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Modeling transport of soft particles in porous media
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Flow-driven transport of soft particles in porous media is ubiquitous in many natural and engineering
processes, such as the gel treatment for enhanced oil recovery. In many of these processes, injected deformable
particles block the pores and thus increase the overall pressure drop and reduce the permeability of the
particle-resided region. The change of macroscopic properties (e.g., pressure drop and permeability) is an
important indicator of the system performance, yet sometimes impossible to be measured. Therefore, it is
desirable to correlate these macroscopic properties with the measurable or controllable properties. In this work,
we study flow-driven transport of soft particles in porous media using a generalized capillary bundle model.
By modeling a homogeneous porous medium as parallel capillaries along the flow direction with periodically
distributed constrictions, we first build a governing differential equation for pressure. Solving this equation gives
a quantitative correlation between the total pressure drop and measurable parameters, including concentration
and stiffness of particles, size ratio of particle to pore throat, and flow rate. The resultant permeability reduction
is also obtained. Our results show that the total pressure drop and permeability reduction are both exponentially
dependent on the particle concentration and the size ratio of particles to pore throat. With no more than two
fitting parameters, our model shows excellent agreements with several reported experiments. The work not only
sheds light on understanding transport of soft particles in porous media but also provides important guidance for
choosing the optimal parameters in the relevant industrial processes.
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I. INTRODUCTION

Flow-driven transport of soft units in porous media exists
in many natural and engineering processes, such as enhanced
oil recovery, dead-end filtration, and microfluidic cell sorting
[1–6]. In many of these processes, injected deformable par-
ticles block the pores and thus increase the overall pressure
drop of the particle-resided region. The change of macro-
scopic properties (e.g., pressure drop and permeability) is
an important indicator of the system performance, yet some-
times impossible to be measured. For example, enhanced
oil recovery (EOR) can be realized by injecting gel parti-
cles, or microgels, into the oil reservoir which improves the
sweep efficiency and reduces excess water production [1,7–
11]. Specifically, injected microgels deform at pore throats
as they flow through the medium which induces a high flow
resistance locally at the pores. Many such local increments
of flow resistance associate with an elevated overall flow
resistance in the region, or a reduction of permeability. Conse-
quently, the following injected fluid is forced to enter adjacent
regions. The efficacy of this EOR technique depends on the
permeability reduction in the gel treated region, which cannot
be directly measured in the oilfields.

The mechanisms of microgel transport in porous media
have mostly been studied phenomenogically and qualitatively
in micromodels, sandpacks, and through coreflooding. At
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the pore scale, microgels exhibit six patterns of propagation
behaviors—direct pass, adsorption and retention, deform and
pass, shrink and pass, snap-off and pass, and trap—depending
on the gel size, strength, pore structure, and gel-solid intera-
tion [9]. At the macroscale, microgels can pass through the
porous medium if the driving pressure gradient is above a
threshold, which increases with the gel strength and the size
ratio of gel to pore throat [9]. In particular, this pressure
gradient threshold is shown to increase exponentially with
the gel-throat diameter ratio according to some sandpack ex-
periments [12–14]. Moreover, the overall pressure drop for a
certain porous medium increases with microgel concentration
and flow rate [14,15]. However, the residual resistance factor,
a measure of gel injection-induced permeability reduction and
defined as the ratio of pressure gradient after gel injection to
that before gel injection, decreases with flow rate [8,15]. Al-
though significant progress has been made through extensive
experimental studies in capturing microgel transport behav-
iors in porous media, there is a lack of studies, experimental or
modeling, that provide a quantitative interpretation about the
dependence of permeability reduction on various measurable
or controllable properties. Such properties are usually at the
pore scale, including the pore throat size, the pore velocity,
and the size, concentration, and mechanical properties of mi-
crogels.

