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Transition to turbulence in a five-mode Galerkin truncation
of two-dimensional magnetohydrodynamics
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The chaotic dynamics of a low-order Galerkin truncation of the two-dimensional magnetohydrodynamic sys-
tem, which reproduces the dynamics of fluctuations described by nearly incompressible magnetohydrodynamic
in the plane perpendicular to a background magnetic field, is investigated by increasing the external forcing
terms. Although this is the case closest to two-dimensional hydrodynamics, which shares some aspects with the
classical Feigenbaum scenario of transition to chaos, the presence of magnetic fluctuations yields a very complex
interesting route to chaos, characterized by the splitting into multiharmonic structures of the field amplitudes,
and a mixing of phase-locking and free phase precession acting intermittently. When the background magnetic
field lies in the plane, the system supports the presence of Alfvén waves thus lowering the nonlinear interactions.
Interestingly enough, the dynamics critically depends on the angle between the direction of the magnetic field
and the reference system of the wave vectors. Above a certain critical angle, independently from the external
forcing, a breakdown of the phase locking appears, accompanied with a suppression of the chaotic dynamics,
replaced by a simple periodic motion.
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I. INTRODUCTION

Fluid flows forced by external perturbations may show
complex emergent dynamics due to quadratic nonlinearities.
The classical issue of the transition to chaos dates back
to the 1960s [1,2], and some standard scenarios have been
investigated through mathematical models, experimentally
and numerically [3]. Truncated Galerkin models of two-
dimensional (2D) incompressible hydrodynamic equations,
obtained through a truncation to a finite (low) number of
modes in the Fourier space, have been used [4]. If the number
of modes is too small, their choice could result in altered
phenomenology. The search for the minimal number of modes
that stabilizes the dynamics, with respect to mode addition
or substitution [4], provided uncertain results, presumably
largely in excess [5,6], mainly because of the lack of uni-
versality of the Galerkin approximations [7]. Despite their
sensitiveness to the mode selection, reduced models are able
to capture with great detail features observed in experiments
[8–14], providing insight on the macroscopic behavior at the
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onset of turbulence [15–19]. In fact, one can recognize finite
and/or infinite sequences of bifurcations [20,21], a quasiperi-
odic route to chaos [22,23], for low-dimensional chaos in a
dissipation-dominated dynamical system, and a quasiperiodic
route to intermittent chaos in a nearly conservative system
[24]. In other words, a transition to a strange attractor behav-
ior is observed through a series of quasiperiodic oscillations,
which give rise to increasingly complicated attractors made of
two very long intertwining periodic orbits.

In magnetohydrodynamic (MHD) flows, the charged fluid
couples with the magnetic field, losing Galilean invariance
and isotropy, supporting the presence of wavelike cou-
pling, and in general introducing a greater complexity in
the dynamics with respect to neutral fluids. In particular,
the two-dimensional (2D) MHD case offers an interesting
theoretical perspective. Large-scale fluctuations in interplan-
etary space plasmas present the typical statistical features of
classical fully developed turbulence (e.g., Ref. [25] and refer-
ences therein). Nearly incompressible MHD models [26,27]
describe magnetofluids as being characterized by the su-
perposition of 2D fluctuations, in a plane transverse to the
background magnetic field, and slab fluctuations along the
field. In this configuration, Alfvén waves are not present in
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the 2D component of the fluctuations, so that the dynamics is
controlled by the nonlinear time scale. Note that nearly incom-
pressible MHD is highly relevant to solar wind fluctuations,
where the 2D component corresponds to the majority of fluc-
tuations observed by spacecraft [25–28]. This is remarkably
similar to the 2D incompressible hydrodynamics case.

Since the pioneering work of Ruelle and Takens [2], the
way chaotic orbits settle down to a chaotic attractor in a
nonlinear system with quadratic nonlinearities (i.e., the turbu-
lent flow behavior described by the Navier-Stokes equations),
must be treated in the framework of a “dynamical systems ap-
proach” to turbulence [29]. While approximations have been
used extensively for neutral fluids, the transition to turbulence
in MHD flows has not been investigated in corresponding
detail, with some exceptions concerning a nonchaotic, un-
forced, three-mode system [30,31]. Since MHD flows are
described by a set of equations structurally similar to the
Navier-Stokes system, it could be expected that the transition
to chaos in magnetic turbulence follows the same route as its
kinetic counterpart. Therefore, it is interesting to investigate
whether or not the transition to turbulence mimics the route of
neutral fluids. For example, if the background magnetic field,
which cannot be eliminated by a Galilean transformation, has
a component in the 2D plane, the dynamics is different from
fluid flows. In this case, Alfvén waves can propagate linearly,
and their characteristic propagation time competes with the
nonlinear time, thus reducing the nonlinear interactions [32].
This perhaps may result in an alternate route to chaos, differ-
entiating magnetized plasmas from neutral fluids.

Here, the chaotic behavior of a magnetofluid flow, and in
particular the transition to chaos, has been investigated by us-
ing the simplest model for 2D MHD equations, i.e., a complex
five-mode Galerkin approximation, extending existing models
for neutral fluids [15–17] showing that the transition to chaos
in a MHD system happens in an interesting way with respect
to the fluid counterpart.

II. A FIVE-MODE TRUNCATION OF TWO-DIMENSIONAL
INCOMPRESSIBLE MHD

The incompressible MHD equations with a background
magnetic field B0 are written as:

∂u
∂t

− (cA · ∇)b + (u · ∇)u − (b · ∇)b = −∇Pt + ν∇2u

(1)

∂b
∂t

− (cA · ∇)u + (u · ∇)b − (b · ∇)u = μ∇2b, (2)

with the conditions ∇ · u = 0 and ∇ · b = 0. Here u rep-
resents the velocity fluctuations, b = (B − B0)/

√
4πρ the

magnetic field Alfvénic fluctuations, ρ the constant mass
density, Pt = P/ρ + b2/2 the total pressure, P the kinetic
pressure, and ν, μ the kinematic viscosity and resistiv-
ity respectively. The presence of the background magnetic
field introduces the linear term proportional to the Alfvén
speed cA = B0/

√
4πρ. In two dimensions, the fields have

only components u(r, t ) = [ux(x, y, t ); uy(x, y, t )], b(r, t ) =
[bx(x, y, t ); by(x, y, t )], and evolve on a 2D torus 0 � (x, y) �
2π .

