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Influence of particle-fluid density ratio on the dynamics of finite-size particles
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In this paper, direct numerical simulations of particle-laden homogeneous isotropic turbulence are performed
using lattice Boltzmann method incorporating interpolated bounce-back scheme. Four different particle-fluid
density ratios are considered to explore how particles with different particle-fluid density ratios respond to
the turbulence. Overall particle dynamics in the homogeneous isotropic turbulence such as the Lagrangian
statistics of single particle and the preferential concentration of particles are investigated. Results show that
particle acceleration and angular acceleration are more intermittent than velocity and angular velocity for
finite-size particles with different particle-fluid density ratios. The preferential concentration of particles is
investigated using radial distribution function and Voronoï tessellation, and the preferential concentration is
more profound for particles with two intermediate particle-fluid density ratios. The Voronoï analysis indicates
that the distribution of Voronoï cells satisfy the log-normal distribution better than the gamma distribution. The
mechanism of preferential concentration is analyzed using the sweep-stick mechanism and drift mechanism.
Results show that although a higher probability of having particles located near the sticky points is found,
the sticky mechanism is very weak for large density ratios. The particle clustering is then found to be better
qualitatively described by the drift mechanism.
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I. INTRODUCTION

Particle-laden flows are ubiquitous in numerous environ-
mental and industrial processes including dust and haze
transport, warm rain formation and particle coalescence in
fluidized bed reactors, etc. [1,2] Understanding how particles
respond to the carrier flow can help us better predict natural
and engineering phenomena such as particle dispersion and
accumulation. Theoretical analysis of particle motion is usu-
ally based on the approximation that the particle size is much
smaller than the smallest flow scale (Kolmogorov scale), such
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approximation is known as the point particle approximation
[3,4], which is also frequently adopted in numerical simula-
tion [5]. However, when the particle size is of or larger than
the Kolmogorov scale, the point particle approximation is no
longer accurate as the force exerted on the particle is poorly
understood and the interaction between the two phases can
no longer be accurately treated by the point particle approach
[6]. Compared to the literatures considering point particle ap-
proximation, relative fewer studies consider particles with the
size larger than the Kolmogorov scale in a turbulent flow, but
increasing attention is attracted to explore the finite-size effect
of particles (see Tenneti and Subramaniam [7], and reference
therein). In general, experiments on turbulent two-phase flows
are challenging as a result of optical limitation and difficulty
in three dimensional particle detection technology, especially
when the volume fraction of solid phase increases. There
are a few experimental studies on the dynamics of finite-size

2470-0045/2021/104(2)/025109(14) 025109-1 ©2021 American Physical Society

https://orcid.org/0000-0003-4276-0051
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.025109&domain=pdf&date_stamp=2021-08-26
https://doi.org/10.1103/PhysRevE.104.025109


SHEN, LU, WANG, AND PENG PHYSICAL REVIEW E 104, 025109 (2021)

particles, such as the work investigating particle acceleration
by Qureshi et al. [8,9] and the work investigating particle
spatial distribution by Fiabane et al. [10].

With the development of computing resources, numerical
simulations provide an alternative way to help explore the
influence of carrier phase on the particle statistics and the
modulation of turbulence due to the presence of finite-size
particles. For point particle simulation, the Fáxen correction
has been used to account for the finite-size effect of particles
[11]. However, it is usually difficult to establish the undis-
turbed ambient flow in the absence of particles, especially
when the particle size is larger than the Kolmogorov scale of
the carrier flow. The fully resolved simulation is a better way
to incorporate the interphase coupling in the particle-laden
flow. For fully resolved simulation of turbulence laden with
finite-size particles, the main challenge is how to resolve the
particle-fluid interface precisely, much effort has been devoted
to treat no-slip boundary condition on particle surface with a
relatively sharp interface. A comprehensive review regarding
the numerical methods can be found in the review paper of
Maxey [12]. Among the methods enforcing no-slip bound-
ary condition, two most widely used methods are immersed
boundary method (IBM) [13] and bounce-back scheme in lat-
tice Boltzmann method (LBM) [14–17] due to their simplicity
and efficiency.

Homogeneous isotropic turbulence is an idealized and sim-
plified model suitable for investigating the particle dynamics
in turbulence, a brief review is given here on the literatures
of particle dynamics in homogeneous isotropic turbulence.
Among the researches of finite-size particles in homogeneous
isotropic turbulence, one of the scientific concerns is the ac-
celeration of finite-size particles in turbulence. Qureshi et al.
[8] experimentally studied the acceleration of different finite-
size particles and found that the distribution of acceleration
was consistent with the empirical log-normal like distribution
proposed by by Mordant et al. [18] for tracer particles but with
slightly different fitting parameters. The work was extended to
finite-size particles with largest particle-fluid density ratio up
to 65 later [9], and a negligible influence of particle-fluid den-
sity ratio on normalized particle acceleration distribution was
observed. Calzavarini et al. [11] investigated the finite-size
particle acceleration property using point particle approach
with Fáxen correction, and found correct trend of particle
acceleration PDF as in Qureshi et al. [8,9]. Yeo et al. [19]
numerically studied the velocity and acceleration statistics of
finite-size particles with particle-fluid density ratio close to
unity in homogeneous isotropic turbulence, in which the flow
field is solved using pseudo-spectral method and particle-fluid
interface is handled using force coupling method. Similar
observation for particle acceleration with Qureshi et al. [8]
was found. Homann et al. [20] investigated the motion of
a single neutrally buoyant particle in homogeneous isotropic
turbulence by pseudo-penalization method. It was found that
the distribution of particle acceleration was in good agree-
ment with the empirical equation proposed by Qureshi [8].
But whether this empirical equation is true for even larger
particle-fluid density ratio is unclear.

