening effect on the ions.
It includes the ion-ion SF and the electron-ion partial SF and
can be expressed in terms of the the ionic density-density SF
Sαβ (k) of ion α and β multiplied by a screening function,

Sion
ZZ (k) = [1 − qscr(k)]2

∑
αβ

zαzβ
√

xαxβ

z̄zp
Sαβ (k). (13)

The static SF Sαβ (k) can be computed from the pair distribu-
tion function in the hypernetted chain (HNC) approximation
[54–56] as well as other numerical simulations such as molec-
ular dynamic simulation. qscr(k) represents the correlation
between free and bound electrons and takes the following
form in the framework of linear response theory:

qscr(k) = Veα (k)[1 − εee(k, 0)]

zαVee(k)εee(k, 0)
= εee(k, 0) − 1

εee(k, 0)
. (14)

In the long-wavelength limit, the dielectric function has the
form εee(k, 0) = 1 + (κe/k)2, which results in the Debye-
Hückel expression for the screening function

qDH
scr (k) = qα (k)

zα

= κ2
e

k2 + κ2
e

. (15)

The validity of this expression is restricted to the weakly
coupled plasma systems. For moderately and strongly cou-
pled warm dense plasmas, more advanced expression for the
dielectric function of free electrons has to be utilized:

εee(k, 0) = 1 − Vee(k)χ0(k, 0)

1 + Vee(k)G(k)χ0(k, 0)
, (16)

where the static LFC G(k) can be obtained with the machine
learning representation. Neglecting the static LFC G(k) leads
to the RPA version of screening function.

The screening factor can be also obtained from the detailed
information of the electronic wave functions through solving
the Dirac equation with some effective potentials. Within the
average-atom (AA) model, we can calculate the screening
factor from the free-electron density distribution of each ionic
Wigner-Seitz sphere [56–59],

qscr(k) = 4π

zαk

∫ rα

0
dr r sin(kr)ρe(r). (17)

To compare the screening factors [1 − qscr(k)]2 calculated
within different approximations, we take Al3+ plasma at ρ =
2.7 g cm−3 and t = 10 eV as an example. In Fig. 1 the results
for the screening factors [1 − qscr(k)]2 obtained from the long
-wavelength formula, RPA, ESA, and AA models are shown.
The screening factors within the RPA and ESA are generally
in good agreement, while the deviation of long-wavelength
formula in the large wave number region is relatively large.
It can be seen that the AA model predicts an oscillating
structure for the screening factors around the RPA and ESA
results. With the help of LFC, the screening factor obtained
by ESA comes closer to that of the AA model in the small
wave number region. The oscillation in the middle to large
wave number region corresponds to the inner-shell-electron
structure with large scattering angle. It indicates that with the
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r(k

0
))

2

AA
RPA
ESA
Long Wavelength

FIG. 1. Screening factor [1 − qscr(k)]2 for Al3+ plasma at ρ =
2.7 g cm−3 and t = 10 eV. Dash-dotted green line: average-atom
model; solid red line: random phase approximation; dashed black
line: effective static approximation; and dotted blue line: long-
wavelength formula.

accurate atomic wave functions, the AA model is able to bring
more atomic-structural details to its screening factors.

III. RESULTS AND DISCUSSION

A. Free-electron contribution to IPD

To fully understand the influence of including dynamical
effect and static LFC on the free-electron contribution to
IPD [Eq. (7)] at WDM conditions, three different approaches
are utilized to obtain static SF: the Debye-Hückel formula
[Eq. (9)] and the dynamical SF approach [Eq. (10)] under RPA
and ESA. Figure 2 provides an overview of corrections to the
free-electron part of the IPD at WDM conditions (0.5 � � �
4.0, 1.0 � rs � 10.0). As depicted in Fig. 2(a), the dynamical
effect is manifested by comparing the IPD values calculated
with the static SF from the Debye-Hückel model and from the
RPA treatment, while the differences between the predictions
evaluated by RPA and ESA represent the static LFC effect and
are shown in Fig. 2(b). The combination of these two effects
is summarized by a comparison between the DH and ESA
results and is displayed in Fig. 2(c). For a better understanding
and analysis of the results, associate static SFs from the DH,
RPA, and ESA approaches are also calculated and shown
in Fig. 3 for rs = 1.0 with � = 0.5 (upper panel) and with
� = 4.0 (lower panel) as well as in Fig. 4 for rs = 10.0 with
� = 0.5 (upper panel) and with � = 4.0 (lower panel).