In the wave-vector space, velocity and magnetic fluctu-
ations can be defined in terms of Fourier coefficients as
u(r, t ) = ∑

k u(k, t )e−ik·r and b(r, t ) = ∑
k b(k, t )e−ik·r, be-

ing k = 2πn/L and n ∈ N a pair of integers. Due to the
divergence-free condition of the fields, Fourier coefficients
can be written in terms of a unit polarization vector e(k)
perpendicular to the wave vector, say k · e(k) = 0, so that
u(k, t ) = uk(t )e(k) and b(k, t ) = bk(t )e(k). The unit vector
must satisfy e(k) = e�(−k), and e(k) · e�(k) = 1, so that it
can be defined as e(k) = ik−1(ky,−kx ), kx and ky being the
components of k on the plane and k = |k|. The MHD equa-
tions projected on the Fourier space become an infinite set of
ordinary differential equations for the complex amplitudes:

duk(t )

dt
− i(k · cA)bk(t )

= 4π2

L2

�∑
p,q

A+
kpq[up(t )uq(t )

− bp(t )bq(t )] − νk2uk(t ) + Rk (3)

dbk(t )

dt
− i(k · cA)uk(t )

= 4π2

L2

�∑
p,q

A−
kpq[bp(t )u(q(t )

− up(t )bq(t )] − μk2bk(t ) + Gk, (4)

where A±
kpq = 1/2[Mkpq ± Mkqp] are the coupling coefficients

of nonlinear terms, with Mkpq = [−ik · e(q)][e�(p) · e(q)].
Finally, external forcing terms Rk and Gk have been intro-
duced, which eventually act on the system, and the sum in the
nonlinear term

∑�
p,q ≡ ∑

p,q δk,p+q is extended to all triads of
wave vectors satisfying the triangular condition k = p + q.

MHD can be alternatively described in terms of the linear
Elsässer transformation [33] z±

k (t ) = uk(t ) ± bk(t ), represent-
ing Alfvénic fluctuations propagating both in the direction of
B0 and opposite to it. The nonlinear MHD system (3) and (4)
takes the more symmetric form [25,33–37]:

dz±
k (t )

dt
∓ i(k · cA)z±

k (t )

= 4π2

L2

�∑
p,q

∑
σ=±1


σ
kpqzσ

p (t )z−σ
q (t )

− (k2/2)[(ν ± μ)z+
k (t ) + (ν ∓ μ)z−

k (t )], (5)

where 
±
kpq = (A+

kpq ± A−
kpq)/4 and F±

k = Rk ± Gk. If ν = μ,
the dissipative term becomes the usual −νk2z±

k . In the ab-
sence of forcing and dissipation, the number of wave vectors
involved in the nonlinear couplings is infinite, and the system
possesses three rugged invariants that survive each single triad
of interacting wave vectors [31,38,39].

Since the rugged invariants survive every Galerkin trunca-
ture of the infinite system (5), a finite Lorenz-like low-order
model LN (u, b), which maintains all global characteristics
of the complete system, can be obtained by taking into ac-
count only a finite sequence of N interacting modes kn (n =
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1, 2, . . . , N), satisfying the triangular condition kn = kn+r ±
kn+s providing |n + r| � N and |n + s| � N , being (r, s) ∈ Z.

Similarly to fluid turbulence [15,40], here a five-modes
model L5(u, b) have been investigated by using the following
wave vectors: k1 = (1, 1), k2 = (3, 0), k3 = (2,−1), k4 =
(1, 2), and k5 = (0, 1), which satisfy the triangular relations
k1 = k2 − k3 = k4 − k5, k2 = k3 + k1, k3 = k2 − k1, k4 =
k1 + k5, and k5 = k4 − k1. By explicitly calculating the cou-
pling coefficients, and rescaling times by setting for simplicity
ν = μ = 1, the MHD model can be written in dimensionless
form as:

u̇1 = 4(u2u�
3 − b2b�

3) − 4(u4u�
5 − b4b�

5) − 2u1 + i�1b1

u̇2 = 3(u3u1 − b3b1) − 9u2 + i�2b2

u̇3 = −7(u2u�
1 − b2b�

1) − 5u3 + i�3b3 + R

u̇4 = (u1u5 − b1b5) − 5u4 + i�4b4

u̇5 = 3(u4u�
1 − b4b�

1) − u5 + i�5b5

ḃ1 = 2(b2u�
3 − u2b�

3) − 2(b4u�
5 − u4b�

5) − 2b1 + i�1u1

ḃ2 = 9(b3u1 − u3b1) − 9b2 + i�2u2

ḃ3 = −5(b2u�
1 − u2b�

1) − 5b3 + i�3u3 + G

ḃ4 = 5(b1u5 − u1b5) − 5b4 + i�4u4

ḃ5 = (b4u�
1 − u4b�

1) − b5 + i�5u5, (6)

where dotted variables represent time derivatives. The
normalized fields are un(t ) ≡ ukn (t )/|cA| ∈ C and bn(t ) ≡
bkn (t )/|cA| ∈ C, with the conditions u−n(t ) = u�

n(t ), b−n(t ) =
b�

n(t ) and z±
−n(t ) = (z±

n )�(t ) on the complex conjugates. Here
(kn · eA) = �n is the Alfvèn frequency (eA being the direc-
tion of the background magnetic field on the plane). Note
that the linear term �n in Eq. (6) modifies the dynamics
and the nonlinear coupling of the system by introducing
the new timescale |�n|−1, in addition to the dissipative and
eddy-turnover times. The external parameters (R, G) ∈ C are
defined as R = Ri(1 + i) and G = Gi(1 + i) and act only on
the mode n = 3, which will be hereafter named the kinetic and
magnetic Reynolds numbers. We must impose Gi > 0, due to
the antidynamo theorem [41], and Gi �= Ri, thus preventing
the collapse on the trivial maximum cross-helicity attractor
un(t ) = ±bn(t ), which stops the nonlinear interactions.