Another important scientific concern is the particle spatial
distribution. Many studies have shown that point particles
heavier than fluid accumulate in local high strain rate re-

gion and bubbles accumulate in the vortical region [21]. The
accumulation of point particles is known as the preferential
concentration which is most remarkable when the Stokes
number St defined as the ratio of particle relaxation time τp

(τp = d2
pρp

18νρ f
) and Kolmogorov time scale of the turbulence τk

(τk = (ν3/ε)1/2) is of the order unity [22–24]. However, lim-
ited understanding of preferential concentration for finite-size
particles is available. Fiabane et al. [10] studied the prefer-
ential concentration of finite-size particles with two different
particle-fluid density ratios (neutrally buoyant and 2.5) by
experiment. The Stokes number was controlled by adjusting
the intensity of turbulence and was kept of the order unity
in the experiment, no preferential concentration was observed
for neutrally buoyant particles whereas heavy particles formed
clusters. Uhlmann et al. [25] studied the preferential concen-
tration of particles with two different sizes and with density
ratio fixed at 1.5, where finite difference method incorporating
with IBM was used in the simulation. It was found that the
sweep-sticky mechanism proposed by Goto and Vassilicos
[26] for point particles can be used to explain the particle
accumulation location for finite-size particles in their work.
The sweep-sticky mechanism establishes a link between the
accumulation of point particles and the local properties of the
fluid acceleration field, and the particles tend to accumulate
in the regions where the divergence of fluid acceleration is
larger than 0. Wang et al. [27] considered the van der Waals
force in the simulation using LBM with bounce-back scheme
and found a more profound preferential concentration. From
the literatures above, we can see that St alone is insufficient
to characterize the nonuniform spatial distribution of parti-
cles of finite size and particle-fluid density ratio is indeed an
important parameter for particle dynamics in particle-laden
turbulent flow. We are also interested in whether the sweep-
sticky mechanism is valid for finite-size particles at a large
particle-fluid density ratio, and whether other mechanism can
properly explain the particle clustering when the sweep-sticky
mechanism is invalid, such as the drift mechanism proposed
by Bragg et al. [28,29].

In general, the influence of turbulence on particle dynamics
is not well understood for finite-size particles especially par-
ticles with different particle-fluid density ratio, the researches
in the literature mentioned above mainly focus on the effect
of sizes, the particle-fluid density ratio which is another im-
portant parameter is limited to unity or close to unity and the
understanding of influence from particle-fluid density ratio is
still limited. In this paper, we aim to investigate the influence
of particle-fluid density ratio on the motion and spatial distri-
bution of particles in turbulence. The homogeneous isotropic
turbulence is chosen, and the gravity is excluded in this study
to concentrate on the effect of particle-fluid density ratio itself
on particle dynamics. The lattice Boltzmann method is used
in this study due to its flexibility in treating solid boundaries
around particles and its high parallel-computation perfor-
mance. Several different strategy of bounce-back schemes
[15–17] and the short range interaction model [30] are used
to reproduce the physics behind as faithfully as possible. The
code has been applied to and validated in different particulate
flows, such as decaying turbulence [31], homogeneous
isotropic turbulence [32], and turbulent channel flow [33].
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The paper is organized as follows. The method we use in
the simulation is briefly introduced in Sec. II. The simulation
parameters and results are given in Sec. III. Finally, a sum-
mary is provided in Sec. IV.

II. THE NUMERICAL METHOD

The flow field is solved using the lattice Boltzmann method
(LBM) in this paper. Instead of solving the Navier-Stokes
(N-S) equations, LBM is a mesoscopic method which tracks
the evolution of molecular distribution functions. The Navier
Stokes equations can be recovered through the Chapmann-
Enskog expansion of lattice Boltzmann equation (LBE). The
macroscopic variables such as pressure and velocity are ob-
tained from the moments of molecular distribution functions.
For numerical stability, the multiple relaxation time (MRT)
collision model [34] is chosen in this study. The evolution
equation with the MRT collision model is

fα (x + eαδt, t + δt ) − fα (x, t )

= −M−1S[m(x, t ) − m(eq)(x, t )] + M−1�, (1)

where fα (x, t ) is the distribution function located at space
location x at time t , eα is the discrete velocity (a D3Q19,
three-dimensional 19 discrete velocities, is used in this paper),
M is the transformation matrix converting the distribution
function f to moment space m. S is a diagonal relaxation
matrix specifies the relaxation parameters for different mo-
ments m. � is the mesoscopic forcing term which realize
the body force in the macroscopic N-S equations. The right-
hand side of Eq. (1) is known as the collision operator, �i =
−M−1S[m(x, t ) − m(eq)(x, t )] + M−1�. The LBM scheme
is usually divided into two steps, known as the collision
step [ f ∗

α (x, t ) = fα (x, t ) + �i] and the streaming step [ fα (x +
eαδt, t + δt ) = f ∗

α (x, t )]. The well-known stochastic forcing
scheme of Eswaran and Pope [35] is applied to drive the
turbulent flow. With the random forcing scheme, the average
net rate of energy input which is balanced by the dissipation
rate can be estimated as

Rate of energy input = 4Nf σ
2
f Tf

1 + Tf
(
σ 2

f Tf Nf k2
0

)1/3
/β

, (2)

where Nf is the number of modes forced, k0 is the lowest
wave number in spectral units, σ f and Tf are the forcing
amplitude and timescale, respectively, β ≈ 0.8 based on the
lower resolution simulation of Eswaran and Pope [35].