Historically, capillary bundle models were developed to
study the absolute permeability of granular beds, which rep-
resent realistic porous media in a variety of applications
[16–18]. The model approximates a granular bed as a group of
straight channels parallel to flow direction, which allows for
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FIG. 1. Illustration of (a) homogeneous porous medium; (b) generalized capillary bundle model; (c) microgel suspension flowing in
capillary. LP is the distance between two successive deformed microgels in throats. Inset: a deformed microgel marked with the contact
length and the pressures at upstream and downstream side of the microgel.

the expression of flow resistance from Hagen Poiseuille law.
Further considering the analogy between Hagen Poiseuille
law and Darcy’s law, the permeability is correlated with
microscopic structure of the porous medium [16]. In later
studies on emulsion flow in porous media, capillaries with a
sinusoidal structure were adopted to derive the pressure drop
[19–21]. The effectiveness of the proposed capillary bundle
models is then verified by comparing with experimental mea-
surements.

In this paper, we propose a generablized capillary bundle
model to quantitatively study the dependence of macroscale
properties after gel injection, i.e., total pressure drop and
permeability, on the measurable or controllable properties
including microgel concentration and stiffness, size ratio of
gel to pore throat, and Darcy flux. We consider monodis-
perse microgels moving with the fluid through a homogeneous
porous medium with pore throats smaller than the microgels.
The microgels are assumed to be uniformly distributed and
pass through the pores in a similar manner without trap-
ping, breakup, or shrinkage. The generalized capillary bundle
model consists of periodic constrictions along the flow direc-
tion and retains the same porosity, permeability, pore throat
size, and overall medium size as the original porous medium.
We identify two sources of pressure drop due to the viscous
flow and the temporary pore blockage by gels, respectively.
Based on our previous study on gel blockage induced pressure
drop over a constriction [22], we obtain a discrete pressure
recurrence relation which leads to a differential governing
equation after homogenization at the macroscale. By solving
this equation, we examine the dependence of the total pressure
drop and permeability reduction on other measurable proper-
ties. Finally, we compare the predictions from our model with
reported experimental data.

II. MODEL DEVELOPMENT

When microgels are flowing with the carrying fluid in a
porous medium, they are either in the confined state, at which

gels are squeezed and sliding through the pore throat, or the
unconfined state, at which gels are moving with fluid in the
pore body. We assume that the microgel concentration is suffi-
ciently small so that the microgels do not influence each other.
Since the length scale of the porous medium is significantly
larger than the pore size, the process can be regarded as the
continuous motion of microgels in a group of capillaries with
alternating constrictive throats and unconfining sections. We
introduce a generalized capillary bundle model consisting of
parallel capillaries along the flow direction with periodically
distributed constrictions of a throat diameter dt , the same
as the pore throat size of the original porous medium. The
constrictions are positioned randomly across the model, and
thus at any cross-section perpendicular to the flow direction
the ratio of total pore area to cross-sectional area is equal to
porosity. We use this model to facilitate the development of a
quantitative pressure correlation without specifying the shape
of the constrictions. Figures 1(a) and 1(b) schematically show
a homogeneous porous medium and the generalized capillary
bundle model with two capillaries being illustrated. Microgels
are displayed as green spheres. When passing through a con-
striction, the microgel deforms and induces an elevated local
pressure drop, Pn

u −Pn
d , where Pn

u and Pn
d are the pressures at

upstream and downstream side of the microgel. The distance
between two consecutive deformed microgels is denoted as
LP, as shown in Fig. 1(c).

We consider the flow of microgel suspension in steady
state. Total pressure drop results from the resistances to mi-
crogels passing-through the throats and viscous flow, which
are evaluated separately. We set the cylindrical coordinates
with z axis along the centerline toward the flow direction
and z = 0 at the inlet, and r axis the radial direction. For a
microgel sliding through a confining constriction, the pressure
difference across the gel balances the frictional resistance
between the gel and the wall. In our previous work, we derived
the governing equation for the axial normal stress inside a
deformed microgel that follows the nonlinear Neo-Hookean
material law for large deformation and the Amontons’ friction
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law considering adhesion between the gel and the channel
wall [22]. Following the same methodology, we obtain the
governing equation for the axial normal stress σz in a microgel
with negligible adhesion:

dσz

dz
+ 4μ

dt
σz = −4μE

3dt

(
λ2

r − 1

λ4
r

)
, (1)

where dt is the pore throat diameter, μ the friction coefficient,
E the Young’s modulus of the gel, and λr the radial stretch
ratio of the gel.