The set of equations describing the dynamics of the El-
sässer variables can be immediately obtained from (6) by
introducing the normalized variables z±

n (t ) ≡ z±
kn

(t )/|cA| ∈ C

and the external forcing terms F± = (2/
√

2)R±
i exp(iπ/4)

(being R±
i = Ri ± Gi). In terms of amplitude and phase

z±
n (t ) = Z±

n (t ) exp[i�±
n (t )] the Elsässer MHD system be-

comes:

Ż±
1 =

∑
σ=±1

(2 + σ )Zσ
2 Z−σ

3 cos �σ
1 − 2Z±

1

Ż±
2 = 3

2

∑
σ=±1

(1 + 3σ )Zσ
3 Z−σ

1 cos �σ
2 − 9Z±

2

Ż±
3 = −1

2

∑
σ=±1

(7 + 5σ )Zσ
2 Z−σ

1 cos �σ
3 − 5Z±

3

+ 2√
2

R±
3 cos

(
π

4
− �±

3

)

Ż±
4 = 1

2

∑
σ=±1

(1 + 5σ )Zσ
1 Z−σ

5 cos �σ
4 − 5Z±

4

Ż±
5 = 1

2

∑
σ=±1

(3 + σ )Zσ
4 Z−σ

1 cos �σ
5 − Z±

5

�̇±
1 = 1

Z±
1

∑
σ=±1

(2 + σ )Zσ
2 Z−σ

3 sin �σ
1 ±

√
2 cos γ1

�̇±
2 = 3

2Z±
2

∑
σ=±1

(1 + 3σ )Zσ
3 Z−σ

1 sin �σ
2 ± 3 cos γ2

�̇±
3 = − 1

2Z±
3

∑
σ=±1

(7 + 5σ )Zσ
2 Z−σ

1 sin �σ
3

±
√

5 cos γ3 + 2√
2

R±
3 sin

(π

4
− �±

3

)

�̇±
4 = 1

2Z±
4

∑
σ=±1

(1 + 5σ )Zσ
1 Z−σ

5 sin �σ
4 ±

√
5 cos γ4

�̇±
5 = 1

2Z±
5

∑
σ=±1

(3 + σ )Zσ
4 Z−σ

1 sin �σ
5 ± cos γ5, (7)

where γn represents the angle between the wave vector
kn of the nth mode and the direction eA of the back-
ground magnetic field. The triad-phase relations are defined
as �σ

1 = �σ
2 − �−σ

3 − �σ
1 , �σ

2 = �σ
3 + �−σ

1 − �σ
2 , �σ

3 =
�σ

2 − �−σ
1 − �σ

3 , �σ
4 = �σ

1 + �−σ
5 − �σ

4 and �σ
5 = �σ

4 −
�−σ

1 − �σ
5 . The background magnetic field is responsible for

a phase shift of the Elsässer modes, while the dissipation
affects only the amplitudes.

Trivial stationary states of the system are described
by Z±

n = 0 and �±
n (t ) = �±

n (0), for all modes, but Z±
3 =

(∓2R±/5
√

2) cos(cot−1 �3), �±
3 = π/4 ± cot−1 �3. For the

purely kinetic system where un = Un exp(i�n), the trivial
stationary state is U3 = 2R/5

√
2, �3 = π/4 (U3 = R/5 for

the real kinetic system), while in absence of the background
magnetic field, the stationary states are Z±

3 = ∓2R±/5
√

2,
�±

3 = π/4.
The system of equations (6) has been numerically inte-

grated with an explicit Runge-Kutta-Dormand-Prince method
[42,43], with the error tolerance set at 10−8. The three invari-
ants of the inviscid and unforced system are conserved within
the error tolerance. Each run is initialized with the same initial
condition: Eqs. (6) have been evolved for a total time t = 550,
with Ri = 15 for the kinetic case, and Ri = 20 and Gi = 30 for
the MHD case, both resulting in a stable stationary solution.

III. PURELY KINETIC SYSTEM

The kinetic system L5(u, 0) has been initially investigated,
using the complex variables un(t ) ∈ C and setting bn(t ) = 0.
The real kinetic case has been previously investigated [15,20].
The left panel of Fig. 1 shows the bifurcation diagram ob-
tained from the mode |u1(t )|2 of the system (3) as the forcing
Ri varies in the range Ri ∈ [15, 25]. Each point corresponds to
a local maximum of the kinetic energy of the mode. Modes
with n > 1 display the same bifurcation diagram, with differ-
ent amplitudes. For very weak forcing (not shown) the system
has a trivial fixed point, which is destabilized, as Ri increases,
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FIG. 1. Left: Bifurcation diagram of the mode |u1|2 for a neutral fluid for Ri ∈ [15, 25]. The vertical dashed line indicates the Hopf
bifurcation. Middle: Bifurcation diagram of the Elsässer variables |z+

1 | (black dots) and |z−
1 | (red circles), for magnetic forcing Gi ∈ [40, 55].

The vertical dashed line indicates the Hopf bifurcation. Right: Bifurcation diagram of the Elsässer variable |z+
1 | for a wider range of magnetic

forcing Gi ∈ [50, 300].

through a pitchfork bifurcation, thus obtaining a steady state
un �= 0 ∀n. At the threshold R�

1 	 16.15, the system undergoes
a Hopf bifurcation, reaching oscillating periodic solutions
for 16.15 � Ri < 20.32. In the range 20.32 � Ri � 23.645,
the system enters in a complex chaotic region of alternation
between strong turbulence and periodicity windows, charac-
terized by the presence of multiple strange attractors [20].