The no slip boundary between the particle-fluid interface
is achieved by the interpolated bounce-back scheme to ensure
the sharp interface between two phases. Figure 1 is a sketch
of the bounce-back scheme in two dimensions, the black
vectors represent the known molecular distribution functions
corresponding to the discrete velocities in these directions
which are propagated from the neighboring fluid nodes during
streaming step, and the red vectors are unknown molecular
distribution functions as the nodes where these distributions
are propagated from are in the solid phase. The unknown
distributions in the streaming step are obtained using the
interpolated bounce-back scheme. The default interpolated
bounce-back scheme used is proposed by Bouzidi et al. [15]
which requires two other nodes on the fluid phase. The single-

FIG. 1. A two-dimensional sketch of the bounce-back scheme.
The red circle is the particle surface, the black spheres are the fluid
nodes, the red squares are the solid nodes, the black vectors represent
the known molecular distribution functions during streaming step
and the red vectors are the unknown molecular distribution func-
tions which are determined using interpolated bounce-back scheme.
The interpolated bounce-back scheme uses different number of fluid
nodes to construct the unknown distributions in different situations.

point second-order accuracy bounce back proposed by Zhao
and Yong [16] is adopted when the distance between two
particles is too small and only one fluid node is available.
These two schemes both have a second-order accuracy and
maintain a low numerical dissipation for the solid boundary
condition. The hydrodynamic force and torque acting on the
particles are calculated by integrating the momentum and
moment of momentum exchange over the particle surface dur-
ing interpolated bounce-back process. According to Newton’s
second law, the translational velocity and angular velocity of
each particle can be updated after the hydrodynamic force and
torque are obtained, and the position of each particle can be
updated afterwards. A new fluid point which is occupied by
the particle before the update of particle position may occur
after the movement of a particle, the unknown new fluid node
is refilled by the ‘equilibrium and nonequilibrium’ extrapola-
tion scheme [36]. As the current particle-laden system is far
beyond the dilute limit, the particle-particle interactions must
be taken into account. The lubrication force model suggested
by Brndle de Motta et al. [30] is selected to deal with the short
range hydrodynamic interactions when the spacing between
two particles is within one lattice node. When the particles
are in contact, the soft-sphere collision model is used to avoid
nonphysical overlapping between particles [30]. More details
about the D3Q19 MRT-LBM model incorporating interpo-
lated bounce-back scheme can be found in the references
listed above and [27,31–33].

III. SIMULATION SETUP AND RESULTS

The homogeneous isotropic turbulence is performed in a
cubic domain with periodic boundary in all three directions.
To exclude the additional energy injection induced by grav-
ity and focus on the influence of particle-fluid density ratio,
gravity is neglected in this work. The single-phase flow driven
by the random force was simulated first before the particles
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TABLE I. Time-averaged flow statistics in single-phase and
particle-laden homogeneous isotropic turbulence. SP denotes single-
phase homogeneous isotropic turbulence. ρ∗ = ρp/ρ f is the particle-
fluid density ratio.

Case 1 Case 2 Case 3 Case 4
SP ρ∗ = 1 ρ∗ = 5 ρ∗ = 20 ρ∗ = 100

Reλ 76.49 72.28 64.97 42.79 31.37
ηk 0.90 0.96 0.94 0.96 1.00
λ 15.55 16.01 14.98 12.65 10.99
u′ 3.92E-2 3.63E-2 3.46E-2 2.66E-2 2.28E-2
ε 7.77E-7 6.26E-7 6.51E-7 5.61E-7 7.65E-7
LE 79.39 77.34 64.93 37.60 23.07
τk 100.81 113.20 110.05 118.71 122.86
τE 1.99E3 2.11E3 1.85E3 1.36E3 9.94E2
Skewness −4.87E-1 −4.95E-1 −4.97E-1 −4.69E-1 −4.90E-1
Flatness 4.81 5.88 8.92 13.44 17.12
St 4.39 21.95 87.79 439.96

are introduced. When the single-phase flow reaches stationary,
solid particles are inserted into the flow. The particle diameter
is eight times the lattice spacing which corresponds to 8.8
times the Kolmogorov length scale at the particle release
time and the simulation domain is 32 times the particle size
which corresponds to a grid resolution of 2563. The resolution
requirement has been discussed previously in Wang et al. [32],
to produce reliable flow statistics when compared with the
pseudospectral method. Four different particle-fluid density
ratios, 1, 5, 20, and 100, are investigated, which represents the
neutrally buoyant particles, two types of intermediate density
particles and heavy particles. The corresponding simulation
cases for different particle-fluid density ratios are denoted as
Case 1, Case 2, Case 3, and Case 4. Regarding to the reso-
lution needed for resolving the boundary layer on the particle
surface, the thickness of the boundary layer near a particle can
be roughly estimated by δ ≈ dp/

√
Rep, where Rep is the par-

ticle Reynolds number [37]. As can be seen in the following
section, the largest mean Rep in our simulation occurs in Case
4 which is 27.34, and this corresponds to δ = 1.5δx in the
simulation. Thus the resolution should be adequate for most
particles in the present study [33,37]. The particle volume
fraction in the present particle-laden cases is fixed at 5%
which is above the dilute limit, and hence the particle-particle
interaction is important. The particles are released at around
40 eddy turnover times, and it takes another several eddy
turnover times for the flow to reach the statistically stationary
state.

A detailed flow statistics for the single-phase turbu-
lence and particle-laden turbulence are given in Table I,
including the Taylor microscale Reynolds number Reλ =
u′λ/ν, Kolmogorov length scale ηk = (ν3/ε)1/4, Taylor mi-
croscale λ =

√
15νu′2/ε, large eddy length scale LE = u′3/ε,

Kolmogorov timescale τk = (ν3/ε)1/2, large eddy turnover
time τE = LE/u′, skewness and flatness, where ν is the kine-
matic viscosity, u′ is the r.m.s component fluctuation velocity
and ε is the flow dissipation rate. It should be noted that the ve-
locity inside the particles are assumed to take the form of rigid
body motion. All the volume-averaged statistics are in lattice
units and are averaged over the last 10 eddy turnover times

FIG. 2. Three-dimensional isosurface of vortical structures iden-
tified by Q criteria with Q/〈2ri jri j〉 = 2.5 for Case 1, and a small
portion of the particles (30%) are shown to clearly see the vortical
structures.

within the statistically stationary state. The Stokes numbers
defined by the Kolmogorov timescale (τk) of the single-phase
flow are 4.39, 21.95, 87.79, and 439.96, respectively.

