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Distribution of liquid flow in a pore network during evaporation
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The variation of the distribution of the liquid flow in porous media during evaporation is still a puzzle. We
resolve it with the pore network modeling approach. The distribution of the evaporation-induced liquid flow
in a pore network composed of about 2.5 million pores is determined. The probability density function of the
magnitude of the normalized liquid flow rate is obtained. For the low normalized liquid flow rate, the probability
density function is power-lawlike. The power-law exponent depends on both the liquid saturation and the location
of the moving meniscus in the main liquid cluster. The evaporation-induced liquid flow in the pores in the pore
network can be correlated. Whether the liquid flow distributions in various zones in the pore network are similar
or not relies significantly on the location of the moving meniscus in the main liquid cluster. The functions
depicting the relation between the power-law exponent and the local liquid saturation for the zones adjacent to
and away from the open side of the pore network are different. These findings from the pore scale studies provide
insights into developing the accurate continuum model for evaporation in porous media.
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I. INTRODUCTION

Evaporation in porous media is ubiquitous in nature as
well as in many industrial applications, such as soil physics
[1], carbon dioxide storage [2], formation of porous particles
[3], evaporative cooling [4], and water management in proton
exchange membrane fuel cells [5]. In the course of evapora-
tion in porous media, the transport of a solute in the liquid
phase, e.g., salt transport during geological carbon dioxide
storage and soil weathering [6–11], obviously depends on
the liquid flow field. Understanding of the distribution of
the liquid flow in porous media is of great importance to
determine the transport of the solute, and is also critical to
characterize the two-phase transport processes in porous me-
dia. The distribution of the flow in porous media has been
studied both experimentally [12–18] and numerically [19–27].
But, to our best knowledge, most of these studies are focused
on the single-phase flow or the steady-state two-phase flow
with the fixed phase distribution (i.e., without the two-phase
displacement). By contrast, for evaporation in porous media,
the liquid occupied pores are gradually replaced by the gas
phase, resembling a gas invasion process. This gas-liquid dis-
placement definitely influences the distribution of the liquid
flow in porous media. Revealing such influence shall enrich
our understanding of two-phase transport in porous media.

During evaporation, liquid in porous media is split into
a number of liquid clusters (owing to the gas invasion). It
has been revealed that for the steady-state two-phase flow in
porous media with fixed phase distribution, the distribution of
the flow in one fluid is affected by the presence of the other
fluid [14] and also by the fluid topologies [27]. From this point
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of view, the distribution of the flow in a liquid cluster in porous
media during evaporation depends on the topology of the
liquid cluster. The topologies of the liquid clusters in porous
media are controlled by the evaporation-induced gas invasion
processes. The gas invasion in porous media results in the
reduced liquid saturation. The topology of a liquid cluster in
a porous medium changes as the liquid saturation varies. That
is to say, the distribution of the liquid flow in porous media
during evaporation depends on the liquid saturation.

For a liquid cluster in porous media during evaporation,
not all menisci, i.e., gas-liquid interfaces, are moving, owing
to the capillary pump effect [28]. In particular, when the
evaporation rate is low, i.e., at the low capillary number, only
one meniscus is moving in a liquid cluster (the other menisci
are static), although evaporation occurs at all menisci; see
Ref. [29] for more details. The evaporative losses at the static
menisci are supplemented by the capillary liquid flow from
the moving meniscus. The location of the moving meniscus
is determined by the threshold pressure of the pore, which,
on the other hand, depends on the pore size distributions
(in a liquid cluster, gas invades the meniscus occupied pore
with the lowest threshold pressure). Since the pore sizes are
randomly distributed, the location of the moving meniscus in
a liquid cluster is randomly varied during evaporation, thereby
resulting in the change of the flow fields in the liquid cluster.
As revealed in Ref. [30], the liquid velocity in a pore in a
liquid cluster is always changing in the course of evaporation.

Experimentally, it is still a challenge to capture the dis-
tribution of the flow in a liquid cluster during evaporation,
since visualization with a high resolution in time and space is
needed. For this reason, we turn to the pore network modeling
approach, which has been widely proven to be an effective
tool to describe the two-phase transport processes in porous
media [31–36]. Although the irregular void space in a porous
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medium is conceptualized into a network composed of regular
pore bodies connected by regular pore throats, the physical
mechanisms that control the two-phase transport processes in
porous media can be fully depicted by the pore network mod-
eling approach, e.g., the capillary pump effect [28], capillary
valve effect [37], capillary scissors effect [30], and capillary
instability effect [38]. Therefore, it is desirable to exploit the
pore network modeling approach to study the distribution of
the liquid flow in porous media during evaporation.

In this work, we explore the effects of the liquid saturation
and the location of the moving meniscus on the distribution
of the evaporation-induced liquid flow in porous media by
using the pore network modeling approach. In the pore net-
work modeling of evaporation in porous media, the liquid
clusters in the pore network need to be identified. This cluster
identification plays an important role in the computational
efficiency. Hoshen and Kopelman [39] have proposed a cluster
multiple labeling technique to identify the clusters of occu-
pied sites for the site percolation problems. In this so-called
Hoshen-Kopelman algorithm, the two adjacent occupied sites
are in the same cluster. The site labeling technique in the
Hoshen-Kopelman algorithm, however, is not applicable to
the site-bond problems, e.g., identification of the liquid clus-
ters in the pore network composed of pore bodies (sites) and
pore throats (bonds). To address this issue, Hoshen et al.
[40] have developed an extended multiple labeling technique
(ECMLT). In ECMLT, two neighboring occupied sites are
connected only if an occupied bond exists between them. The
clusters of the occupied sites are identified based on the site
labeling. The bond labeling and the isolated occupied bonds
are not considered, however.

During evaporation in a 3D regular pore network with one
pore body being connected by six pore throats, the isolated
liquid filled pore throats can be formed. An isolated liquid
filled pore throat is sandwiched between two gas-filled pore
bodies and thus is an independent liquid cluster. The isolated
liquid filled pore throats influence the vapor transport in the
pore network and hence need to be taken into account in
the pore network model. In order to identify efficiently the
liquid clusters in the 3D pore networks during evaporation,
we modify the ECMLT proposed by Hoshen et al. [40] so
as to take into account the isolated liquid filled pore throats.
Based on this modified liquid cluster identification algorithm,
we realize the simulation of evaporation in a large pore net-
work with about 2.5 million pores so as to understand the
distribution of the liquid flow in the pore network from a
macroscopic perspective. In what follows, the pore network
modeling approach is introduced. The results are discussed in
Sec. III. Finally, the conclusions are drawn in Sec. IV.