As can be seen in Fig. 2(a), dynamical effect has a sig-
nificant and nontrivial influence on free-electron contribution
to IPD. At high-density condition (ne > 1023 cm−3), dynam-
ical effect reduces the free-electron part of the IPD by up
to 20% from zero with decreasing temperature. On the other
hand, in the low-density region (ne < 1023 cm−3), dynamical
effect raises the free-electron part of the IPD by up to 10%
with decreasing temperature, and the increment tends to zero
quickly upon raising the temperature. For a deeper compre-
hension of this behavior, we have to return to the involved
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FIG. 2. Corrections to the free-electron part of IPD [Eq. (7)] at WDM conditions (0.5 � � � 4.0, 1.0 � rs � 10.0) by introducing
different effects: (a) the consideration of dynamical SF under RPA instead of the Debye-Hückel formula [Eq. (9)]; (b) the introduction of
static LFC in calculating dynamical SF; (c) a combination of these two effects.

static SFs for more details. Figure 3 shows the comparison
of the static SFs at rs = 1.0 (ne = 1.6 × 1024 cm−3) with two
different temperatures. In the case of low temperature (upper
panel), the Debye-Hückel model generally overestimates the
long-range part (k/kF < 1.0) of SFs, which plays the most
significant role in the IPD calculation, because the main con-
tribution to the IPD comes from the small-k0 region due to the
quadratic dependence of the integrand S0

ee(k0)/k2
0 in Eq. (7).

This explains the reason why DH overestimates the free-
electron contribution to IPD in the high-density region. At
high temperature (lower panel in Fig. 3), both methods agree
well with each other, therefore the reduction goes to zero as
obtained before. A comparison of SFs for a lower density at
rs = 10.0 (ne = 1.6 × 1021 cm−3) is displayed in Fig. 4. As
shown in the upper panel, in the low temperature (� = 0.5)
DH underestimates the medium-short-range part (k/kF > 0.5)
of SFs due to the lack of dynamical correlation in short-range
interaction, and finally leads to the underestimation of the
free-electron contribution to the IPD in the low-density region.

0
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0.6

0.8

1

1.2

S
(k

)
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ESA

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
k/k

F

0

0.2

0.4

0.6

0.8

1

S
(k

)

FIG. 3. Different approximations of static SFs at rs = 1.0 and
� = 0.5 (upper panel) and � = 4.0 (lower panel). Dotted blue
line: Debye-Hückel formula (Eq. 9); solid red line: dynamical SF
approach [Eq. (10)] under RPA; dashed black line: dynamical SF
approach under ESA.

With the increase of the electron degeneracy parameter, the
distinction between different SFs becomes less abundant, as
is depicted in the lower panel of Fig. 4. In the case of nearly
ideal plasmas, the static SFs predicted by other models are all
converged into the DH results similar to the case shown in
the lower panel of Fig. 3 and hence the Debye-Hückel limit is
recovered.

The effect of static LFC on the free-electron part of the
IPD is summarized in Fig. 2(b). Situations are quite different
from what has been observed in the case of dynamical effect:
static LFC poses a positive correction in the entire WDM
region. The free-electron contribution to IPD is not sensitive
to the static LFC at high-density condition (ne > 1023 cm−3),
and the overall correction is less than 2%. This conclusion
can be reflected in Fig. 3, where only a slightly larger value
of SF in the ESA approach is observed in comparison with
RPA. With decreasing of the electron density, this deviation
gradually increases and finally reaches 10%. From Fig. 4 it
is obvious to conclude that ESA offers a better description
for the long-range part of the SF and for the correlation-
induced maximum (coupling peak) at q ≈ 2.2qF . At higher
temperature, SF based on ESA still manifests a non-negligible
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FIG. 4. Different approximations of static SFs at rs = 10.0 and
� = 0.5 (upper panel) and � = 4.0 (lower panel).
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TABLE I. IPD values for Fe plasma at low density (case a), high density (case b), and Mg (case c), respectively. zα represents the most
probable ionic charge state in current condition. The experimental data are taken from Ref. [60].