The particle-fluid density ratio has a significant influence
on the turbulence intensity, and the turbulence intensity is
decreasing with increasing particle-fluid density ratios as can
be seen from (Reλ) in Table I. Figure 2 shows the three-
dimensional isosurface of vortical structures identified by
Q criteria normalized by the average enstrophy (〈2ri jri j〉)
with Q/〈2ri jri j〉= 2.5 for Case 1, where Q is given by Q =
− 1

2 (si jsi j − ri jri j ) with si j = 1
2 (ui, j + u j,i ) and ri j = 1

2 (ui, j −
u j,i ) the symmetric and the antisymmetric components of
the fluid velocity gradient. Only 30 percent of the parti-
cles are shown in the figure for the sake of clarity, and
the wormlike vorticity structures can be observed near the
particles. As the turbulence attenuation is not the scope of
this contribution, we will turn to the particle dynamics from
now on.

A. Properties of individual particle motion

The Lagrangian statistics of the particles are obtained from
averages of all particles in the system over about 10 eddy
turnover times after the particle-laden turbulence reaches the
statistically stationary state. Table II gives the standard devia-
tion normalized by the Kolmogorov velocity scale, skewness
and flatness of velocity and angular velocity. The particle ve-
locity distribution is not sensitive to the particle-fluid density
ratio, as all the skewness of three particle velocity components
are close to 0 and the flatness are close to 3 for different
cases which are consistent with the results from previous
studies [19,20,25]. Hence the distribution of particle velocity
is expected to be Gaussian. Figure 3 shows the distribution
of three particle velocity components in Case 4. As shown in
Fig. 3, the distribution of three particle velocity components
are essentially Gaussian, figures are similar for the other three
cases and have been omitted. Figure 4 shows the distribution
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TABLE II. The standard deviation (σ ), skewness (S), and flatness
(F ) of the components of particle velocity and angular velocity. The
standard deviation of the velocity is normalized by the Kolmogorov
velocity scale.

Case1 Case2 Case3 Case4
ρ∗ = 1 ρ∗ = 5 ρ∗ = 20 ρ∗ = 100

σ 4.534 3.270 2.192 1.643
vp,x S −0.012 0.021 0.138 0.002

F 2.739 2.725 2.772 3.051

σ 4.370 3.247 2.223 1.630
vp,y S −0.016 −0.050 0.089 0.005

F 2.841 2.800 2.889 3.090

σ 4.299 3.332 2.105 1.600
vp,z S 0.007 −0.084 −0.065 −0.006

F 2.774 2.822 2.767 3.151

σ 1.459E-3 8.801E-4 5.030E-4 2.208E-4
ωp,x S −0.056 −0.034 0.108 0.074

F 4.994 4.076 3.795 3.439

σ 1.447E-3 8.644E-4 4.909E-4 2.209E-4
ωp,y S −0.060 0.025 −0.036 −0.013

F 4.568 4.117 3.563 3.487

σ 1.464E-3 8.800E-4 4.890E-4 2.242E-4
ωp,z S 0.038 0.038 −0.017 −0.050

F 4.777 3.874 3.487 3.132

of three particle angular velocity components in Case 4. As
can be seen from Table II, the distribution of angular velocity
is slightly non-Gaussian with the flatness measured around 4
which is similar with the result of Zimmermann et al. [38], and
a decrease of flatness with increasing inertia can be observed
which indicates that the influence of fluid fluctuation becomes
weaker when the particle inertia becomes large.

Figure 5 shows the distributions of three particle acceler-
ation components for different cases. We only consider the
acceleration contributed from the hydrodynamic force. The
distribution exhibit long tails in Fig. 5 which indicate that

FIG. 3. The distribution of three velocity components for
ρp/ρ f = 100, the red dash line represents the Gaussian distribution.

FIG. 4. The distribution of three angular velocity components for
ρp/ρ f = 100, the red dash line represents the Gaussian distribution.

they deviate from the Gaussian distribution. The particle ac-
celeration is indeed highly intermittent, because the sweeping
motion within a vortex may induce large acceleration of the
particles as noted by Lee et al. [39] and Yeung et al. [40]. Mor-
dant et al. [18] and Qureshi et al. [8,9] found the normalized
distribution of particle acceleration is log-normal like with
some empirical fitting parameters, and the empirical equation
is given by

P(x) = e3s2/2

4
√

3

[
1 − erf

(
ln(|x/√3|) + 2s2

√
2s

)]
, (3)

where s is the fitting parameter related to the shape of the
probability density function (PDF). This form of the empirical
equation, Eq. (3), was shown to be related to a log-normal dis-
tribution of variance s2. The red dash line in Fig. 5 represents
the empirical equation given by Eq. (3). It can be seen that the
data of different cases can be roughly fitted to the empirical
model proposed by Qureshi et al. [8,9], especially in the center
region. The PDF of acceleration is similar with the work of
Calzavarini et al. [11] with somewhat flatter tail. The flatness
of acceleration for different cases can be seen in Table III, and
it is found that the flatness decreases as particle-fluid density
ratio increases. Two reasons might contribute to the decrease,
the first is that the particles with small inertia can well respond
to the intermittent turbulent flow, and the second might be the
fact of particle collision as we do not exclude the colliding
particles. Figure 6 shows the distribution of particle angular
acceleration in z direction for different cases, the red dash line
is the fitting curve using Eq. (3). We find the distribution can
also be well described by the empirical function suggested by
Qureshi et al. [8] with different fitting parameter. The fitting
parameters are 0.79, 0.70 0.62, and 0.59, respectively, for Case
1, Case 2, Case 3, and Case 4. The decrease of s indicates
a flatter peak in the figure. However, the normalized distri-
bution in different cases are similar. The flatness of angular
acceleration for particles in Case 4 is similar to the work of
Zimmermann et al. [38] where a flatness of 7 was found for
their large sphere particle.
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FIG. 5. The distributions of three particle acceleration components for different cases, the red dash line is the empirical equation proposed
by Qureshi [8,9].