Numbering the microgels that are in contact with the
throats from outlet to inlet as 1, 2, 3, … and denoting the
boundary condition on the downstream side of the (n)th mi-
crogel as σz = −Pn

d , we can solve Eq. (1) and obtain σz on the
upstream side, −Pn

u . We have

Pn
u = e

4μLcon
dt Pn

d +
∫

Lcon

4μE

3dt

(
1

λ4
r

− λ2
r

)
e

4μ

dt
zdz, (2)

where Lcon is the contact length between the microgel and

the capillary wall, shown in Fig. 1(c). e
4μLcon

dt can be written
as eμ f (�). The dimensionless function f is a monotonic in-
creasing polynomial function of �, as derived in Appendix A.
According to our previous study [22], the integral in Eq. (2)
can be approximated as Eμg(�,μ), in which � is the ratio
of microgel diameter to throat diameter and g is a product of
a third power polynomial of � with an exponential function
of � (Appendix A). Thus, the relation between the upstream
and downstream pressure over the (n)th microgel is Pn

u =
eμ f (�)Pn

d + Eμg(�,μ).
Denoting the viscous pressure drop between two consecu-

tive deformed microgels as �Pf , we have Pn+1
d = Pn

u + �Pf .
Therefore, pressure recurrence relation between the (n)th and
(n + 1)th deformed microgel is

Pn+1
d = eμ f (� )Pn

d + �Pf + Eμg(�,μ). (3)

On average, �Pf is characterized by Darcy’s law: �Pf =
ηQLp

Aκ
, where η is dynamic viscosity of the microgel suspen-

sion; Q is total flow rate; A is the cross-section area and κ is
the absolute permeability of the porous medium. As derived
in Appendix B, LP = 2�3c

√
κ

3αβ
, where α represents microgel

volume concentration, c a factor related to microstructure
of the porous medium, and β the percentage of deformed
microgels over all microgels at any instant, or the probability
of a microgel being deformed by the capillary wall. Since the
numerator 2�3c

√
κ represents a length scale comparable to

the pore size and the denominator 3αβ is on the order of 10−2

or smaller (in real gel treatment processes, for example, α is
on the order of 10−3–10−2), Darcy’s law is applicable over the
length scale of LP.

Next we homogenize the discrete recurrence relation

into a differential equation. Rewriting Eq. (3) as Pn+1
d −Pn

d
Lp

=
(eμ f (�)−1)

Lp
Pn

d + �Pf +Eμg(�,μ)
Lp

, replacing the finite difference
with differential form on the left side of the equation
and substituting LP = 2�3c

√
κ

3αβ
on the right side, we ob-

tain the differential governing equation for pressure at the

macroscale:

dP

dz
+ 3(eμ f (� ) − 1)αβ

2�3c
√

κ
P = − 3αβ[�Pf + Eμg(�,μ)]

2�3c
√

κ
.

(4)

We may consider this equation not only as the homog-
enization of one channel in the flow direction, but also as
an average result of all the channels, i.e. the whole porous
medium. Integrating Eq. (4) by introducing an integrating

factor e
3(eμ f (�)−1)αβ

2�3c
√

κ and noticing that the gauge pressure at the
outlet P(L) = 0, we obtain the pressure distribution along the
porous medium:

P(z) =
(

ηQ

α
√

κAF
+ EμG

)(
e

Fα√
κ

(L−z) − 1
)
. (5a)

Therefore, the total pressure drop Pt over the porous
medium is

Pt =
(

ηQ

α
√

κAF
+ EμG

)(
e

FLα√
κ − 1

)
︸ ︷︷ ︸ ︸ ︷︷ ︸

viscous flow gel deformation,

(5b)

where F = F (�,μ) = 3β(�)(eμ f (�) − 1)/2c�3 and G =
G(�,μ) = g(�,μ)/(eμ f (�) − 1) are both nondimensional. F
and G characterize the mechanical interaction between the mi-
crogel and the pore throat due to size mismatch. The detailed
procedure of solving Eq. (4) to obtain Eq. (5) can be found in
Appendix C.