II. METHODS

A. Pore network configuration

The pore network modeling approach is employed to de-
scribe the distribution of the liquid flow in porous media
during evaporation. The size and the configuration of the pore
network are detailed in Fig. 1. The pore network is composed
of spherical pore bodies connected by cylindrical pore throats,
Figs. 1(b) and 1(c). All the pore bodies have the same radius of

FIG. 1. (a) Size and configuration of the pore network used in the
present study. The pore network is attached to a diffusion boundary
layer and divided into four zones. Zone 1 is at the top side, while
zone 4 is at the bottom side of the pore network. (b) A 2D schematic
of the pore network composed of spherical pore bodies connected by
cylindrical pore throats. The gas, solid, and liquid phases are shown
in white, gray, and blue, respectively. The grids in the diffusion
boundary layer near the top open side of the pore network are also
shown. (c) A 3D schematic of a unit cell in the pore network and
the adjacent nine grids in the diffusion boundary layer. The length of
the side of the central grid in the in-plane direction is equal to the
diameter of the pore throat attached.

10 μm. The radii of the pore throats are uniformly distributed
in the range 2–7 μm. The distance between the two adjacent
pore bodies is a = 40 μm. The numbers of pore bodies are
Nx = 40, Ny = 40, and Nz = 200 in the x-, y-, and z directions.
The total number of the pores (including the pore bodies and
the pore throats) is about 2.5 million. A unit cell of the pore
network contains a pore body and has a length of 40 μm in
each side. Only the top side of the pore network at z = 0
is open to the environment (the open side, also called the
top side), while the other sides are impermeable. The side
opposite to the top (open) side is called the bottom side.
The top (open) side of the pore network is connected to a
diffusion boundary layer of thickness of 1 mm; see Fig. 1(a).
The concentration of vapor outside of this diffusion boundary
layer is zero.

A pore in the pore network is empty if it is completely
occupied by the gas (air) phase. A partially filled pore contains
liquid (water) and has at least one adjacent empty pore. A fully
filled pore contains liquid and all of its neighboring pores also
contain liquid; see Fig. 1(b). The partially and the fully filled
pores are also called the filled pores. The concentration of
vapor in a partially filled pore is equal to the saturated con-
centration. In the present study, we assume that evaporation
is slow and therefore that the thermal gradient in the pore
network is negligible. The temperature of the pore network
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is equal to the ambient temperature, which is 298 K in the
present study.

B. Vapor diffusion

The transport of vapor in the void space of the pore network
and in the diffusion boundary layer is dominated by the mass
diffusion and described by Fick’s law:

∇ · (D∇Cv ) = 0, (1)

where D is the diffusion coefficient (2.5 × 10–5 m2 s–1), and
Cv is the vapor concentration (mol m–3).

The vapor concentration field in the diffusion boundary
layer is obtained by using the finite-volume method. The
diffusion boundary layer is discretized into a number of grids
of various sizes, Fig. 1. To couple the vapor transport in the
pore network and in the diffusion boundary layer, a unit cell
of the pore network at the open side is attached to nine grids in
the diffusion boundary layer; see Fig. 1(c). Among these nine
grids, the central one is attached to the pore throat in the unit
cell. The lengths of the central grid in the x- and y directions
are equal to the diameter of the pore throat attached to this
central grid. The lengths of the other eight grids in the x- and y
directions are equal to half of the length of the unit cell minus
the radius of the pore throat attached to the central grid. The
number of grids along the thickness direction of the diffusion
boundary layer is seven. The two grids in the z direction near
the top (open) side of the pore network have a length of 5
μm, while the value of this length is 198 μm for the other five
grids.

Based on these grids in the diffusion boundary layer,
Eq. (1) is discretized by using the central difference scheme.
The vapor concentration in a grid is represented by the one at
the center of this grid; see the black dots shown in Fig. S1(b) in
the Supplemental Material [41]. For each grid in the diffusion
boundary layer, e.g., grid gi, we have:∑

gj

DAgi−gj

δgi−gj
(Cv,gi − Cv,gj ) = 0, (2)

where grid gj is neighboring to grid gi, Agi−gj the area of
the face between grids gi and gj, δgi−gj the distance between
centers of grids gi and gj. If grid gj locates in a filled pore
throat at the open side of the pore network, then Agi−gj is the
cross-sectional area of the pore throat; Cv,gi is equal to the
saturated vapor concentration, Cv,sat (1.21 mol m–3); δgi−gj is
the distance from the center of grid gi to the face between
grid gi and the adjacent filled pore throat. If grid gj locates
in an empty pore throat in the pore network, then Agi−gj is
the cross-sectional area of the pore throat; Cv,gi is equal to the
vapor concentration in this pore throat [represented by one at
the pore center; see the black dots shown in Fig. S1(b)]; δgi−gj

is the distance from the center of grid gi to the center of this
empty pore throat.

The diffusion of vapor between two adjacent pores in the
pore network is conceptualized as a one-dimensional process.
For each empty pore body in the pore network, e.g., pore body
pbi, we have ∑

pt j

Fpbi−pt j = 0, (3)

where Fpbi−pt j is the diffusion rate (mol s–1) from pore body
pbi to the neighboring pore throat ptj. If pore body pbi
is connected to a pore body pbk through an empty pore
throat ptj, then Fpbi−pt j = DApt j (Cv,pbi–Cv,pbk )/a, for which
Apt j is the cross-sectional area of pore throat pt j(m2); if
pore body pbk is filled, then Cv,pbk is equal to the satu-
rated vapor concentration, Cv,sat (1.21 mol m3). If pore body
pbi is connected to a filled pore throat ptj, then Fpbi−pt j =
DApt j (Cv,pbi–Cv,sat )/(rpbi + lpt j/2), for which lpt j is the length
of pore throat ptj (m), and rpbi is the radius of pore body
pbi (m).

The vapor concentration for each empty pore throat, e.g.,
pti, at the open side of the pore network is determined by the
following equation:

DApti−gj

δpti−gj
(Cv,pti − Cv,gj ) = Fpbk−pti, (4)

where Apti−gj is the area between pore throat pti and grid
gj, equal to the cross-sectional area of pore throat pti, and
δpti−gj is the distance from the center of pore throat pti
to the center of grid gj. Fpbk−pti is the diffusion rate into
pore throat pti from the adjacent pore body pbk. Fpbk−pti =
DApti(Cv,pbk–Cv,pti )/(a/2–lpt i/2), for which Apti is the cross-
sectional area of pore throat pti(m2); if pore body pbk is filled,
then Cv,pbk is equal to Cv,sa.