TABLE III. The standard deviation (σ ), skewness (S), and flat-
ness (F ) of the components of particle acceleration and angular
acceleration. The standard deviation of the acceleration is normalized
by the Kolmogorov scale and Kolmogorov timescale.

Case1 Case2 Case3 Case4
ρ∗ = 1 ρ∗ = 5 ρ∗ = 20 ρ∗ = 100

σ 1.497 6.668E-1 1.981E-1 3.332E-2
ap,x S −0.051 −0.022 0.003 −0.059

F 225.70 146.92 83.99 28.86

σ 1.488 6.766E-1 2.034E-1 3.365E-2
ap,y S −0.147 0.025 0.062 0.070

F 294.14 168.26 91.60 27.31

σ 1.495 6.755E-1 2.027E-1 3.338E-2
ap,z S −0.073 0.018 −0.016 0.049

F 228.11 157.94 86.01 26.14

σ 8.595E-6 2.372E-6 6.296E-7 1.139E-7
αp,x S 0.025 0.042 −0.012 0.021

F 23.98 24.49 12.83 7.48

σ 8.590E-6 2.363E-6 6.192E-7 1.170E-7
αp,y S 0.021 0.076 −0.014 −0.044

F 19.59 23.57 13.45 7.36

σ 8.462E-6 2.329E-6 6.225E-7 1.140E-7
αp,z S 0.022 0.072 −0.040 −0.010

F 19.94 20.28 14.51 7.27

In addition to the statistics mentioned above, how would
finite-size particles follow the local fluid motion is always
of scientific interest. The particle-fluid relative velocity is
one of quantitative descriptions which measure the velocity

FIG. 6. The distribution of angular acceleration in z direction for
different cases, the red dash line is the fitting curve in Eq. (3), the fit-
ting parameter is the average over different cases which corresponds
to 0.69.
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FIG. 7. PDF of particle Reynolds number for different cases, the
red dashed line is the gamma distribution suggested by Uhlmann
et al. [25] for particles with particle-fluid density ratio 1.5.

difference between two phases, and a zero relative velocity is
expected for tracers. As in particle resolved simulations, the
local fluid is occupied by the finite-size particles and the defi-
nition of local fluid velocity in particle center is controversial
[41,42]. Here we define the local fluid velocity with respect
to the ith particle by averaging over a sphere shell between
the particle surface and a sphere surface with diameter Ds

centered at the center of the particle. The averaging diameter
is set to Ds = 3dp in this paper, where dp is particle diameter.
The distribution of particle Reynolds number based on the
particle-fluid relative velocity can be obtained when the local
fluid velocity seen by the particles are obtained, the instan-
taneous particle Reynolds number is defined as Re(i)

p (t ) =
|v(i)

p − u(i)
f |dp/ν. Here we investigate the influence of particle-

fluid density ratio on the distribution of particle Reynolds
number. Figure 7 shows the distribution of Rep for different
cases, it is seen that the mean of the normalized distribu-
tion of Rep shifts to the right with increasing particle-fluid
density ratio as the particles fail to follow local fluid motion
with increasing density and the velocity difference becomes
larger. This can also be observed from Table IV, the mean
value of particle Reynolds number increases with particle-
fluid density ratio. Uhlmann et al. [25] found that probability
density function (PDF) of the the particle Reynolds number
Rep normalized by the standard deviation is close to a gamma
distribution with shape parameter k = 3 in their simulations.
As shown in Fig. 7 for neutrally buoyant particles of density
ratio 1 in Case 1 which is close to the particle-fluid density

TABLE IV. Mean value and standard deviation of the particle
Reynolds number (Rep) in different cases.

Case 1 Case 2 Case 3 Case 4
ρ∗ = 1 ρ∗ = 5 ρ∗ = 20 ρ∗ = 100

Mean 13.10 18.00 23.97 27.34
σRep 6.92 8.68 10.83 11.86
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FIG. 8. (a) Sketch of the alignment angle (θalign) between par-
ticle and fluid velocity and (b) PDF of the alignment angle (θalign)
between particle and fluid velocity. As the particle-fluid density ratio
increases, the ability of particles to follow the local fluid motion be-
comes weaker as the peak value becomes smaller and the distribution
becomes wider, and the heavy particles exhibit an almost uniform
distribution.

ratio 1.5 in their work, the match is good with a flatness of
5.13 where the flatness is 5 for gamma distribution. Another
indicator for the ability of particles to follow the local fluid
motion is the alignment angle between (θalign) particle and
local fluid velocity vector as in Fig. 8(a), and the alignment
angle is defined as the solid angle. The PDFs of the θalign for
different cases are show in Fig. 8(b). As can be seen from
Fig. 8(b), the neutrally buoyant particles follow the local fluid
velocity well as a sharp peak locates at θalign ≈ 0 can be seen,
and the ability to follow local fluid motion becomes weaker as
the particle-fluid density ratio increases. For particles in Case
2, the distribution becomes wider near θalign ≈ 0, indicating a
weaker ability to follow local fluid motion, but the alignment
is still good as a relative sharp peak at θalign ≈ 0 can also
be observed. The distribution is almost uniform for heavy
particles in Case 4, indicating a very weak correlation between
the direction of particle velocity and local fluid velocity which
results from the cross-trajectory effect.
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FIG. 9. Radial distribution function for different cases, the
x axis is the distance from particle center normalized by particle
radius. The inset shows a zoom of the region near the peak.