At R�
2 	 20.07 the amplitude |u1(t )|2 presents a periodic

modulation, and the autocorrelation function C1(�) shows
a sequence of maxima at lag times �/T k

0 = j, where j =
1, 2, . . . , and T k

0 = 0.815. The transition to chaotic dynam-
ics is obtained through a sequence of successive bifurcations
characterized by period doubling. The first one, as shown in
Fig. 2, occurs at R�

3 	 20.25. The appearence of subharmonics
is observed in the autocorrelation function with maxima at lag
times �/T k

0 = 2. A second bifurcation is observed at R�
4 =

20.29 with maxima of the autocorrelation function at about
�/T k

0 = 4. The sequence is compatible with the Feigenbaum
conjecture [44], characterized by a fixed ratio for the various
bifurcation points δ ≡ limi→∞

R�
i −R�

i−1

R�
i+1−R�

i
, being R�

i the forcing at

the ith bifurcation point (see Table I). The value of the Feigen-
baum constant evaluated for those points is δ2,3,4 	 4.64,
consistent with the expected parameter δ∞ 	 4.6692 . . . [44].

The structure of this sequence of bifurcations is consistent
with previous studies for real variables [15,20]. The main

difference between the real and complex cases is related to the
different bifurcation values. Here, the bifurcation sequence is
observed at lower R�

i , due to complex forcing responsible for
injecting higher amount of energy in the system. Finally, the
turbulence is suppressed in favor of a second quiescent region,
where the strange attractor shrinks to a stable periodic orbit for
Ri � 23.645.

IV. DYNAMICAL MHD BEHAVIOR IN THE ABSENCE
OF BACKGROUND MAGNETIC FIELD

This is the closest MHD case to hydrodynamics, cor-
responding to a magnetofluid with an external field per-
pendicular to the fluctuations plane, as described by nearly
incompressible MHD [26]. Let us consider the complex
truncated MHD system L5(u, b) with �n = 0. The kinetic
Reynolds number has been fixed at Ri = 20 (periodic so-
lution), while the magnetic Reynolds number is varied in
the range Gi ∈ [40, 400]. As a general feature, when the
magnetic field is switched on, the dynamics of the system
becomes richer, and the transition to turbulence is observed
via a slightly different mechanism. It should be remarked that
the fine structure and the richness of the various dynami-
cal regimes, emerging as Gi is varied, cannot be described
concisely. Therefore, by using Elsässer variables, we report

FIG. 2. Temporal evolution of the mode |u1(t )|2 for the purely kinetic system, at Ri = 20.07 and Ri = 20.25, and the associated
autocorrelation functions C1(�). The vertical dashed lines indicates the maximum of the autocorrelation function corresponding to a time
lag multiple of the characteristic period T k

0 ≡ 0.815, compatible with �/T k
0 = 1 and �/T k

0 = 2.
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TABLE I. Kinetic Reynolds values associated to the first four
bifurcation points observed for a pure kinetic evolution of Eq. (6).

ith Bifurcation point R�
i

1 16.15
2 20.07
3 20.25
4 20.29

in the following only the main features of the transition to
turbulence.

A. Bifurcation analysis at low-forcing regimes

The central panel of Fig. 1 depicts the bifurcation diagram
of the Elsässer pseudoenergies of the mode |z±

1 |2, in the range
Gi ∈ [40, 55]. For very small forcing Gi (not shown here), the
trivial fixed point is destabilized through a pitchfork bifurca-
tion leading to the stationary steady state z±

n = const . �= 0 ∀n.
This is in turn destabilized through an Hopf bifurcation at
G�

1 	 41.62, visible in both Elsässer pseudoenergies of all
modes |z±

n |2. For stronger forcing, the system has an attracting
closed orbit, similar to the kinetic case [15]. At Gi 	 49.12 the
periodic orbit loses stability, generating structures character-
ized by different values of maximum pseudoenergies, which
split as Gi is increased. This phase is followed by an abrupt
shrinking to a new periodic orbit as the forcing approaches
Gi ∼ 49.24. An example is shown in the top panels of Fig. 3,
depicting the numerical solution of the system projected onto
the plane (|z+

1 |2; |z+
3 |2) for different values of the magnetic

forcing Gi. Starting from a periodic oscillation (top-left panel)
at Gi = 49.10, the increment of the magnetic forcing destabi-
lizes the periodic motion, accompanied by the splitting of the
orbits. This continues (with number of out-coming secondary
orbits changing with the forcing) for successive increments of
Gi (second and third panel), until the dynamics closes again
around a single steady state at Gi = 49.24 (top-right panel).

The characteristic oscillation period, observed at Gi =
49.10, is shorter than for the kinetic case: T m

0 ≈ 0.563, the
maxima of the autocorrelation function bieng characterized by
time intervals of about �/T m

0 = 1. At Gi = 49.18 a first bifur-
cation is observed, the autocorrelation function C1(�) presents
a complicated structure with multiple peaks at different lags
�, as shown in the bottom panels of Fig. 3. Four local maxima
of different amplitude are present in the autocorrelation func-
tion, compatible with lag times �/T m

0 = 1, 3.79, 4.76, 5.7.
At variance with the kinetic case, in MHD the transition to
chaos does not take place through a a sequence of period
doublings, but rather through the abrupt appearence of sub-
harmonic structures, evidenced again at higher Gi, and for real
forcing G ∈ R.