Case zα ne (cm−3) t (eV) Expt. (eV) SP (eV) EK (eV) SF (eV)

a Fe17+ 4.0 × 1022 194.8 · · · 77.1 145.4 76.2
Fe17+ 3.1 × 1022 181.8 · · · 70.8 133.7 69.2
Fe17+ 2.0 × 1022 169.8 · · · 60.6 114.9 56.9
Fe17+ 7.1 × 1021 164.6 · · · 42.1 81.4 35.5

b Fe8+ 1.6 × 1024 25.1 · · · 175.2 254.7 334.8
Fe9+ 1.6 × 1024 50.1 · · · 187.1 281.8 291.4
Fe11+ 1.6 × 1024 110.2 · · · 210.2 336.0 287.7

c Mg7+ 3.0 × 1023 75.0 132 89.3 129.9 131.9

correction at the long-medium-range part (0.5 < k/kF < 4.0),
which explains the slow decay of the correction upon increas-
ing temperature.

Figure 2(c) shows the direct summation of results in
Figs. 2(a) and 2(b). In the high-density region (ne >

1023 cm−3), the dynamical effect dominates the correction.
The static LFC cancels out a small part of the dynamical ef-
fect, yet the overall shape of correction looks similar to that in
Fig. 2(a) and the IPD is reduced up to 15% within this area. At
low-density conditions (ne < 1023 cm−3), the total correction
gets enhanced by the union of these two effects and reaches
up to 20% at ne = 1.6 × 1021 cm−3 and � = 0.5. Figure 2
also provides the validity region (at WDM conditions, i.e.,
0.5 � � � 4.0, 1.0 � rs � 10.0) for the application of com-
monly proposed DH and RPA methods. RPA is able to obtain
reliable results (with errors up to 2%) at ne > 1023 cm−3,
and the local field effect starts to manifest itself at a lower
density. Calculations within the Debye-Hückel model become
accurate only when ne < 1023 cm−3 and � � 2.0.

B. Low-density region

As we can see in Fig. 2(c), the correction to the free-
electron part of the IPD by dynamical effect and static LFC
reaches its maximum at rs = 10.0 (ne = 1.6 × 1021 cm−3)
and � = 0.5 (t = 0.25 eV). However, pressure ionization
does not dominate at low-density condition; the whole sys-
tem is still close to an isolated state. The majority of our
familiar materials and chemical elements (even hydrogen) is
barely ionized at this low temperature. Therefore, we perform
our IPD calculation for the low-density case on another case
which exerts a tremendous interest. The experiments were
performed by Bailey et al. [61], where wavelength-resolved
iron opacity was measured at electron temperatures of 1.0–2.3
million K and electron densities of (0.7–4.0) × 1022 cm−3,
and the results are 30–400% higher than predicted.

Full versions of the IPD calculations [Eq. (6)] are used here
to calculate the aforementioned temperature-density points. In
fact, such condition corresponds to the moderate coupling and
nondegenerate (� > 45) plasma. The dynamical correlation
as well as the quantum exchange effect of free electrons are
of no great importance. In this case, the DH and also the
RPA model provide sufficient descriptions on the behavior of
free electrons. On the other hand, for the screened ionic part,
the multi-ion molecular dynamics (MIMD) simulation [62] is
performed to obtain the ionic SF as well as the charge state

distribution of the plasma systems. Based on the free-electron
density distribution from the simulation, the corresponding
screening function can be obtained via Eq. (17).

Calculations on IPD with different models (SP, EK, and
this work, SF) for the four related temperature-density points
are presented in case (a) of Table I. According to our MIMD
simulations, Fe17+ is the most probable ionic charge state at
these conditions, and we take it as an example. It is commonly
believed that the SP model has a good performance in this
regime, and it can be seen from the table that our results
generally agree well with the predictions by the SP model.
The EK model, however, appears to seriously overestimate the
IPD up to twice as much as the value of the other methods.

To investigate the dependence of IPD on the charge state
zα , a further calculation is performed on Fe plasma at a fixed
free-electron density of ne = 3.1 × 1022 cm−3 and tempera-
ture of t = 181.834 eV. It can be clearly seen from the upper
panel of Fig. 5, there is an excellent agreement between our
method and the SP model, while the EK model generally
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FIG. 5. IPD (upper panel) and its components (lower panel) as
a function of different charge state Fen+ at a fixed free-electron
density of 3.1 × 1022 cm−3 and temperature of 181.834 eV. The
averaged ionic SF and free-electron density distribution are obtained
from MIMD simulation, and the corresponding screening function
is calculated via Eq. (17). The SF of free electrons is computed via
Eqs. (10)–(12) with RPA.