Based on Eqs. (2)–(4), a set of linear equations for va-
por concentration in each grid, each empty pore body in
the pore network, and each empty pore throat at the open
side of the pore network are established. These linear equa-
tions are solved by using the biconjugate gradient stabilized
(BiCGSTAB) method [42], from which the vapor concentra-
tion fields in the diffusion boundary layer and in the pore net-
work are obtained. The convergent condition is that the largest
absolute value of the relative error of the vapor concentrations
between two successive calculations is smaller than 10−5.

C. Liquid clusters identification

During evaporation, liquid in the pore network is split into
many liquid clusters of various sizes. Identification of these
liquid clusters is critical to the computational efficiency of the
pore network model. In the present pore network model, all
the pore bodies and the pore throats have volumes. Thus, the
isolated liquid filled pore throats must be identified, since they
can influence the vapor concentration field in the pore network
and hence the rates of the liquid flow in the filled pores.

The liquid clusters that include the filled pore bodies are
identified by scanning of each filled pore body in the pore
network. This pore body scanning starts from the first pore
body with the coordinate of (2, 2, 2) to the last one with
the coordinate of (2Nx, 2Ny, 2Nz ). Each pore (including pore
body and pore throat) is assigned with a scanned liquid cluster
number NCsc(x,y,z), for which x, y, and z are the pore coor-
dinates. Such scanned liquid cluster can be the subset of a
liquid cluster. A liquid cluster can have more than one scanned
liquid cluster. Each scanned liquid cluster, i, is assigned with
an effective liquid cluster number NCeff(i) so as to determine
which liquid cluster it belongs to. The number of scanned
liquid cluster is denoted as Nsc. The following algorithm (also
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illustrated in Fig. S2 in the Supplemental Material [41]) is em-
ployed to determine the liquid clusters in the pore network:

(1) Initially, NCsp(x, y, z) = 0 is assigned to each pore
body and each pore throat in the pore network; Nsc = 0 and
NCeff(i) = 0 are applied, for which i = 0, . . . , 8 × Nx × Ny ×
Nz.

(2) The pore body scanning is performed. For each filled
pore body scanned, e.g., (x,y,z), the states of its backward
neighboring pore throats, i.e., (x−1, y, z), (x, y−1, z), and
(x, y, z−1) are checked first; see the following step (2.1).
Then, all the liquid filled pore throats adjacent to this pore
body are checked; see the following step (2.2). The details of
these two steps are as follows:

(2.1) The backward neighboring pore throats are checked
by using the following rules:

(2.1.1) If all the backward neighboring pore throats, i.e.,
(x−1, y, z), (x, y−1, z), and (x, y, z–1), are empty, then pore
body (x,y,z) is not connected to any previously scanned liquid
clusters. That is to say, this pore body belongs to a new
liquid cluster. Thus, the number of scanned liquid clusters is
updated as Nsc = Nsc + 1. Then the scanned liquid cluster that
this pore body belongs to is NCsp(x, y, z) = Nsc. The effective
liquid cluster that this scanned liquid cluster (the number of
the scanned liquid cluster is Nsc) belongs to is first set as
NCeff(Nsc) = Nsc.

(2.1.2) If one or more backward neighboring pore
throats are filled, then pore body (x,y,z) is connected
to at least one previously scanned liquid cluster.
For instance, if all the backward neighboring pore
throats, i.e., (x−1, y, z), (x, y−1, z), and (x, y, z–1),
are filled, then NCsp(x, y, z) = NCeff[NCsp(x, y, z)] =
min{NCeff min[NCsp(x–1, y, z)], NCeff min[NCsp(x, y–1, z)],
NCeff min[NCsp(x, y, z–1)]}. Here, min{} means the minimum
value. NCeff min[NCsp[x–1, y, z)] is the smallest effective
liquid cluster of the scanned liquid clusters that belong
to the liquid cluster including (x−1, y, z) just before the
scanning of pore body (x,y,z). NCeff min[NCsp(x–1, y, z)]
is determined as follows. If NCeff[NCsp(x–1, y, z)] is
equal to NCsp(x−1, y, z), then NCeff min[NCsp(x–1, y, z)] =
NCsp(x–1, y, z). If NCeff[NCsp(x–1, y, z)] is not equal
to NCsp(x–1, y, z), we define ks = NCsp(x–1, y, z),
and ke = NCeff[NCsp(x–1, y, z)]. Then, ks = ke, and
ke = NCeff(ke) is repeated until ks = ke; see also the following
step (3). Then NCeff min[NCsp(x–1, y, z)] = ke.

The explanation of step (2.1.2) is as follows. If pore body
(x,y,z) is connected to different liquid clusters, then these
liquid clusters form a new one and actually have the same
effective liquid cluster. This effective liquid cluster number
of this new liquid cluster is equal to the smallest effective
liquid cluster number of the scanned (subset) liquid clusters
that belong to this new liquid cluster. This is due to the
fact that the information is transferred from the previously
scanned liquid cluster to those scanned later. Thus, both the
scanned liquid cluster number and the effective liquid cluster
number of pore body (x,y,z) are equal to this smallest effective
liquid cluster number. This smallest effective liquid cluster
number is equal to minNCeff min(NCsp(x−1, y, z)), NCeff min

[NCsp(x, y−1, z)], NCeff min(NCsp(x, y, z−1)] if the back-
ward neighboring pore throats (x−1, y, z), (x, y−1, z), and
(x, y, z−1) are filled.

(2.2) After the scanned liquid cluster number and the
effective liquid cluster number of pore body (x,y,z) are deter-
mined, then all the liquid filled pore throats adjacent to this
pore body are checked based on the following rules:

(2.2.1) If a filled pore throat, e.g., (x + 1, y, z), has
NCsp(x + 1, y, z) = 0, then this pore throat has not been
checked. Thus, information of pore body (x,y,z) is transferred
to this pore throat, i.e., NCsp(x + 1, y, z) = NCsp(x, y, z).
Thus, NCeff[NCsp(x + 1, y, z)] = NCeff[NCsp(x, y, z)].

(2.2.2) If a filled pore throat, e.g., (x, y + 1, z), has
NCsp(x, y + 1, z) > 0, then this pore throat has been
checked. We define ke = NCeff min[NCsp(x, y + 1, z)]
[note that NCeff(ke) = ke)]. Then NCeff(ke) is updated as
NCeff(ke) = NCeff[NCsp(x, y, z)].