Equation (5) quantitatively correlates the total pressure
drop with microgel concentration α, flow rate Q, porous
medium permeability κ , and the interaction between the
microgels and the solid matrix (through F and G). The con-
tributions from microgel deformation and viscous flow are
clearly separated, as indicated in Eq. (5b). Equation (5b) re-
veals the exponential dependence of the total pressure drop
on microgel concentration α and the length of porous medium
L. Moreover, since the function F depends on gel-throat size
ratio � exponentially, the pressure drop would be extremely
sensitive to �, indicating a strong on/off switching function
of the medium to the gels. The effect of the gel stiffness is
reflected by the term containing Young’s modulus E . Besides
explicitly shown next to E , the friction coefficient μ comes
into play through functions F and G. When microgel con-
centration α is zero, which corresponds to single phase flow,
Eq. (5b) recovers Darcy’s law: Pt = ηQL

κA , by linearizing the
exponential term.

Residual resistance factor (Frr) is a major parameter used
to evaluate gel treatment efficacy and defined as the ratio
of injection pressure during post-gel-treatment water flood-
ing to pretreatment water flooding. Frr can be calculated as
Pt
Pw

· ηw

η
, in which Pt and Pw are gel injection pressure [given

by Eq. (5b)] and pretreatment water injection pressure, respec-
tively; ηw and η are viscosities of water and gel suspension,
respectively [12]. The ratio Pt/Pw is also referred to as the
resistance factor, representing the ratio of water mobility to
gel mobility. Noting that Pw = ηwQL

κA based on Darcy’s law, Frr
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FIG. 2. Comparisons between model prediction and experimental results for the variation of (a) total pressure drop; and (b) permeability
reduction with microgel concentration [14].

can be expressed as

Frr = PtκA

ηQL
= κ

κe
. (6)

Here κe = ηQL
Pt A

is defined and regarded as the effective per-
meability due to microgel injection. Therefore, the ratio κe/κ ,
or the reciprocal of Frr , represents the permeability reduction
due to gel injection.

III. COMPARISONS WITH EXPERIMENTS

A. Effect of gel concentration

Al-Ibadi and Civan [14] studied transport of microgels
in porous medium experimentally with a sand column. A
core sample is formed by a plastic cylinder with diameter
2.5 cm and length 18.4 cm filled with 16–20 mesh proppant
sands. Permeability and porosity of the porous media were
measured, which are 3.75 μm2 and 0.38, respectively [14].
Gel particle suspensions with the gel volume concentration
of 0.5%, 1%, 2%, and 3% were injected into the sand-pack
at a constant flow rate of 100 cm3/h. The viscosity of the
suspension increases from 0.0035 Pa s to 0.0055 Pa s as the
gel concentration increases over this range. For each concen-
tration, the pressure difference was measured by a pressure
transducer until the flow reached steady state, at which the
measured pressure became a constant. The total pressure dif-
ference at different microgel volume concentration are plotted
in Fig. 2(a) as the circles.

Based on the experimental data in Ref. [14], we fitted
the parameters F and EμG, which are functions of friction
coefficient μ, size ratio of gel to pore throat �, Young’s
modulus E , and porous structure of the medium. Specifically,
friction coefficient μ is included on the exponential index and
thus F increases exponentially with μ; F also exhibits an ap-
proximately exponential trend with the size ratio �. Young’s
modulus E only appears in the fitting parameter EμG. Since
μ, �, E , and the porous structure should remain the same
or very similar for all the experiments in Ref. [14], F and
EμG are two constants, and can be fitted using our model,
Eq. (5b). Our model prediction agrees very well with the
experimental data at F = 5.6 × 10−4 and EμG = 0.85 KPa,
which verifies the exponential dependence of pressure on

gel concentration. The comparison between the experiments
and the model prediction on permeability reduction, κe/κ in
Eq. (6), is shown in Fig. 2(b).