Using a different approach, the absence of period doubling
is also evidenced by the Poincaré-like return map P(n+1)

1 =
f [P(n)

1 ], where P(n)
1 = Max|z±

1 |2 is the nth maximum of |z±
1 |2

[45], shown in the left panel of Fig. 4 for different Gi. The map
spreads as Gi increases. At Gi = 49.10, the map (blue circle)
consists of one single point, indicating a periodic solution
with identical amplitude (shown for |z±

1 |2 in the first panel
of Fig. 5). As the forcing increases, the orbit splitting appears
(Gi = 49.15), and the map (red squares) consists of ten points,
corresponding to symmetric repetitions of two clusters of

FIG. 3. First row: Evolution of the phase space trajectory, projected on the plane |z+
1 |2, |z+

3 |2, at different forcing Gi. The dynamics evolves
through the opening of multiple quasiperiodic oscillations, characterized by multiple orbits, which close on a successive periodic solution.
The phase space have been constructed by iterating the solutions in the range of times t ∈ [550, 650]. Second row: Temporal evolution and
autocorrelation functions of the MHD mode |z+

1 |2 for Gi = 49.10, before the bifurcation, and Gi = 49.18, after the bifurcation. For Gi = 49.18
multiple maxima with comparable amplitude are observed. The vertical dashed line indicates the maximum of the autocorrelation function
corresponding to a time lag multiple of the characteristic period T m

0 ≈ 0.563, compatible with �/T m
0 = 1 and �/T m

0 = 4.76 (4.76 × T m
0 ≡

2.68).
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FIG. 4. Left: Poincaré return maps as a function of the magnetic Reynolds number Gi for |z+
1 |2, showing the transition from periodic

(circles) to multiperiodic solution (squares), to the spreading around the previous map positions (diamonds), and eventually to the second
single point (periodic) with different amplitude and period (triangles). Middle: Poincaré return maps for |z+

1 |2 in the turbulent region, for
different magnetic forcing Gi ∈ [50, 115] (see legend for color coding). Right: Poincaré return maps for |z+

1 |2 depicting the coalescence form
the two-lobe attractor (Gi = 118) to a periodic motion (Gi = 250), for different magnetic forcing Gi ∈ [118, 250] (see legend for color coding).

five increasing peaks (regions I and II in the second panel
of Fig. 5). For larger forcing, each of the ten points in the
map spreads into four points (open diamonds), indicating a
superposed amplitude modulation of the peaks with time. The
same behavior is observed in all modes for both Elsässer
components.

B. Transition to turbulence and return
to periodicity at high-forcing regimes

As the magnetic forcing approaches Gi 	 51, a sudden
transition to a fully turbulent state is observed (middle and
right panels of Fig. 1), resulting in a strange attractor in the
phase space. The transition was also observed in the power
spectral density of the temporal dynamics, changing from
discrete to broad band [3,46,47]. An example of |z±

1 |2(t ) is
shown in the third panel of Fig. 5 for Gi = 60, where the
clustered peaks observed for smaller Gi disappear in favor
of a complex, nonperiodic dynamics, evidencing the onset
turbulent regime.

Starting from the periodic solution, as the forcing in-
creases, the turbulent return maps evolve accordingly (Fig. 4,
right panel). When periodic solutions are observed, the map
consists of one point (Gi = 50, blue six-pointed star), while
during the transition to turbulence the phase space becomes

intermittently covered by complex structures spread over the
plane. At Gi = 53.99 (red empty circles), the Poincaré map
shows the cusps typical of the Lorenz map [1,48]. The corre-
sponding strange attractor is shown in the first panel of Fig. 6.
As the forcing increases (Gi = 64.98), the strange attractor
disappears, and a quasiperiodic orbit arises, highlighted in
the map by four clustered points (violet up-pointing trian-
gle) indicating subharmonic peaks with multiple orbits in the
phase plane. At Gi = 67.97 the orbits become unstable again
forming a map densely distributed on a sequence winding
around the bisector (green crosses), indicating transition to a
new strange attractor. At Gi = 92.99 (purple down-pointing
triangle) the attractor tends to disappear again, as the system
is approaching a wide subharmonic window with at least
six orbits, starting at Gi ≈ 95 (black stars) and extending
up to Gi = 100 (blue × symbol). The transition through
the subharmonic window is depicted in the third panel of
Fig. 6, showing the phase-space behavior for three different
forcing Gi.

A small turbulent patch is observed for Gi ∈ [110, 118]
(brown diamonds in the right panel of Fig. 4 at Gi = 115,
see also the third panel of Fig. 6). At larger forcing, the
map consists of two distinct dense wings, indicating a gradual
structural evolution of the phase-space to a two-lobes attractor.
In the final stage of evolution, a sequence of secondary clos-
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40
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FIG. 5. Left: Temporal evolution of |z+
1 |2 and |z−

1 |2 in the periodic case at Gi = 49.10. Middle: An example of the alternation of clusters I
and II , observed for Gi = 49.15. Each cluster is composed of five peaks with different amplitudes. The dashed lines separate the two clusters.
Right: Temporal evolution of |z+

1 |2 and |z−
1 |2 in the turbulent state at Gi = 60.
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FIG. 6. Left: The strange attractor in the phase space |z+
1 |2–|z+

3 |2 for turbulent dynamics at Gi = 53.99. Middle: Same as previous panel
for three larger forcing values (see legend). Shrinking and reopening of multiple obits is observed near the largest periodicity window. Right:
Same as previous panel for three larger forcing values (see legend). Coalescence of multiple orbits on a periodic motion is visible.

ing bifurcations shrinks the map to chaotic or subharmonics
orbits. As shown in the bifurcation diagram (Fig. 1, middle
and right panels), for Gi > 118 the turbulent dynamics is
completely suppressed in favor of multiple stable subhar-
monic orbits [49]. These gradually merge to a single periodic
motion [49–52], with period T m

0 	 0.17, reached for Gi ≈
240. The coalescence of multiple orbits is shown in the right
panel of Fig. 6. Starting from the turbulent regime at Gi =
110, the phase space presents a transition to a two-lobe attrac-
tor (Gi = 230), and gradually to periodic motion (Gi = 250).
The Poincaré return map depicting the coalescence to a single
periodic orbit, is reported in the last panel of Fig. 4.