The explanation of step (2.2.2) is as follows. The effective
liquid cluster number NCeff min[NCsp(x, y + 1, z)] determines
the smallest effective liquid cluster number of the scanned
liquid cluster in the liquid cluster with pore throat (x, y + 1, z)
just before the scanning of pore body (x,y,z). The definition of
NCeff min[NCsp(x, y + 1, z)] can be found in step (2.12). After
the scanning of pore body (x,y,z), NCeff min[NCsp(x, y + 1, z)]
should be equal to NCeff[NCsp(x,y,z)], since pore body (x,y,z)
and the liquid cluster including (x, y + 1, z) just before the
scanning of pore body (x,y,z) are in the same liquid cluster.

(3) After all the pore bodies are scanned in step (2), the
effective liquid cluster number of each scanned liquid cluster
is checked and updated by using the following rules:

(3.1) If the scanned liquid cluster number ks and the effec-
tive liquid cluster number ke of a scanned liquid cluster are not
the same, i.e., ks �= ke, then set ks

∗ = ks.
(3.2) ks

∗ and ke are updated as ks
∗ = ke, and ke =

NCeff(ke), respectively.
(3.3) Step (3.2) is repeated until ks

∗ = ke.
(3.4) The effective liquid cluster number of the scanned

liquid cluster ks is updated as NCeff(ks) = ks
∗.

It should be noted that if a scanned liquid cluster has ks =
ke, then the steps (3.2)–(3.4) are not performed.

The explanation of step (3) is as follows. Before the scan-
ning of filled pore body (x,y,z), the different liquid clusters
adjacent to this body (if existing) are not connected. After
scanning of this pore body, these liquid clusters are connected
to form a new large one; see step (2). The effective liquid
cluster number of this new liquid cluster needs to be deter-
mined. Obviously, this effective liquid cluster number is equal
to the smallest effective liquid cluster of the scanned (subset)
liquid clusters of the new one. Step (2.1) is to determine
this effective liquid cluster number. Before the scanning of
pore body (x,y,z), each liquid cluster adjacent to this pore
body has its own effective liquid cluster number, equal to the
smallest one of the scanned liquid cluster. After scanning of
this pore body, their effective liquid cluster numbers need to
be updated to be the same as that of the new liquid cluster.
To do this, the smallest effective liquid cluster number of the
scanned clusters of each liquid cluster adjacent to pore body
(x,y,z) is updated to that of the new liquid cluster; see step
(2.2). To this end, after all the pore bodies are scanned, the
originally unconnected liquid clusters adjacent to the same
filled pore body are connected and form a new large liq-
uid cluster. The smallest effective liquid cluster numbers of
the scanned clusters of these originally unconnected liquid
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clusters are all equal to the effective liquid cluster number of
the new one. But, not all effective liquid cluster numbers of
the scanned liquid clusters are equal to the effective liquid
cluster of the new one. Hence, the update of the effective
liquid cluster number is needed.

In the pore body scanning, a filled pore body, e.g., (x,y,z),
not connected to any previously scanned liquid clusters, is
assigned with the same scanned liquid cluster number, ks,
and the effective liquid cluster number, ke; ks = NCsp(x, y, z),
ke = NCeff(ks), and ks = ke; see step (2.1). If this scanned
liquid cluster ks is then found to be connected to a cluster with
the scanned liquid cluster number js and the effective liquid
cluster je, and if je < ke, then ke is updated to ke = je; see
step (2.1). Afterwards, if the scanned liquid cluster js is found
to be connected to a cluster with the scanned liquid cluster
number is and the effective liquid cluster ie, and if ie < je, then
je is updated to je = ie. Since the scanned liquid clusters is, js,
and ks are connected, they are in the same liquid cluster and
hence have the same effective liquid cluster number. But, after
the pore body scanning, the effective liquid cluster number of
the scanned liquid cluster ks is je, different from those of the
scanned liquid clusters js and is (their effective liquid cluster
number is ie). Hence, the effective liquid cluster number of
each scanned liquid cluster needs to be checked and updated
by using the above steps (3.1)–(3.4).

(4) After the pore body scanning, the pore throat scan-
ning is performed. If a filled pore throat, e.g., (x,y,z), has
NCsp(x, y, z) = 0, then this pore throat is not connected to any
filled pore bodies. The reason is as follows. If a filled pore
throat is connected to a filled pore body, then the information
of the filled pore body is transferred to the pore throat in steps
(2), and therefore the pore throat should have NCsp(x, y, z) >

0. Thus, the filled pore throat with NCsp(x, y, z) = 0 is sand-
wiched between two empty pore bodies and belongs to a new
liquid cluster. Thus, Nsc = Nsc + 1, then NCsp(x, y, z) = Nsc,
and NCeff(Nsc) = Nsc, as explained in step (2.1).

Based on the single pore body scanning and the single
pore throat scanning mentioned above, the liquid clusters in
the pore network are identified. The two filled pores, e.g.,
pores (x, y, z) and (x, y + 1, z) are in the same liquid cluster
if they have the same effective liquid cluster number, i.e.,
NCeff[NCsp(x, y, z)] = NCeff[NCsp(x, y + 1, z)]. An example
of the liquid cluster identification process is presented in Fig.
S3 and Table S1 in the Supplemental Material [41].

D. Pore network model

Initially, the pore network is saturated with liquid. Then,
due to the evaporation, the liquid in the pore network is
gradually replaced by the gas, resembling a gas invasion
process. Since we neglect gravity, such gas invasion in the
pore network is affected by viscous and capillary forces. The
competition between these two forces can be characterized by
the capillary number, Ca, which represents the ratio of the
viscous to the capillary forces. For evaporation in the porous
media, the capillary number can be determined as

Ca = μl E

Aσρl
, (5)

FIG. 2. Variation of the normalized evaporation rate and the
location of the moving meniscus in the main liquid cluster in the
course of evaporation. Here, St is the total liquid saturation, E the
evaporation from the pore network, Ei the initial evaporation rate at
St = 1, and z∗ = lz,i/Lz is the fractional distance along the z direction
of the moving meniscus in the main liquid cluster, for which lz,i is the
distance along the z direction from the moving meniscus to the open
side of the pore network, and Lz the length of the pore network in the
z direction.

where μl is the liquid dynamic viscosity (0.001 Pa s), and
ρl the liquid density (995 kg m–3), A the cross-sectional area
of the porous medium, and E the evaporation rate from the
porous media (kg s–1). The evaporation rate decreases in the
course of evaporation; e.g., see Fig. 2. For the evaporation
of the pore network in the present study, the cross-sectional
area of the pore network is 2.56 mm2, and the evaporation
rate from the pore network at the initial moment, Ei, is
6.5 × 10–9 kg s–1. Hence, the capillary number is not more
than 3.5 × 10–8.