B. Particle preferential concentration

Inertial particles are known to form local high concentra-
tion regions rather than randomly distributed in the turbulence
because the inertia of particles prevent them from following
the fluid motion. From the analysis above, the finite-size
particles with different particle-fluid density ratio respond
differently to the flow and thus show different ability to follow
the local fluid motion, which will in fact affect their spatial
position and distribution in the carrier flow. For particle spatial
distribution, the radial distribution function (RDF) is usually
employed to characterize the spatial distribution of particles,
which is defined as g(ri ) = Ni/Vi

N/V , where Ni is the number of
particle pairs whose distance between two centers is within an
interval (ri − δr, ri + δr ), where ri is the center of ith detection
shell, 2δr is the width of the detection shell, Vi is the shell
volume, and N is the number of particle pairs in the whole
computational domain with the control volume V . The RDF
represents the relative probability of finding particle pairs with
center distance r, and a RDF larger than one indicates that
some particle aggregates may exist in the system. Figure 9
shows the RDF for all four test cases, from which the peaks
of the RDF appearing close to r = 2rp can be observed for
different cases, indicating that the aggregates formed during
the collision process mainly containing two primary particles.
The relative small maximum values of the RDF reveal that
the preferential concentration in present simulations is weak
which can also be noticed from Voronoï diagram in the next
paragraph, especially for Case 4 where the peak value is 1.1.
Besides the largest peak value near r/rp = 2 for the RDF of
particles in Case 2, a long tail in the curvature with g(r) > 1
can be seen, indicating clusters composed of more than two
particles form in Case 2. By comparing RDF of Case 1 and
Case 3, although the peak value of g(r) in Case 1 is slightly
larger than that in Case 3, a long tail with g(r) > 1 in Case 3
can be observed, revealing that clusters also form in Case 3.
Even larger values of g(r) in Case 3 for r/rp > 4 is noticed
comparing with Case 2, and this might indicate the preferen-

tial concentration is also strong in Case 3. As can be seen from
the next paragraph, the PDF of the normalized Voronoï cells
are similar in Case 2 and Case 3. The reason is that particles
in Case 1 follow the fluid motion well and particles in Case 4
fails to follow the fluid motion, which all will lead to the more
uniform spatial distribution of particles. Intermediate density
ratio particles in Case 2 and Case 3 would interact more
intensely with the local fluid vortical structures at the scale of
particle diameter and result in a more remarkable preferential
concentration. Figures 10(a), 10(b), 10(c) and 10(d) show the
snapshots of the vorticity contour of the flow field for different
cases. High vorticity regions near particle surfaces can be
observed from the figures for different cases especially for
Case4, and the vorticity near the particle surfaces becomes
higher with the increasing particle-fluid density ratio which
indicates the dissipation becomes relatively larger. It might
be the reason for the decrease of turbulence intensity which
is observed in Table I. The interaction between particles and
local fluid vortical structures needs further investigation and
will not be discussed here.

The Voronoï diagram is another well-known method to
analyze the spatial distribution of the dispersed particles, and
it provides a detailed information where particles accumu-
late while RDF only gives the global information. For the
three-dimension distribution of particles, the volumes of the
Voronoï cells are inversely proportional to the local concentra-
tion of particles, the local high particle concentration regions
are represented by the regions with the existence of small
Voronoï cells. Snapshots of the 2D slice of Voronoï cells for
different cases can be seen from Figs. 10(b), 10(e), 10(h),
and 10(k), particles intersect with the plane are also shown
on the slice. As can be seen from the Fig. 10(k), the particles
in Case 4 exhibit the most uniform spatial distribution among
different cases as the sizes of Voronoï cells are more uniform
compared to Figs. 10(b), 10(e), and 10(h) and regions with
small Voronoï cell sizes can hardly be found. Although some
regions with small Voronoï cells exist for particles in Case
1 as shown in Fig. 10(b), a larger probability to see regions
with small and large cells can be observed in Figs. 10(e) and
10(h) which indicates the nonuniformity of particle spatial
distribution is stronger in Case 2 and Case 3. The nonunifor-
mity of the particle spatial distribution can be quantitatively
analyzed form the distribution of the Voronoï cell volumes.
Figure 11 shows the distribution of the logarithm of Voronoï
cell volumes, and the data is also centered and normalized.
The red dash line is a Gaussian distribution for comparison,
the distribution is of excellent agreement within the interval
[−3σlog(V ), 3σlog(V )], where σlog(V ) is the standard deviation.
Our simulations confirm that the distribution of Voronoï cell
volumes is well described by the log-normal distribution as
noted by Monchaux et al. [23]. However, although the log-
normal distribution predicts the distribution of Voronoï cell
volumes well, the degree of preferential concentration cannot
be obtained by comparing with such log-normal distribu-
tion. To compare the difference between the distribution of
different cases, the normalized distributions of Voronoï cell
volumes rather than the logarithm of Voronoï cell volumes are
shown in Fig. 12, it can be seen that the distribution for Case 1
and Case 4 and the distribution for Case 2 and Case 3 almost
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FIG. 10. 2D visualization for different cases on a slice at x = 127.5, figures for the same case are at the same time step. Panels (a), (d), (g),
(j) are the vorticity fields, the color represents the magnitude of vorticity. High-vorticity regions near particle surfaces in all cases especially in
Case 4 can be observed. Panels (b), (e), (h), (k) are the Voronoï diagrams, the particles insect with the plane are also shown and are represented
by the skyblue spheres. Panels (c), (f), (i), (l) show spatial locations of particles and sticky points, the black dots are sticky points and the
skyblue spheres are particles.
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FIG. 11. Centered and normalized PDF of the logarithm of
Voronoï cell volumes, the red dash is a Gaussian distribution for
comparison.