B. Effect of gel size and linearization of pressure distribution

When FLα√
κ

is a small number (i.e., much smaller than 1),
the pressure distribution, P(z) in Eq. (5a), is approximately a
linear function of z,

P(z) =
(

ηQ

κA
+ EμHα√

κ

)
(L − z). (7)

Thus the residual resistance factor reduces to

Frr = 1 + EμHα
√

κA

ηQ
, (8)

in which H is the product of functions F and G and depends
on � exponentially [22]. In this case, the number of fitting
parameters reduces to 1, which is EμH .

Wang et al. [12] investigated transport of microgels in
a homogeneous sand-pack filled with unconsolidated quartz
sands, which is 30 cm long with a diameter of 2.5 cm. The
permeability and the porosity of the sand-pack were 6.53 μm2

and 0.32, respectively. 0.5 pore volume (PV) water followed
by 3.5 PV suspension of preformed particle gels at 2 vol%
were injected at the rate of 300 ml/h. The corresponding
suspension viscosity is assumed to be the same value as that
measured in Ref. [14] for the same microgel concentration,
which is 0.0045 Pa s at 2%. Four pressure taps were uni-
formly applied along the sand-pack to measure the pressure
at different locations at steady state, as shown by the circles
in Fig. 3(a). In this case, FLα√

κ
∼ 0.01. Therefore, the pressure

measurements exhibited a nearly linear variation over length
and can be fitted by Eq. (7) with EμH = 0.094 KPa, as shown
in Fig. 3(a). The prediction based on Darcy’s law for single
phase flow was also plotted as the dashed line. The striking
difference clearly shows the pressure drop induced by the
microgels.

Reference [12] also conducted experiments with a range
of microgel size and measured the pressure gradient corre-
sponding to each size ratio of gel to pore throat. The pressure
gradients for different size ratios of gel to throat are plotted
as the circles in Fig. 3(b). Since H (�,μ) = F (�,μ)G(�,μ)
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FIG. 3. Comparisons between model prediction and experimental results for the variation of (a) total pressure drop with position when
L/L̃ is small; and (b) pressure gradient with the ratio of gel to throat diameter [12].

increases exponentially with the size ratio � [22], EμH in
Eq. (7) can thus be approximated as aeb� , where a and b are
two constants depending on E , μ and the porous structure.
The experimental data agree very well with our model Eq. (7)
with a and b are 1.75 Pa and 0.75, respectively, as shown in
Fig. 3(b). By normalizing the pressure gradient with that from
Darcy’s law, as plotted in Fig. 7 in Appendix D, we can clearly
see the effect of microgels on increasing pressure gradient.

C. Effects of flow rate and friction coefficient

Saghafi et al. [8] studied how flow rate affects the residual
resistance factor in gel particle injection. They packed crushed
carbonate cores in a 51-cm-long tube with an inner radius of
3.5 mm. The permeability and porosity of the porous medium
are 135 μm2 and 0.4, respectively. Microgels with an average
diameter of 169 μm and volume concentration 0.3% were
flooded through the tube with the flow rates of 0.1, 0.3, 0.5,
and 0.7 ml/min. Their experiments showed that the residual
resistance factor decreases with Darcy flux [ratio of flow rate
to pore cross-section area, Q/(Aϕ)], which is consistent with
the prediction from our model, Eq. (6), as shown in Fig. 4(a).
In the comparison, fluid viscosity η is estimated as water
viscosity since the gel concentration is very low. Darcy flux,

Q/(Aϕ), is the dependent variable. The experimental data can
be well fitted by Eq. (6) with two fitting parameters F = 0.035
and EμG = 0.28 KPa. Since FLα√