C. Phase dynamics and phase transition curve

Additional interesting information on the system is pro-
vided by the temporal evolution of the phases �n(t )±. Their

dynamics can be described through a phase transition curve
(PTC) [53–55] by mapping the phases at two different times tm
and tm+1 as �±

n (tm+1) = [�±
n (tm) + wn(G)] mod (2π ), sepa-

rated by a phase shift wn(G), which depends on the magnetic
forcing. The PTC is thus the analog for phases of the Poincaré
map.

At small Gi, when the dynamics is periodic, all modes
have constant phase, i.e., wn(G) = 0 (top left panel of Fig. 7),
which satisfies the phase-triad conditions �±

n = 0, except for
mode n = 3, where the fixed point �±

3 (t ) = π/4 is induced
by the external forcing. The PTC consists of one point on
the plane (�±

n (tm); �±
n (tm+1)) (red square in the first panel of

Fig. 8).
As Gi increases, the phase-triad condition is destabilized.

When subharmonic structures arise (Gi = 49.15), a periodic
phase shift, represented as a phase precession on two different
angles, is observed for all Elsässer modes z±

n (t ). The PTC

FIG. 7. Top: Temporal evolution of the phases �+
n (t ) with n = 1, 2, 4, 5, for four distinct forcing values, depicting the route: locked phases

(a), piece-wise constant phase (b), free precession (c), and mixed regime showing the superposition of piece-wise locked period and free
precession (d). Bottom panels: temporal evolution of �+

1 (t ) for Gi = 60 (e), Gi = 64 (f), and Gi = 70 (g). The reduction of the phase-locking
intervals in favor of free precession intervals is visible by varying the forcing Gi. At larger forcing e.g. Gi = 250 (h), the piece-wise phase
locking is lost.
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FIG. 8. Left: PTC for Gi = 49.09 and Gi = 49.15, showing the transition from a single-point map (red squares) to a four-point map (blue
circles). Second panel: PTC for Gi = 49.60, describing the continuous time varying phase (all points on the line) and the periodic rotation of
2π (the single point in the top-left corner). Third panel: PTC for Gi = 60.00, corresponding to the mixed regime. The square structures of the
piecewise constant phase (cf. left panel) is highlighted by connecting lines. Right: PTC for Gi = 250, outside of the turbulent region. All the
points lye around the central line, and one cluster is present in the bottom-right corner. Connecting lines highlight the structure of the map.

map shows four points, two on the bisector and two at op-
posite angles (first panel of Fig. 8, blue circles). In terms of
temporal evolution, the phases are constant for a given time
t0, then switch to a different value, resulting in step function
of piecewise locked phases (Fig. 7 first row, second panel).
The phase shift terms in the PTC are then a sequence of
periodic δ functions wn(G) = ±w

(n)
0 δ(tm − t0), where the δ

function changes the sign of wn(G) every t0, generating the
precession, and w

(n)
0 is a constant for each mode. The term

wn(G) is responsible for the points outside the bisector. As an
exception, the phase of the smallest wave vector k5 remains
stable up to larger forcing, even satisfying the phase-triad
relation �±

5 = �±
4 − �∓

1 .
As Gi further increases the locked phase structure is de-

stroyed and phase precession occurs in the dynamics. In this
regime the phase shifts, depending linearly on time (Fig. 7
first row, third panel), and all the points densely cover a line at
a fixed distance from the bisector of the PTC (second panel
of Fig. 8). In this case wn(G) = ±αn is constant for each
mode, whose sign is related to the precession direction. For
the large-scale mode �±

5 , the constant phase shift is much
slower than the other modes.

Interestingly, the transition to the turbulent regime at Gi 	
60, is characterized by a phase dynamic, which presents a
mixed behavior, namely the superposition of random peri-
ods of piecewise locked phases, alternating to periods of
free precession. The temporal evolution of the phase �1(t )+
in this turbulent regime can be seen in the top-right and
bottom-left panels of Fig. 7. A weak modulation is always
visible in all time-varying regions of �n(t )±, indicating very
short periods of braked precession. The PTC, shown in the
third panel of Fig. 8, presents multiple features, namely:
(i) clusters of points at the vertices of the square struc-
ture of each piecewise region; (ii) a dense cloud of points
scattered around the bisector, indicating random precession
angle (as in the time-dependent case); and (iii) two smaller
clouds of points at the top-left and bottom-right corners of
the map, indicating that the phase rotate both clockwise and
counterclockwise.

The mixed regime persists up to Gi 	 70, where the
transition is characterized by a continuous shrinking of phase-
locked periods as Gi increases (Fig. 7 first bottom three
panels). When the periods of phase-locking disappear, the

dynamics is characterized by a continuously time-varying
phase with an unidirectional random angle of rotation for each
mode. The weak modulation of very short period of braked
precession is always present. This regime of phases is finally
stable up to higher forcing values (e.g., Gi = 250, last panel
of Figs. 7 and 8, respectively), thus persisting even when the
turbulent regime is suppressed.

V. DYNAMICAL MHD BEHAVIOR IN THE PRESENCE
OF BACKGROUND MAGNETIC FIELD

When a background magnetic field B0 is present in the
plane, the symmetry on the (x, y) plane is lost by the in-
troduction of the privileged direction eA, making the system
anisotropic. Moreover, the linear term introduces a further
characteristic time scale |�n|−1 due to Alfvén waves prop-
agating along the background magnetic field, which can
compete with the eddy-turnover time [27]. In this config-
uration, the MHD case is thus substantially different from
the hydrodynamic case. The linear terms �n(θ ) of the MHD
system depend on the angle θ between eA and the x axis. As
shown in Sec. II, the ambient field affects the phases �±

n (t )
through a factor proportional to �n, so that the dynamics be-
comes strongly dependent on θ . Such dependence is described
in Fig. 9 where we show the bifurcation diagram for different
values of the angle θ .