collapses, indicating the levels of preferential concentration
might be similar for the two groups. For Case 2 and Case
3, an increasing probability to see large and small Voronoï
cells can be observed which reveals a more pronounced pref-
erential concentration. Point particles distributed randomly
and uncorrelatedly are usually considered drawn from the
random Poisson process (RPP), and the distribution of the
corresponding Voronoï cell volumes is a gamma distribution
with parameters proposed by Ferenc and Neda [43]. We thus
compare the PDF of Voronoï cell volumes normalized by
the average cell volume (Vvor = V/〈V 〉) from our simulations
with that for RPP in Fig. 12. The distributions for Case 1
and Case 4 are close to the γ distribution for RPP but are
slightly narrower which indicates the preferential concentra-
tion is weak. The distribution for Case 2 exhibits more large
and small Voronoï cells compared to RPP which indicates
the preferential concentration is stronger. Next we analyze
the standard deviation of the Voronoï cell volumes which is
approximately 0.42 for a 3D Random Poisson Process system
as noted by Ferenc et al. [43]. A standard deviation higher
than 0.42 indicates the higher possibility of local high and low
particle concentration, and a value below the reference value
indicate that the particles tend to distribute more randomly and
the preferential effect is weak. They are 0.37, 0.48, 0.47, and
0.35, respectively, for Case 1, Case 2, Case 3, and Case 4 in
our simulations, which is consistent with the shape of the PDF
in Fig. 12 for different cases.

To further investigate the mechanism of the spatial nonuni-
form distribution of particles, we consider the sweep-stick
mechanism proposed by Goto and Vassilicos [26]. It has
been reported that the preferential concentration of particles
is strongly related to the fluid acceleration for small parti-
cles. The particles potentially accumulate at the stagnation
points of fluid acceleration to which we refer as ‘sticky point’.
Whether the sweep-stick mechanism holds for finite-size par-
ticles with different densities is yet still a question to be
explored. The sweep-stick mechanism assumes the Stokes
drag limit where the equation for motion of the particles

FIG. 12. PDF of the normalized Voronoï cells, RPP represents
results from random Poisson process.

is
dvp

dt
= − 1

τp
(vP − u f ); (4)

the following approximation can be made if the stokes number
is small and the particles are considered as tracers:

vp − u f ≈ −τpa f . (5)

The clusters of particles will form while the divergence
of particle velocity is less than 0 (∇ · vp < 0), which cor-
responds to the regions where the divergence of fluid
acceleration is larger than 0 (∇ · a f > 0). Specifically, the
convergence mainly occurs along the direction parallel to
the eigenvector corresponding to the largest positive eigen-
value of the symmetric part of the fluid acceleration gradient
tensor (∇a f + (∇a f )T ). Thus, the sticky points obeying
the above convergence can be expressed by the following
criterion:

e1 · a f = 0, λ1 > 0, (6)

where λ1 is the largest positive eigenvalue of the symmetric
part of the fluid acceleration gradient tensor and e1 is the
corresponding eigenvector. In practice, the fluid points are
considered as sticky point where the dot product is smaller
than a threshold value (σthreshold = γspσsp), where σsp is the
standard deviation of e1 · a f .

As noted in Goto and Vassilicos [26], the largest eigen-
values of symmetric part of the fluid acceleration (λ1) is of
the order of τ−2

η . Figure 13 shows the distribution of λ1 nor-
malized by the Kolmogorov timescale in Case 4, the figures
are similar for the other three cases. The result from our
simulations show that λ1 is indeed of the order of τ−2

η . The
positive values of λ1 are of concerns as the sticky points are
defined as λ1 > 0 and a larger amount of positive λ1 can be
observed actually. Then we investigate the spatial correlation
between particle position and sticky points. Figures 10(c),
10(f), 10(i), and 10(l) show the instantaneous visualizations
of the location of sticky points and particles for different
cases, and the visualizations show slices of thickness equal
to the particle diameter along the direction normal to the
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FIG. 13. PDF of the largest eigenvalue λ1 of symmetric part of
the fluid acceleration gradient, ρp/ρ f = 100.

plane. The black dots are the sticky points detected using
above criterion and the skyblue spheres are the particles. It
can be observed that the spatial distribution of sticky points is
inhomogeneous distributed with dense regions, dilute regions
and voids. It can also be observed that there are many sticky
points located around the particle surfaces, indicating a cor-

relation between the location of particles and sticky points do
exist. To quantitatively investigate the correlation between the
location of particles and sticky points, we calculate the par-
ticle conditional radial distribution function which measures
the possibility to find sticky points within a given distance
interval away from the particle surfaces. The conditional RDF
is defined as gcon(ri) = Ni,sp/Vi,sp

Nsp/Vsp
, where Ni,sp is the number

of sticky points with center distance from particle within an
interval (ri − δr, ri + δr ), where ri is the center of ith detection
shell, 2δr is the width of the detection shell, Vi,sp is the shell
volume, and Nsp is the number of particle-sticky-point pairs
in the whole computational domain with the control volume
Vsp. Figure 14 shows the conditional RDF averaged over all
particles in the system and different times, and the x axis is
the distance away from the particle surface normalized by
particle radius. As can be observed from Fig. 14, the particle
conditional RDF exhibits a peak at 0 or close to 0 which
corresponds to the particle surface for all cases, indicating the
particle location is correlated to the sticky points. Although
the peaks exist for all cases, some differences can be observed.
By comparing Figs. 14(a) and 14(b), a smaller peak value
for Case 1 can be observed which reveal the preferential
concentration in Case1 is weaker than Case 2, and this is
consistent with the result of RDF in Fig. 9. The maximum
amplitude of the particle conditional RDF is approximately
1.2 times the global probability, and this relatively small value

FIG. 14. Particle conditional RDF as a function of the distance from particle surface normalized by particle radius for different cases.
(a) ρp/ρ f = 1, (b) ρp/ρ f = 5, (c) ρp/ρ f = 20, and (d) ρp/ρ f = 100.
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FIG. 15. Regions of different signs of the coarse-grained Q using the Q criterion, the red color represents the region where S̃ : S̃ − R̃ : R̃ <

0, the blue color represents the region where S̃ : S̃ − R̃ : R̃ > 0, and the green color represents the solid particles. (a) ρp/ρ f = 1, (b) ρp/ρ f = 5,
(c) ρp/ρ f = 20, and (d) ρp/ρ f = 100.

corresponds to the overall weak preferential concentration in
this study. From Figs. 14(c) and 14(d), a reduction of the
conditional RDF can be observed, and this imply that the
sticky mechanism might fail to predict the particle location.