κ
≈ 4.57 in this case, Eq. (8)

cannot be used.
Not surprisingly, the corresponding pressure drop variation

with Darcy flux also agrees well with model prediction from
Eq. (5b), as shown in Fig. 4(b). Although our model predicts
a linear relation between pressure and flux, we notice that
the increasing rate of pressure drop from the experiments
seems to decrease with the flux. This is also reflected by the
sandpack experiments described in Sec. 3.1 and in Ref. [14],
shown as the green crosses in Fig. 4(b). This discrepancy
can be attributed to the constant friction coefficient adopted
in the model. As flow rate increases, the speed of micro-
gels passing pore throats increases. It is well studied that
the friction coefficient of polymer gels is velocity depen-
dent. The higher the speed, the lower the friction coefficient
[23–26], thus resulting in a lower passing-through pressure
at the throats. Therefore, the decrease of passing-through
pressure compromises the linear increase of driving pressure
from viscous flow and results in a falling increasing rate of
total pressure drop. The current model can easily include
this effect once the dependence of μ on flow velocity is
known.

FIG. 4. Comparison between model prediction and experimental results for the variations of (a) residual resistance factor; (b) pressure drop
as a function of Darcy flux. Red error bars and circles are experimental data from Ref. [8]; green crosses are experimental data from Ref. [14].
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Please note that the comparable pressure drops in Refs. [8]
and [14] is a coincidence. The size ratio of gel to pore throat
� In Ref. [8] is much larger than that in Ref. [14]; however,
the gel concentration α in Ref. [8] is much lower than that
in Ref. [14]. Since pressure drop increases with both � and
α, the pressure drops are comparable in these two references
coincidently.

IV. CONCLUSION

In this work, we study how flow-driven transport of
deformable particles, such as microgels, through a porous
medium influences the permeability reduction, which is crit-
ical for understanding and eventually optimizing the gel
treatment process for enhancing oil recovery. Since perme-
ability can be associated with total pressure drop through
Darcy’s law, our work focus on building a quantitative
correlation between the total pressure drop and microgel con-
centration, size and stiffness, flow rate, and porous medium
property. We propose a generalized capillary bundle model
that represents a homogeneous porous medium as parallel
capillaries along the flow direction with periodically dis-
tributed constrictions mimicking the pore throats. Assuming
monodisperse and uniformly distributed microgels larger than
the pore throat passing through the throats in a similar manner
without trapping, breakup, or shrinkage, we derive a differ-
ential governing equation with respect to the pressure in the
porous medium. Solving this equation allows us to examine
the dependence of the macroscopic pressure drop and perme-
ability reduction on the measurable properties.

This analytical model, featuring sufficient simplicity and
rooting from rigorous analysis, quantitatively correlates total
pressure drop with flow property, microgel property, as well
as porous medium property. Equation (5) clearly shows how
the concentration and stiffness of microgels, size ratio of gel
to pore throat, flow rate, viscosity, friction coefficient, and
porous-medium’s absolute permeability influence the pressure
drop. The interaction between microgels and pore throats due
to size mismatch are characterized by the mis-matching func-
tions F and G, which can be determined through systematic
flow experiments in the porous medium. Importantly, we find
that the total pressure drop depends on microgel concentration
and the length of the porous medium exponentially. Since F
exponentially depends on the relative size of microgel to pore
throat, the total pressure drop becomes extremely sensitive to
the gel size. In addition, when the porous medium length is
small compared to a characteristic length L̃ =

√
κ

Fα
, the pres-

sure distribution exhibits a linear trend in the flow direction.
Finally, when microgel concentration is zero, the model re-
covers Darcy’s law. Our model could provide a guideline
in choosing the optimal parameters in gel treatment process
including gel size, concentration, and flow rate.