As in the previous cases, the trivial stationary state is at
first destabilized through a pitchfork bifurcation, leading to
the steady state with constant un and bn, which is further
destabilized through a Hopf bifurcation as Gi increases. The
bifurcation point Gi is higher as θ increases. Similarly, the
intermittent subharmonics also emerge at different values of
the forcing (Fig. 9). For θ = 15◦, intermittent structures form
at Gi 	 80; for θ = 30◦ two sets of structure are formed, at
Gi 	 60 and Gi 	 110; for θ = 60 Gi 	 120 and Gi 	 130;
for θ = 75◦ Gi 	 250. Independent of the angle, secondary
bifurcations will occur in the first stage of the evolution.
Even in this case, secondary bifurcations do not follow the
Feigenbaum pattern. The transition to chaos occurs at values
of Gi larger than in absence of the background field, and
the turbulent region in the bifurcation diagram (in terms of
forcing range) is stretched, showing the maximum extension
in a range of angles θ ∈ [30◦, 60◦] (Fig. 9).
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FIG. 9. From top-left to bottom-right: For the system with ambient field, bifurcation diagrams of |z+
1 (t )|2 as a function of the forcing

Gi ∈ [50, 400], at six different angles θ (see panel titles). The corresponding Alfvènic timescale �n and the angle γn between kn and eA are
also indicated.

A different dynamics emerge when the angle exceeds
θ = 60◦. In this case, the turbulent region begins to shrink,
and disappears above a defined angle θ̄ , where only subhar-
monic or periodic structures are present (Fig. 9 second row).
This peculiar feature could be related to the presence of two
competing phenomena in MHD, related to two characteristic
timescales, i.e., the eddy-turnover time [56] defined as τnl ∼
(kn

√
knEn)−1, being En = 1/2

∫
(|z+

n + z−
n |2 + |z+

n − z−
n |2)dt

and the sweeping time due to the propagation of Alfvén waves
|�n|−1. Table II collects both characteristic times at different
angles 0 � θ � 90◦. For θ < θ̄ , the nonlinear evolution is
always more efficient than the sweeping of fluctuations due
to waves, since τnl < |�n|−1 for all modes. On the other hand,
when the angle exceed the value tan θ̄ = 2 (θ̄ 	 63.4◦) |�3|−1

becomes negative, contrasting the onset of turbulence, while it
stays positive for the other modes. In such a situation the two
temporal scales compete in driving the dynamics.

The energy injected in the system is then not efficiently
transferred to all modes, because the sweeping effects, acting
between opposite Elsässer fluctuations, are enforced by the
Alfvénic transport. As a result, when θ increases, the pres-
ence of MHD waves strongly stabilizes the dynamics, with
a transition from a chaotic regime (θ � θ̄ , as θ increase the
turbulent region appears at higher forcing values as reported
in Fig. 9, top panels) to a quasiperiodic or periodic regime
(θ > θ̄ ) regardless of forcing amplitude [32,57–59]. This is
particularly evident for θ � 70◦ (two bottom-right panels of
Fig. 9), since the Elsässer mode amplitudes are smooth in

TABLE II. Comparison of the characteristic nonlinear timescale τnl and the decorrelation timescale �−1
n at different angle θ of the ambient

magnetic field B0. The nonlinear timescales have been obtained by setting ν = μ = 0, Ri = Gi = 0.

θ = 0◦ θ = 30◦ θ = 45◦ θ = 60◦ θ = 65◦ θ = 70◦ θ = 90◦

nth mode kn τnl �−1
n τnl �−1

n τnl �−1
n τnl �−1

n τnl �−1
n τnl �−1

n τnl �−1
n

1
√

2 0.255 1 0.269 0.732 0.275 0.707 0.261 0.732 0.287 0.753 0.261 0.780 0.251 1
2 3 0.089 1/3 0.086 0.385 0.086 0.471 0.088 2/3 0.077 0.789 0.091 0.975 0.107 ∞
3

√
5 0.136 1/2 0.133 0.812 0.133 1.414 0.132 7.464 0.121 −16.374 0.139 −3.911 0.160 −1

4
√

5 0.141 1 0.132 0.536 0.143 0.471 0.132 0.448 0.142 0.447 0.132 0.450 0.123 1/2
5 1 0.424 ∞ 0.449 2 0.412 1.414 0.460 1.155 0.510 1.103 0.424 1.064 0.384 1
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FIG. 10. Comparison of the temporal evolution of the phase �1(t ) at θ = 30◦ (top row) and θ = 90◦ (bottom row), for three different
magnetic forcing values: Gi = 50, 100, 400. The ambient field B0 destroys the phase-locking period, and the phases becomes linearly
dependent on time already at small Gi. For larger forcing, the precession accelerates, but the small perturbations act differently as θ is varied.

the whole range of Gi, and the only structures emerging as
the forcing increases are the secondary bifurcations, which
survive up to Gi = 250.

Finally, since the presence of waves mainly affects the
phases, it is interesting to investigate the temporal evolution
of �n(t )± for different θ . The ambient field B0 effectively
destroys the phase-locking periods previously observed, be-
cause the phases now depend linearly on time already at small
Gi (top-left panel of Fig. 10). Moreover, weak perturbations
are superimposed on the phase structure, and disappear as θ

increases (bottom-left panel of Fig. 10). For larger forcing,
the precession accelerates, but the small perturbations act
differently as θ is varied. An example for Gi = 100 is visible
in the two central panels of Fig. 10. For θ = 30◦ perturbations
appear irregular, while for θ = 90◦ they form a regular tempo-
ral pattern. As Gi is increased further, for example at Gi = 400
(corresponding to the quiescent zone in the case �n = 0, see
Fig. 9), phase perturbations are always present, and for all
angles they seem to follow a regular pattern (right panels of
Fig. 10). In all cases, the phase-shift term of the PTC takes the
functional form wn(G, θ ) = SnÛn(0, ε).