For such low capillary number, the evaporation-induced
gas invasion in the pore network is dominated by the capillary
forces and therefore depends significantly on the threshold
pressure of each pore. The threshold pressure of a partially
filled pore throat is 2σ/rt , for which σ is the surface tension
(0.0728 Nm–1), and rt is the radius of the pore throat (m). The
contact angle (taken in the liquid phase) for the pore surface is
zero. The threshold pressure of a partially filled pore body is
2σ/max{rt,e1 . . . rt,en}, for which rt,e is the radius of the empty
pore throat adjacent to the pore body, and subscript n is the
number of the adjacent empty pore throats.

Owing to the low capillary number, the quasistatic pore
network model is employed to simulate the evaporation ki-
netics in the present study. The detailed description of such
model can be found in Ref. [29] as well as in Fig. S1 in
the Supplemental Material [41]. Here, we just present a brief
description:

(1) Identify the liquid clusters in the pore network by
using the algorithm mentioned above;

(2) Solve the field of the vapor concentration in the pore
network and in the diffusion boundary layer, and determine
the evaporation rate from each liquid cluster, Ec(kg s–1).
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(3) Scan the partially filled pores in each liquid cluster,
and select the one with the lowest threshold pressure as the
invading pore (the meniscus in the invading pore is moving);

(4) Determine the time to empty the invading pore in each
liquid cluster as tc,i = Ec,i/(ρl × sip,i × Vip,i ), where sip is the
saturation of liquid in the invading pore, Vip the volume of the
invading pore, and subscript i represents the liquid cluster i;

(5) Determine the step time as tstep =
min{tc,1, tc,2, . . . , tc,Nc}, for which Nc is the number of
the liquid cluster;

(6) Update the liquid saturation of the invading pore
in each liquid cluster, i.e., sip,i = (sip,i × Vip,i–Ec,i ×
tstep/ρl )/Vip,i, and a pore is considered as empty if its
liquid saturation is smaller than 0.001;

(7) Repeat from step (1) until all liquid in the pore network
is removed.

As noted, the viscous effects are not considered in the
present quasistatic pore network model. To show that this is
a reasonable assumption, we have compared the evaporation
kinetics predicted by the quasistatic and the dynamic pore
network models for the total liquid saturation St > 0.9 (the
effect of the viscous effects are considered in the dynamic
pore network model). The details of the dynamic pore net-
work model for evaporation in porous media can be found
in Ref. [5]. Since a huge computational resource is needed
for the dynamic pore network model, we only perform the
simulation at the beginning of evaporation (i.e., St > 0.9) with
the dynamic model. The results obtained by the quasistatic
and the dynamic models are the same. But, the quasistatic
model without the viscous effects has a much higher compu-
tational efficiency. Hence, the quasistatic pore network model
is employed to simulate the slow evaporation in the large pore
network used in the present study.

In the quasistatic pore network model, the liquid saturation
in each filled pore and the vapor concentration in each empty
pore are determined for each time step, but the liquid flow
rate in each liquid filled pore throat is not calculated, since
the viscous effects are ignored (consideration of the liquid
flow will not influence the evaporation-induced gas invasion
processes but will increase sharply the computational time).
The liquid flow rate in each liquid filled pore throat is cal-
culated independently based on the liquid phase distribution,
the vapor concentration field, and the state of each meniscus
(moving or static) obtained from the pore network model
mentioned above. The liquid flow rate field is not calculated
for each time step, but for every total liquid saturation interval
of 0.001.

The detailed procedures to calculate the liquid pressure in
each filled pore body and the liquid flow rate in each filled
pore throat are illustrated in Fig. S4 in the Supplemental
Material [41]. The liquid flow between two neighboring filled
pore bodies is considered as the fully developed 1D flow. The
pressure of liquid in the invading pore with moving menisci
is equal to the gas pressure minus the threshold pressure of
the invading pore. The rate of liquid flow into a partially filled
pore with static menisci (not the invading pore) is equal to
the liquid flow rate out of this pore due to evaporation. The
pressures of liquid in the filled pore bodies are obtained by
using the BiCGSTAB method [42] to solve the linear equa-
tions that are established by applying mass conservation law

to each filled pore body except the invading one. Since the
evaporation is slow, the flow rate in the pore throat and hence
the liquid pressure difference between the adjacent two pore
bodies are rather small. Thus, the convergence criterion needs
to be set with caution. The effect of the convergent criterion
on the calculated liquid flow rate field is negligible when the
following condition is satisfied: the sum of the absolute value
of relative error of the liquid pressure in each filled pore body
between two successive calculations is smaller than 10–5.

One way to validate the pore network model for two-phase
transport in porous media is to compare the modeling re-
sults against the experimental data obtained with quasi-2D
microfluidic pore networks. Our previous studies [29] have
revealed that the variation of the liquid distribution in a
quasi-2D Polydimethylsiloxane-based microfluidic pore net-
work during slow evaporation can be well predicted by the
quasistatic pore network model. However, Polydimethylsilox-
ane is permeable to gas. Hence, the measured evaporation
rate is higher than that predicted by the pore network model
in Ref. [29] (in the pore network model, the solid matrix is
impermeable to gas).

To show that the pore network model can predict accurately
the evaporation rate, we have also compared the modeling
results obtained by the dynamic pore network model against
the experimental data obtained with a silicon-glass based mi-
crofluidic pore network with impermeable solid walls; the
modeling and experimental results are in good agreement
[30]. We also reveal that the capillary instability-induced
gas-liquid interface movement in a quasi-2D silicon-glass
based microfluidic pore network can be well predicted by
the dynamic pore network model [38]. These previous stud-
ies [29,30,38] demonstrate that the pore network model can
depict accurately the two-phase transport in porous media.
Despite this, the pore network modeling flow rate in each
pore has never been validated experimentally. One reason
is the lack of the experimental data. The flow fields for
two-phase flows in microfluidic pore networks have been
measured by using the microparticle-image velocimetry tech-
niques [43–45]. The measurement of the liquid flow fields in
microfluidic pore networks during evaporation and compari-
son of the experimental data and the pore network modeling
results will be performed in a future study.