The generalized capillary bundle model we proposed
provides a framework to study multiphase flow with dispersed
particles, drops, or bubbles, through homogeneous porous
media. For materials other than soft particles, certain material
parameters might need to be replaced to characterize its
specific characters/effects on the system. For instance, for
emulsion flow through porous media, Young’s modulus used
for microgels should be replaced with interfacial tension. For

heterogeneous porous media, if the heterogeneity occurs at a
length scale larger than that of the representative elementary
volume (REV) and comparable to the system scale (scale
of interest), such as stratified reservoirs, we can still apply
the same methodology for the homogeneous region (on
REV). Then we can conduct analysis on the system scale
to evaluate the properties on the large scale, which are
usually direction-dependent. If the heterogeneity occurs at
a length scale larger than that of REV but smaller than the
system scale, the approach depends on if the heterogeneity
is spatially periodic or randomly distributed. For periodic
heterogeneity, we can first use the proposed methodology to
determine the macroscopic properties for each homogeneous
region, then use traditional, well-developed averaging
and homogenization methods at a larger scale, such as
those discussed in Refs. [27,28]. In this case, the system
can be regarded as homogeneous with respect to the
larger-scale averaging volume. For randomly distributed
heterogeneity, more complicated large-scale averaging
methods would be needed; readers may refer to Refs. [29,30]
for more discussions.
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APPENDIX A: EXPRESSIONS OF FUNCTION f AND g

Denote the contact length between the undeformed mi-
crogel and the capillary wall as L. Lcon = ∫L

0 λzdZ . From

volume conservation, λz = 1
λ2

r
, where λ2

r = ( dt
2 )

2

R2−(Z− L
2 )

2 and

R is the radius of the undeformed microgel. Substitut-
ing λ2

r into the integral and perform the integration, we

obtain Lcon = 2
3

√
R2 − ( dt

2 )
2
(2�2 + 1). Therefore, f (�) =

Lcon
dt

= 1
3

√
�2 − 1(2�2 + 1), which is a monotonic increasing

polynomial function of �.

Eμg(�,μ) = ∫Lcon

4Eμ

3dt
( 1
λ4

r
− λ2

r )e
4μ

dt
zdz. This integral is

identical to the second term of Eq. (6b) in Ref. [22] (noting
that dt = 2r0); based on the experiments in constrictive chan-
nels conducted in Ref. [22], this term can be approximated as
Eμ(�2 − 1)1.5e(10.7μ+3.6)(�−1)+1, as shown as the first term
of Eq. (8) in Ref. [22]. Readers may refer to Ref. [22] for the
details of simplification.

APPENDIX B: SCALING OF LP

To find the distance along longitudinal axis between two
adjacent microgels, L0. Assume there are N1 × N1 capillaries
in the cross-section, shown in Fig. 5. Average distance be-
tween each capillary is Lc. Along axis, there are N2 microgels
evenly distributed in each capillary. Thus, the total number
of microgels in the porous medium is N2

1 N2. The total volume
that the microgels occupy is Vgel = 4

3πR3N2
1 N2, where R is the

microgel radius. The total volume of the porous medium is
Vtotal = N2

1 L2
c N2L0. Since Vgel

Vtotal
= α

1/ϕ
, αϕ = 4πR3

3L2
c L0

. Substitute
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FIG. 5. Illustration of distance between two microgels in capil-
lary: L0.

ϕ = 1
4 πN2

1 d2
e

N2
1 L2

c
, where de is the equivalent diameter of the capil-

lary related to the microstructure of the porous medium. As a
matter of fact, de can be correlated with macroscopic perme-
ability κ by relation de = c1

√
κ , where c1 is a factor related

to microstructure of the porous medium [31,32]. Therefore,
we have L0 = 16R3

3d2
e α

. Since only a portion (β) of microgels
are confined by throats at any instant, the distance between
two consecutive deformed microgels is LP = L0

β
= 16R3

3d2
e αβ

. Pa-
rameter β is the percentage of deformed microgels over all
microgels at any moment, or the probability of a microgel
being deformed by the capillary wall. Therefore, β is the ratio
of the time scale that the microgel is in contact with throats to
its total transport time in the porous medium. In steady state, if
we assume no microgel blockage or accumulation in throats,
then β is scaled by the ratio of the contact length (La) between
a microgel and a throat to the distance between two neighbor-
ing throats Lb: La/Lb (Fig. 6). β may also depends on microgel
material property, i.e., Young’s modulus E , and friction coef-
ficient μ, but on a secondary level. Therefore, for a specific
porous structure, β mainly depends on the ratio of microgel
to pore throat diameter, or β = β(�). If, however, the gel
completely blocks the flow, then the timescale of the blockage
should be considered, which depends on the diameter ratio of
the gel to the constriction, the stiffness of the gel, the friction
between the gel and the channel wall, and the flow rate, which
is beyond the discussion of this work. Notice that � = 2R/dt

and dt is also proportional to
√

κ with the proportionality
depending on microstructure and porosity. For example, for
random packing of spherical beads, this proportionality takes