025203-6



LOCAL FIELD CORRECTION TO IONIZATION … PHYSICAL REVIEW E 104, 025203 (2021)

deviates more than twice the value of the other methods.
Separate contributions from electrons and ions are further
presented in the lower panel of Fig. 5. The screened ionic
contribution is much larger than the free-electron one; this
“counterintuitive” result is mainly due to the fact that the most
significant contribution, i.e., electron-ion screening effect, is
included in the screened ionic one, as explained in Sec. II C.
Such difference between screened-ion and free-electron IPD
strengthens itself as the charge of the ion under investigation
increases. In addition, a nonlinear dependence of IPD values
on the charge state is observed. The reason is that, besides
the linear dependence on the charge state (zα + 1) contained
in the coefficient of Eq. (8), the impurity-perturber coupling
strength �α also slightly depends on the charge number zα .
The unification of both dependencies results in a superlin-
ear scaling behavior for the relation between IPD and the
charge state.

C. High-density region

In the high-density regime, the reduction of free-electron
IPD (up to 20%) as a direct consequence of the dynamical
effect was highlighted in Sec. III A. In this section, we still
take Fe plasma as an example to perform the full version
of IPD calculation at a fixed free-electron density of 1.6 ×
1024 cm−3 and varying degeneracies. MIMD simulations fur-
ther reveal that there is only one charge state Fe8+ and Fe9+

within the plasma at � = 0.5 and 1.0, respectively. This is
mainly due to the fact that pressure ionization dominates at
these relatively high-density and low-temperature conditions.
Temperature-induced ionization and the corresponding charge
state distribution, on the other hand, only starts to manifest
itself at � = 2.0.

Firstly, calculations for temperatures of 25.1, 50.1, and
100.2 eV are performed, where the most probable charge
states are Fe8+, Fe9+, and Fe11+, respectively. The results are
shown in case (b) of Table I. As we can see from the table, the
SP model seems to underestimate the IPD up to over 100 eV
in this case. Apparently, for Fe8+ and Fe9+ ions, our method
as well as the EK model predict higher IPD values than the
corresponding ionization potential [63] (233.6 eV for Fe8+

and 262.1 eV for Fe9+) in the isolated system. This means
that these ions are pressure ionized to higher charge states,
which is contradictory to the MIMD simulation results. We
note that a possible reason could be the lack of consideration
of inner-shell screening which might become important in
high-density plasmas if the interionic distance is comparable
with the size of ions/atoms.

Similar to the case of low-density conditions, IPD calcu-
lations in the high-density regime for different charge states
Fen+ at a fixed free-electron density of 1.6 × 1024 cm−3 and
temperature of 100.2 eV are also implemented. The upper
panel of Fig. 6 illustrates that our method is generally located
between the EK and the SP model, and seems to be closer to
the EK one. The green dashed line represents the IP in isolated
condition as a function of different charge states, and the IPD
above this line corresponds to a negative IP which indicates
the ionization of a related ion. Due to the lack of an accurate
description of the ion-ion correlation effect, the SP model usu-
ally underestimates the IPD values in the high-density regime.
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FIG. 6. IPD (upper panel) and its component (lower panel) as
a function of different charge states Fen+ at a fixed free-electron
density ne = 1.6 × 1024 cm−3 and temperature t = 100.2 eV. The
corresponding IPs in the isolated condition are also included in the
upper panel as a green dashed line. The averaged ionic SF and free-
electron density distribution are obtained from MIMD simulation,
and the corresponding screening function is calculated via Eq. (17).
The SF of free electrons is computed via Eqs. (10)–(12) with ESA.

While the calculation of the EK model shows that the majority
of charge states (Fe9+ to Fe13+) would be pressure ionized
according to the upper panel in Fig. 6. Consequently, a higher
most probable charge state as well as a large averaged charge
state are predicted by the EK model, which poses a conflicting
result with the MIMD simulations. Within our approach, the
ionic SF is applied to accurately describe the correlation effect
between ions, thus more reasonable IPD values are obtained
for plasmas under warm dense conditions.