III. RESULTS AND DISCUSSION

A. Variation of the location of the moving meniscus
in the main liquid cluster

Based on the pore network model mentioned above, we get
the variation of the evaporation rate from the pore network
as well as the flow rate of liquid in each filled pore throat.
The variation of the normalized evaporation rate from the pore
network, E/Ei, as a function of the total liquid saturation, St ,
is presented in Fig. 2. Here, St is the total liquid saturation,
E the evaporation from the pore network, and Ei the initial
evaporation rate at St = 1. Four periods can be found: initial
evaporation period, constant rate period, falling rate period,
and receding front period, as reported in previous studies, e.g.,
Ref. [46].
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We find that a main liquid cluster exists when the total
saturation is St � 0.44. The main liquid cluster spans the
bottom and the top (open) sides of the pore network. Because
of this main liquid cluster, liquid can be transported from the
bottom of the pore network to the top (open) side through the
capillary forces. As a result, the liquid saturation at the open
side of the pore network is sustained, which in turn results
in the slow decrease of the evaporation rate for 0.55 < St <

0.97, i.e., the so-called constant rate period. Conversely, at
St < 0.44, liquid in the pore network is split into a number
of small disconnected liquid clusters, and the main liquid
cluster disappears. For such case, evaporation from the pore
network is controlled mainly by the vapor diffusion, and the
contribution of the liquid flow is not significant. Hence, we
explore the characteristics of the liquid flow distribution in
the pore network mainly at St � 0.44.

For the slow evaporation explored in the present study, only
one meniscus is moving in a liquid cluster. The location of the
moving meniscus in a liquid cluster depends on the threshold
pressure of the partially filled pores, which is determined by
the pore sizes. Since the pore sizes are randomly distributed
in the pore network, the location of the moving meniscus in
a liquid cluster also varies randomly in the course of evap-
oration. Note that the correlations between the pore sizes,
e.g., studied in Ref. [47], are not considered in the present
study. For St � 0.44, almost all liquid in the pore network is
in the main liquid cluster. Hence, we study the effects of the
location of the moving meniscus in the main liquid cluster on
the distribution of the liquid flow rate. Since the length of the
pore network in the z direction is much larger than those in the
other two directions, evaporation in the pore network can be
considered as a one-dimensional process along the z direction.
Hence, the z coordinate of the moving meniscus in the main
liquid cluster, lz,i, is employed to characterize the location of
the moving meniscus. Here, lz,i is the distance along the z
direction from the moving meniscus to the open (top) side
of the pore network. The length of the pore network in the
z direction is Lz. We define the fractional distance along the z
direction of the moving meniscus in the main liquid cluster as
z∗ = lz,i/Lz.

The variation of z∗ in the course of evaporation is also
shown in Fig. 2. Only the results for St � 0.44 are presented,
since no main liquid cluster exists when St < 0.44. A filled
pore with the moving meniscus will be invaded by gas. At
the beginning of evaporation, gas invasion occurs mainly near
the open side of the pore network (z∗ � 0.1 for St � 0.97),
thereby leading to the significant reduction in liquid saturation
at the open surface of the pore network and consequently the
sharp decrease in the evaporation rate. When the total liquid
saturation is 0.85 � St � 0.97, gas invades mainly the upper
half of the pore network, during which some pores at the open
side are also emptied, therefore resulting a slow decrease in
the evaporation rate. As evaporation continues, gas starts to
invade the lower half of the pore network. For 0.71 � St �
0.85, gas invasion occurs mainly in the lower half of the
pore network, thereby leading to an almost constant evapo-
ration rate. After this, the location of the moving meniscus is
randomly distributed, and the evaporation rate from the pore
network starts to decrease. The decrease is slow as St varies
from 0.71 to 0.55, but sharp as St varies from 0.55 to 0.44.

FIG. 3. Distributions of the magnitude of the normalized liquid
flow rate in the x-z plane of the pore network at the middle of the
y direction for (a) St = 0.76 and z∗ = 0.51; (b) St = 0.75 and z∗ =
0.985; (c) St = 0.7 and z∗ = 0.95; and (d) St = 0.49 and z∗ = 0.955.
Here, z∗ = lz,i/Lz is the fractional distance along the z direction of
the moving meniscus in the main liquid cluster. Only the liquid filled
pore throats are presented; the solid, pore bodies, and empty pore
throats are not shown for the sake of the clarity.

B. Distribution of the liquid flow in the entire pore network

The effects of the total liquid saturation and the location of
the moving meniscus in the main liquid cluster on the distri-
bution of the liquid flow rate in the entire pore network are
illustrated in Fig. 3. Shown in this figure are the distributions
of the magnitude of the normalized liquid flow rate in the x-z
plane of the pore network at the middle of the y direction for
St = 0.76, 0.75, 0.7, and 0.49. The normalized liquid flow rate
is q = q∗/(E/ρl/Nx/Ny/St ), for which q∗ is the liquid flow
rate in the filled pore throat (m3 s–1), and Nx and Ny are the
number of pore bodies in the x- and y directions, respectively.
In Fig. 3, only the liquid filled pore throats are presented; the
solid and empty pores are not shown for the sake of the clarity.

As shown in Fig. 3, the distribution of the liquid flow rate
changes significantly in the course of evaporation. For the
cases in Figs. 3(a) and 3(b), St is similar, whereas z∗ is differ-
ent. For the cases in Figs. 3(c) and 3(d), z∗ is almost the same,
but St is rather different, which indicates that the topology of
liquid cluster is different. From this point of view, we can infer
that both the topology of the liquid cluster (characterized by
the liquid saturation) and the moving meniscus (characterized
by z∗) influence the distribution of the liquid flow rate in the
pore network.

To quantify the distribution of the liquid flow in the pore
network, we calculate the probability density function (PDF),
fq, of the magnitude of the normalized liquid flow rate, q.
We plot fq versus q as q varies from 10–3 to 1000. The
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FIG. 4. Variation of the probability density function (PDF), fq,
with the magnitude of the normalized liquid flow rate, q, in all the
filled pore throats in the pore network for (a) St = 0.75 (z∗ = 0.985)
and St = 0.76 (z∗ = 0.51) and (b) St = 0.49 (z∗ = 0.955) and St =
0.70 (z∗ = 0.95).

reason for the upper limit of 1000 is as follows. Since there
is only one moving meniscus in the main liquid cluster, the
maximum liquid flow rate is close to the evaporation rate
from the pore network, q∗

max ∼ E/ρl . Accordingly, maximum
normalized liquid flow rate, qmax = q∗

max/(E/ρl/Nx/Ny/St ), is
about NxNySt , on the order of 1000. On the other hand, the
normalized liquid flow rates in most pores are larger than 10–3

when the location of the moving meniscus is at the bottom of
the pore network. In this case, liquid seems to flow from the
bottom side to the open side of the pore network. We cannot
obtain the accurate statistical results for the distribution of the
liquid flow with q < 10–3. Hence, the lower limit of 10–3 is
used to study the variation of fq with q.