These finding can be qualitatively explained by the drift
mechanism for particle clustering proposed by Bragg et al.
[28,29]. First, they found that with the increase of St, the
significance of sticky points for the particle motion be-
comes weaker, and the effect becomes very weak when
St = 30 in their work [28]. Second, they demonstrated that
the sticky points tend to exist in regions where S̃ : S̃ − R̃ :
R̃ > 0, where S̃ and R̃ are the coarse-grained strain-rate and
rotation-rate tensor averaged along the inertial particle trajec-

tory. Thirdly, they related the particle clustering mechanism
to the scale-dependent Stokes number Str = τp/τr , where
τr is the eddy turnover time of length scale r defined as
τr = r2/3ε−1/3. They found that particles tend to accumu-
late in the high local coarse-grained strain-rate region due
to centrifuge mechanism when Str � 1 and the nonlocal,
path-history symmetry-breaking mechanism contributes to the
clustering when Str � 1. Figure 15 shows the regions of dif-
ferent signs of coarse-grained Q which is obtained using the
Q criterion, and the filtering scale is selected as the particle
diameter dp. We can see that the particles in Case 2, Case
3, and Case 4 tend to accumulate in the rotation dominant
region where S̃ : S̃ − R̃ : R̃ < 0 (region with red color), and
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this may lead to the reduction of conditional RDF of sticky
points. The particles in Case 1 are more likely to appear in
the region where S̃ : S̃ − R̃ : R̃ > 0. While the length scale is
selected as the particle diameter (dP), the corresponding Str
are 1.02, 5.15, 20.60, and 103.22 for different cases. We find
that the particle clustering in Case 1 can also be attributed
to the centrifuge mechanism, and the particle clustering of
other cases can be attributed to the nonlocal, path-history
symmetry-breaking mechanism.

IV. SUMMARY AND DISCUSSION

The interface-resolved direct numerical simulations based
on lattice Boltzmann method incorporating interpolated
bounce-back method are performed to investigate the in-
fluence of particle-fluid density ratio on the dynamics of
finite-size particles in homogeneous isotropic turbulent flows.
At the particle release time, the Taylor microscale Reynolds
number is 76, and particle diameter is 8.9 times that of the
smallest scale in turbulence (Kolmogorov scale). Gravity is
neglected in the simulation to avoid the additional energy
injection. Four different particle-fluid density ratios are sim-
ulated, and the volume fraction of the solid phase is fixed
at 5%.

First, particle Lagrangian statistics such as velocity and
angular velocity are studied for different cases, the statistics
are obtained through the average over sufficient long time
interval for all the particles in the computational domain after
the flow reaches the statistical stationary state. Compared with
the velocity and angular velocity, the particle acceleration and
angular acceleration are more sensitive to the particle-fluid
density ratio. The heavy particles are less influenced by the
intermittency of the carrier flow. The acceleration and angular
acceleration are intermittent quantities as they deviate from
the Gaussian distribution greatly. The angular acceleration
is also found to be well described by the Log-Normal like
distribution proposed by Qureshi et al. [8,9]. Then the particle
Reynolds number and the alignment angle between particle
velocity and local velocity are studied to check how the par-
ticles follow the local fluid motion. It is found that, with the
increase of particle-fluid density ratio, the velocity difference
between two phases becomes larger, the mean value of the
particle Reynolds number becomes larger, and the ability of
particles to follow the local fluid motion becomes weaker.

Next, as the different correspondence of particles to the
flow will affect the particle spatial distribution, the difference

in spatial distributions between different cases are then ana-
lyzed. RDF and Voronoï tessellation are used to investigate
the spatial distribution of particles, and both analysis show
that the preferential concentration is most profound for inter-
mediate density particles and the particle-fluid density ratio is
important for the preferential concentration of particles. The
neutrally buoyant particles follow the fluid well and the heavy
particles can hardly follow the local fluid, both reasons will
lead to a more uniform spatial distribution of particles. The
vortical structures may play an important role which lead to
the non uniform spatial distribution of finite-size particles.
From Voronoï tessellation, the distribution of Voronoï cells
is better described by the log-normal distribution which is in
good agreement, but information of the degree of preferen-
tial concentration is missed from the log-normal distribution.
Furthermore, we check the correlation between the position
of sticky points and particles, although we do find a higher
probability of particles being located near the sticky points in
different cases, the significance of stagnation points for parti-
cle motion is very small for particles with large particle-fluid
density ratio. With respect to the particle accumulation, we
found that the drift mechanism can qualitatively explain the
clustering of particles. For a small Str in Case 1, the particle
locates in the high coarse-grained strain-rate regions due to
centrifuge effect. For larger Str , the nonlocal, path-history
symmetry-breaking mechanism is important for the clustering
of particles.

In summary, the particle-fluid density ratio influences the
particle response to the carrier flow and thus result in the
different spatial distribution of particles. The particle-fluid
density ratio is a key parameter strongly correlated to the pref-
erential concentration of particles, and thus is important in the
prediction of the formation of particle clusters. However, the
particle-fluid density ratio region which lead to the strongest
preferential concentration remains to be explored. Besides,
whether the turbulence intensity and the volume fraction are
import factors for particle acceleration and preferential con-
centration requires further study.
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