VI. CONCLUSIONS

The transition to chaos in a five-mode truncation of 2D
MHD has been investigated, with and without background
magnetic field, by means of complex variables. The dynamics
of the system is of course strongly dependent on the external
parameters. A complex fine structure of the various dynamical

regimes emerges as the parameters are changed. The simple
model used here was able to capture various unexplored dy-
namical regimes that emerge for different parameters.

The main results described in this paper, potentially shared
with a large class of nonlinear systems, may be summarized
as follows.

(i) In the neutral flow case, the features of the system are
similar to those observed using real variables [15,20]. The
transition to a turbulent regime occurs via a Hopf bifurca-
tion followed by a sequence of secondary period doubling
bifurcations, compatible with the Feigenbaum prediction. For
large external kinetic forcing, the system returns to a periodic
structure.

(ii) The 2D MHD case corresponds to turbulence on
the plane perpendicular to the background magnetic field.
This is relevant to the nearly incompressible model of solar
wind turbulence, where the superposition of 2D and slab
fluctuations is assumed. In terms of Elsässer variables, the
dynamics looks like hydrodynamics. However, in this case
the transition to chaos, occurring through a Hopf bifurca-
tion generating periodic orbits, is followed by the splitting
in multiple subharmonic structures. These are incompatible
with the Feigenbaum scenario, and disappear as the magnetic
forcing increases. The process of splitting and merging of the
orbits differs from the kinetic case. The process of subhar-
monics formation → splittings → shrinking is intermittently
repeated up to a fully chaotic regime. Such behavior could
be seen as an imitation of the frozen magnetic field lines,
transported from large-scale fluid flow [38,60], which become
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progressively more twisted as the magnetic Reynolds number
increases [61].

(iii) In the fully chaotic regime, strange attractors appear.
The phase-space dynamic is characterized by multiple subsys-
tems with chaotic dynamics, or bundles of nonperiodic orbits.
Moreover, despite the system entering into a fully chaotic
zone, transition to a periodic orbit is intermittently observed,
visible as periodicity windows in the bifurcation diagram.
This dynamics may be seen as periods of self-organization
of the flux tubes in MHD, e.g., the spaghettilike random
structures observed in space plasmas [37].

(iv) If the magnetic forcing is large enough, all sub-
harmonic orbits start coalescing to a single stable periodic
orbit, and the turbulence is finally suppressed. The coalescing
structure observed in the bifurcation diagram shares similari-
ties with the bubble structure discovered in double-diffusive
convection and magnetoconvection [62,63]. The convective
turbulence is gradually suppressed, and a quiescent state is
reached via a Feigenbaum period halving, according to the
process of period doubling → turbulence → period halving
→ orbit coalescence. In our MHD case, neither the period
halving nor the Feigenbaum conjecture are fulfilled. Instead,
the coalescence occurs when two consecutive local maxima
collapse to a single peak as the external forcing increases.

(v) By using the decomposition of the Elsässer variables in
amplitudes and phases, the phase dynamics can be described
by a simple PTC map. The phases of the fields are initially
locked to piecewise constant periods, and a linear precession
of phases is observed as the forcing increases. As the system
enters the turbulent regime, a mixture of piecewise locked
periods interrupted by intermittent periods of slight randomly
modulated linear precession emerge. For larger forcing the
phase locking is completely lost, and the phases dynamics
is described by linear precession modulated by small random
perturbations.

(vi) When a background external magnetic field has a
component on the plane, the dynamics depends on the angle
θ between the selected wave vectors and the direction of the
external field. When θ is enclosed in the range 0◦ � θ < θ̂ ≡
63.4◦, the dynamics is different from the previous MHD case:
i.e., absence of an external field. In particular the turbulent
region is stretched, in terms of the forcing range, showing its
maximum extension for θ ∈ [30◦, 60◦], and the phase-locking
periods do not appear because the phases are affected by
the presence of linear waves that decorrelate the turbulent
fluctuations. In those cases only a linear precession is present,
whose speed increases with the forcing Gi. The main feature
of this case is that for θ � θ̂ the transition to turbulence is
gradually suppressed, and disappears for θ = 90◦ (B0 ‖ y),

regardless of the value of Gi. The suppression of the turbulent
regime at high θ is likely related to the competition between
decorrelation effects, induced by waves, and the nonlinear
energy cascade.

It should be remarked that truncated models (fluid or
MHD) do not contain, nor shall we be concerned with, the
inertial or dissipative ranges of fully developed turbulence,
whose description requires an infinite number of wave vectors.
The emphasis on the chaotic dynamics of the MHD system
presented here, should not be confused with fully developed
turbulence, since the attractors of the truncated MHD system
do not coincide with MHD turbulence as observed in space
or laboratory plasmas. Similarly, the formation of the strange
attractor should not be confused with the formation of a tur-
bulent cascade, so that it is not immediately obvious one finds
a counterpart of the chaotic dynamics in the observations of
space plasmas turbulence, even if the stabilization of chaos, in
the presence of an in-plane background magnetic field, is rem-
iniscent of the fact that fully developed turbulent fluctuations
lies in the plane perpendicular to the field.

A reader may reasonably ask what can be learned by ap-
proaching turbulence from a dynamical systems viewpoint
[29,64]. The primary answer is that it demonstrates that there
is no need to invoke singularities or noise to explain the com-
plex dynamics observed in turbulence [64]. As a conclusion,
the different route to chaos with respect to fluid turbulence,
the coexistence of phase locking and free precession periods,
and the suppression of turbulence due to decorrelation effects
induced when a background magnetic is present, are interest-
ing new features highlighted by the five-mode MHD model
studied here. This could open new ways for investigating
bifurcation to chaos in dynamical systems theory.
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