The variations of fq with q for the cases illustrated in Fig. 3
are presented in Fig. 4. In this figure, fq is obtained based
on the liquid flow rates of all filled pore throats in the pore
network. When q is low, fq can be scaled as

fq ∼ q−β. (6)

The value of β is obtained by fitting Eq. (6) in the range of
10–3 < q < 0.015. We find that the value of β for magnitude
of the normalized liquid flow rate is similar to those for the
magnitudes of the rates of liquid flow along the positive and
negative x-, y-, and z directions; see Fig. S5 in the Sup-
plemental Material [41]. Hence, only the distribution of the
magnitude of the normalized liquid flow rate is studied in this
work, and the direction of the liquid flow is not considered.

Figure 4(a) compares the variation of fq with q for the cases
with similar St (0.75 and 0.76) but different z∗ (0.985 and
0.71). The value of β is β = 0.12 for St = 0.75 (z∗ = 0.985)
and β = 1.03 for St = 0.76 (z∗ = 0.71). Figure 4(b) compares
the variation of fq with q for the cases with different St

(0.49 and 0.70) but similar z∗ (0.955 and 0.95). The value of
β is β = 0.52 for St = 0.49 (z∗ = 0.955) and β = 0.15 for
St = 0.70 (z∗ = 0.95). As illustrated in Fig. 4, the value of
β depends on both St and z∗.

The variation of β with St and z∗ is illustrated in Fig. 5.
When the fractional distance of the moving meniscus in the
main liquid cluster is z∗ � 0.875, then β is influenced mainly
by z∗, Fig. 5(a). When z∗ � 0.4, β varies linearly with z∗, i.e.,
β = 1.042–0.157z∗; for 0.48 < z∗ � 0.875, β is also a linear
function of z∗, i.e., β = 1.947–2.053z∗; see Fig. 5(b). The
explanation of the dependency of β on z∗ is as follows. It has
been revealed, e.g., in Refs. [25,27], that for the single-phase
and the steady-state two-phase flows in porous media, the
PDF of the normalized velocity magnitude is a power-law
function, similar to Eq. (6). Furthermore, the variations of
PDF with the normalized velocity magnitude for the single
phase and the steady two-phase flows in porous media are
different [21]. This indicates that if the PDF of the normalized
velocity magnitude is a power-law function, then the power-
law exponent is different for the single-phase and the steady
two-phase flow cases. As a matter of fact, the flow paths for
the single-phase and the two-phase flow in the same porous
medium are different. These previous studies indicate that the
topology of the flow paths influences the flow distribution.
In this study, the distribution of the liquid flow in the pore
network is characterized by β in Eq. (6). For evaporation in
the pore network, the liquid flows from the moving meniscus
to the open side of the pore network. As the location of the
moving meniscus in the main liquid cluster, z∗, varies, the
liquid flow paths change, which can result in the variation
of the β. Thus, β varies with z∗. The experimental validation
of the dependence of β on z∗ revealed by the pore network
modeling will be performed in a future study.

For z∗ > 0.875, the moving meniscus in the main liquid
cluster is at the bottom of the pore network. In this case,
β seems to depend on the total liquid saturation rather than
the location of the moving meniscus. For St � 0.44, evap-
oration occurs mainly near the pore network open side, and
the evaporation inside the pore network is negligible. During
evaporation, liquid flows from the moving meniscus to the
static evaporating menisci near the open side of the pore
network. To this end, the liquid flow in the pore network
can be considered as from the bottom to the open side when
z∗ > 0.875. For this case, the distribution of the liquid flow
in the pore network depends on mainly the topology of the
main liquid cluster (characterized by St ) rather than the lo-
cation of the moving meniscus. That is why the values of
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FIG. 5. (a) Variation of β with St and z∗. (b) Variation of β with
z∗ for z∗ � 0.875. (c) Variation of β with St for z∗ > 0.875. Here,
β is the power-law exponent in the relation fq ∼ q−β , St the total
liquid saturation, and z∗ = lz,i/Lz the fractional distance along the z
direction of the moving meniscus in the main liquid cluster.

β for the similar z∗ can be quite different when z∗ > 0.875,
Fig. 5(a). As illustrated in Fig. 5(c), β can be expressed as
β = 0.055 St

–3.058 for z∗ > 0.875.

C. Distribution of the liquid flow in various zones
of the pore network

In the main liquid cluster, the rate of the mass flow in
the pore with the moving meniscus is the largest and equal
to the evaporation rate from this liquid cluster. To this end,

FIG. 6. Variation of the PDF, fq, with the magnitude of the nor-
malized liquid flow rate, q, for various zones in the pore network for
(a) St = 1 and z∗ = 0.003 and (b) St = 0.75 and z∗ = 0.99. Zone 1 is
at the top open side of the pore network, and zone 4 is at the bottom
side, as illustrated in Fig. 1(a). fq for a certain zone is obtained based
on the liquid flow rates in the filled pore throats only in this zone.
z∗ = lz,i/Lz is the fractional distance along the z direction of the
moving meniscus in the main liquid cluster.

the pores with large q can be around the moving meniscus,
indicating that the distribution of liquid flow rate differentiates
in various zones of the pore network. In order to understand
the distribution of liquid flow rate in various zones of the pore
network, we divide the pore network into four zones along
the z direction. Zone 1 is at the top (open) side of the pore
network, and zone 4 is at the bottom side, as illustrated in
Fig. 1(a). The number of the zones is determined under the
consideration of the following two aspects. First, the size of
each zone must be large enough so as to provide sufficient data
on the liquid flow rate to determine fq. Second, the number of
zones must be enough in order to differentiate fq for various
zones clearly. Based on these two consideration, four zones
are employed here.

The variations of fq with q in different zones of the pore
network are compared in Fig. 6. Figure 6(a) shows the case
of St = 1 and z∗ = 0.003. Figure 6(b) shows the case of
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St = 0.75 and z∗ = 0.99. Here, fq for a certain zone is ob-
tained based on the liquid flow rates in the filled pore throats
only in this zone. When the moving meniscus in the main
liquid cluster is near the open side, the liquid flow rates in
zones 3 and 4 are rather small. For instance, at St = 1 and
z∗ = 0.003 (i.e., at the open side), the rates of the liquid flow
in the pores in zone 3 and zone 4 are q < 10–3. Hence, the
distributions of the liquid flow rates in zones 3 and 4 are not
presented in Fig. 6(a). As shown in this figure, the liquid flow
rate in zone 2 is q < 1. At low q(� 0.01), the variations of
fq with q for the whole pore network and zone 2 are similar.
For q > 0.01, the variations of fq with q for the whole pore
network are similar to that for zone 1.