The last set of calculations is performed on Mg plasma,
where the experiment data [60] of IPD is available at warm
dense condition with ne = 3.0 × 1023 cm−3 and t = 75 eV.
As shown in case (c) of Table I, our IPD calculation matches
perfectly with the experiment result, and the EK model has
good estimation as well. The SP model, however, underes-
timates the IPD value over 40 eV. It can be concluded that
the results displayed in Table I, in Fig. 5, and in Fig. 6
clearly demonstrate the validity of our IPD method in the wide
density-temperature region.

IV. CONCLUSION

In the present work, we incorporated the machine learning
representation of static LFC based on PIMC within our IPD
framework through the connection of dynamical SFs, there-
fore dynamical exchange-correlation effects are completely
included compared to previous work. As demonstrated in
the research, the dynamical screening effect has a significant
influence on the IPD and hence on the ionization balance
in warm dense systems. The consequence including dynam-
ical effects through dynamical SF with the static LFC has
been explicitly displayed in a two-step calculation within our
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FIG. 7. IPD for aluminum plasma as a function of different
charge state Aln+ at solid density and electron temperature Te =
100eV. Shown are experimental results taken from Ref. [19,20] with
an error bar ±5eV, in comparison to our predictions (previous work
and this work) and other theoretical models.

approach. Firstly, the dynamical effect was investigated by
applying the dynamical SF evaluated from the RPA dielectric
function. Subsequently, the LFC effect was studied by re-
placing the RPA dielectric function by the modified response
function obtained with static LFC for the determination of
the dynamical SF. Our calculations on IPD at WDM con-
ditions (0.5 � � � 4.0, 1.0 � rs � 10.0) demonstrate that
in the high-density condition, dynamical description within
the RPA provides a sufficient description on the behavior
of free electrons and leads to a reduction up to 20% com-
pared to the static description with the Debye-Hückel model,
whereas the correction induced by the static LFC effect on the
free-electron part of IPD is less than 2%. Upon decreasing
the electron density (with fixed degeneracy), the coupling
between free electrons grows and the LFC effect starts to
manifest itself. In particular, the dynamical SF calculated with
static LFC is more reasonable to describe the short-range
correlation as well as the coupling peak (around k ≈ 2.2kF )
of the electronic subsystem. The combination of both effects
will pose a nontrivial correction on the free-electron part of
the IPD under strongly degenerated conditions from −18% at
high-density regimes to 20% at low-density regions.

For the screened ionic part, MIMD simulation was per-
formed to obtain the the ionic SF as well as the charge
state distribution of the plasma systems. Based on the free-
electron density distribution from MIMD simulation, the
corresponding screening function is obtained via Eq. (17). As
applications of the proposed method, warm dense Fe plas-
mas and Mg plasma were studied in detail. Full versions of
IPD calculations on Fe plasmas were performed at a wide
range of density-temperature conditions, and excellent agree-
ments are obtained with the commonly employed SP or EK
model at their corresponding valid regimes. Additionally, our
IPD calculation matches quite well with the experiment re-
sult performed on Mg plasma at ne = 3.0 × 1023 cm−3 and
t = 75 eV.
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APPENDIX: COMPARISON WITH OTHER
THEORETICAL PREDICTIONS

Since a new screening factor [Eq. (17)], static LFC, as
well as the dynamical effects [(Eqs. (10)–(12)] are incorpo-
rated into the IPD framework as described in the main text, a
combination of theoretical modeling with ab initio simulation
is realized compared with the previous approach proposed in
Ref. [37]. In order to provide a comprehensive assessment on
the validity and robustness of the approach presented in this
work, we show a detailed comparison of our numerical pre-
dictions with the LCLS experimental data [19,20], the results
displayed in Ref. [37], and other theoretical results [28–30,64]
for solid-density aluminum in Fig. 7.

On the one hand, the experimental observations are well
reproduced by our quantum-statistical-based approach and
other predictions including the modified EK model [20] and
the finite-temperature density functional theory method [30],
whereas the SP model [28], the two-step Hartree-Fock-Slater
approach [29], and the IPD calculations by Crowley [64]
seem to be less satisfying. On the other hand, a reasonable
correction (less than 5%) to our previous results is obtained
in Fig. 7, as the current condition situates on a trivial area in
Fig. 2(c).
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