FIG. 6. Illustration of β: scaled by the length ratio.

the form of 1.9 (1−ϕ)
√

κ

ϕ1.5�
based on the classic Kozeny-Carman

equation κ = �2d2
pϕ

3

180(1−ϕ)2 , where � is sphericity and dp is grain
diameter that is about 7dt [12,16,33,34]. Therefore, we have
LP = 2�3c

√
κ

3αβ
, where c depends on microstructure and porosity

of the porous medium.

APPENDIX C: SOLVING PROCEDURE
FROM EQS. (4) AND (5)

From Eq. (4),

dP

dz
+ 3(eμ f (� ) − 1)αβ

2�3c
√

κ
P = −3αβ[�Pf + Eμg(�,μ)]

2�3c
√

κ
.

Solve the above equation by introducing an integrating

factor e
3(eμ f (�)−1)αβ

2�3c
√

κ ,

P(z) = e
− 3(eμ f (� )−1)αβ

2�3c
√

κ
z
( ∫ z

0

−3αβ[�Pf + Eμg(�,μ)]

2�3c
√

κ

× e
3[eμ f (� )−1]αβ

2�3c
√

κ
z
dz + C

)
,

where C is a constant of integration.
Notice that at inlet, P(z = 0) = Pt , so Pt = C. Integrate the

above equation,

P(z) = e
− 3(eμ f (� )−1)αβ

2�3c
√

κ
z
(−[�Pf + Eμg(�,μ)]

(eμ f (� ) − 1)

× (
e

3(eμ f (� )−1)αβ

2�3c
√

κ
z − 1

) + Pt

)
.

Rearrange,

P(z) = Pt e
− 3(eμ f (� )−1)αβ

2�3c
√

κ
z

− [�Pf + Eμg(�,μ)]

(eμ f (� ) − 1)

(
1 − e

− 3(eμ f (� )−1)αβ

2�3c
√

κ
z)

.

Apply boundary condition P(z = L) = 0, we have:

Pt = �Pf + Eμg(�,μ)

eμ f (� ) − 1

(
e

3(eμ f (� )−1)L

2�3c
√

κ
αβ − 1

)
.

Thus, the pressure solution is

P(z) = �Pf + Eμg(�,μ)

eμ f (� ) − 1

(
e

3(eμ f (� )−1)(L−z)

2�3c
√

κ
αβ − 1

)
.

Notice that �Pf = ηQLp

Aκ
. Substitute Lp = 2�3c

√
κ

3αβ
into �Pf ,

�Pf = 2c�3ηQ
3αβA

√
κ

. Rearranging, we have

P(z) =
(

ηQ

α
√

κAF
+ EμG

)(
e

Fα√
κ

(L−z) − 1
)
,
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and at the inlet z = 0, the total pressure is

Pt =
(

ηQ

α
√

κAF
+ EμG

)(
e

FL√
κ
α − 1

)
,

where F (�,μ) = 3β(eμ f (�) − 1)/2c�3 and G(�,μ) =
g(�,μ)/(eμ f (�) − 1). The above two equations recover
Eqs. (5a) and (5b).

APPENDIX D: NORMALIZED PRESSURE
GRADIENT IN FIG. 3(b)

We normalized the pressure gradient in Fig. 3(b) by the
pressure gradient from Darcy’s law, as shown in Fig. 7.

FIG. 7. Comparisons between model prediction and experimen-
tal results in Ref. [12] for the variation of normalized pressure
gradient by Darcy’s law with the ratio of gel to throat diameter.
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