When the moving meniscus in the main liquid cluster is
near the bottom of the pore network, the variation of fq with
q for q � 10 is similar for all zones, as shown in Fig. 6(b).
The liquid flow rate with q > 10 is found only in zone 4,
wherein the moving meniscus is. The variation of fq with q
for different zones for the moving meniscus at the middle of
the pore network can be found in Fig. S6 in the Supplemental
Material [41].

For various zones at the downstream of the moving menis-
cus (i.e., between the moving meniscus and the bottom of
the pore network), the trend of variation of fq with q is
different. When the distance between the moving meniscus
and the downstream zone exceeds a critical value, then the
rate of the liquid flow in this zone can be q < 10–3; see the
case of St = 1 and z∗ = 0.003 in Fig. 6(a). For various zones
at the upstream of the moving meniscus in the main liquid
cluster (i.e., between the moving meniscus and the open side
of the pore network), the variation of fq with q can be similar;
see the case of St = 0.75 and z∗ = 0.99 in Fig. 6(b). This
indicates that liquid flow in the pore network could be cor-
related, although the sizes of pores are randomly distributed,
and evaporation-induced gas invasion in the pore network is a
random process.

To check if the liquid flow in the pore network is correlated
or not, we calculate the spatial correlation function in the z
direction as

Cqq,z(Rz ) =
〈∑

i δq(−→ri )δq(−→ri + −→
Rz )∑

i δq(−→ri )δq(−→ri )

〉
z

. (7)

The angle brackets represent an average over the z direction.
The sums are taken over all filled pore throats. δq is the
fluctuation of the liquid flow rate and equals to q−〈q〉, for
which 〈q〉 is the average of the magnitude of the normalized
liquid flow rate. Rz = |−→Rz | is the distance between the centers
of the two filled pore throats along the z direction (m). For the
regular pore network used in the present study, Rz is integer
multiple of a, i.e., Rz = ma with m = 1, 2, 3 . . . 40. Here, a is
the distance between centers of two adjacent pore bodies, as
illustrated in Fig. 1(b).

We calculate the spatial correlation function Cqq,z only for
the main liquid cluster. The liquid flows in two separate liquid
clusters are obviously uncorrelated. Figure 7 shows the vari-
ation of Cqq,z with m (Rz = ma) for the main liquid cluster in
the pore network at different total liquid saturations. For small
m, Cqq,z decays precipitously from 1. But, as m increases,
oscillation in Cqq,z can be observed, indicating the presence of

FIG. 7. Variation of the spatial correlation function, Cqq,z, with
m (Rz = ma) for the main liquid cluster in the pore network. Here,
a is the distance between centers of two adjacent pore bodies, as
illustrated in Fig. 1(b).

nonzero correlation for the liquid flows in the main liquid clus-
ter. Note that the oscillation patterns are different for different
St and z∗. This indicates that correlation for the liquid flows
in the main liquid cluster could also depend on the location of
the moving meniscus and the topology of the liquid cluster.

We find that the probability density functions of the magni-
tude of the normalized liquid flow rate for various zones of the
pore network are also power-lawlike for the low normalized
liquid flow rate, similar to Eq. (6). The variations of the
power-law exponent for different zones, βzone,i, with z∗ and the
local liquid saturation, Szone,i, are illustrated in Fig. 8 as well
as Fig. S7 in the Supplemental Material [41]. The exponent is
obtained by fitting Eq. (6) in the range of 10–3 < q < 0.015.
The subscript zone,i presents the zone i in the pore network.
The local liquid saturation of a zone is defined as the volume
of liquid in this zone divided by the volume of void space
in this zone. When the location of the moving meniscus in
the main liquid cluster is between zone i of interest and the
open side, and the moving meniscus and zone i are separated
by another zone (e.g., zone 3 is of interest, and the moving
meniscus is in zone 1), then the liquid flow rate in zone i is
very small (most of the liquid filled pores have q < 10–3),
and βzone,i cannot be obtained. Thus, the values of βzone,i is
determined when the moving meniscus of the main liquid
cluster is in zone i, at the downstream of zone i (i.e., between
zone i and the bottom side), or at the upstream zone adjacent
to zone i (i.e., the zone between zone i and the open side and
neighboring to zone i).

For zone 1, βzone,1 is linearly varied with the local
liquid saturation Szone,1 when Szone,1 � 0.9, i.e., βzone,1 =
1.363–1.472 Szone,1, Fig. 8(a); when Szone,1 > 0.9, the value
of βzone,1 seems to depend on both z∗ and Szone,1, Fig. 8(b).
For zone 2, βzone,2 is linearly varied with z∗ for z∗ �
0.4, i.e., βzone,2 = 1.094–2.565z∗, Fig. 8(c); when z∗ > 0.4,
βzone,2 depends mainly on the local liquid saturation, and
βzone,2 = 0.011 Szone,2

–5.056, Fig. 8(d). For zone 3, βzone,3 is
linearly varied with z∗ for 0.25 � z∗ � 0.62, i.e., βzone,3 =
1.726–2.589z∗, Fig. 8(e); when z∗ > 0.62, is a function of
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FIG. 8. (a) Variation of βzone,1 with Szone,1 during the evaporation of the pore network. (b) Variation of βzone,1 with Szone,1 and z∗ for
Szone,1 > 0.9. (c) Variation of βzone,2 with z∗ for z∗ � 0.4. (d) Variation of βzone,2 with Szone,2 for z∗ > 0.4. (e) Variation of βzone,3 with z∗ for
0.25 � z∗ � 0.62. (f) Variation of βzone,3 with Szone,3 for z∗ > 0.62. (g) Variation of βzone,4 with z∗ for 0.5 � z∗ � 0.96. (h) Variation of βzone,4

with Szone,4 for z∗ > 0.96. Here, βzone,i is the exponent of the power-law function depicting the relation between fq and q for zone i. Szonei is the
local liquid saturation of zone i. z∗ = lz,i/Lz is the fractional distance along the z direction of the moving meniscus in the main liquid cluster.
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the local liquid saturation, i.e., βzone,3 = 0.0128 Szone,3
–4.836,

Fig. 8(f). For zone 4, βzone,4 is linearly varied with z∗ for 0.5 �
z∗ � 0.96, i.e., βzone,4 = 2.223–2.382z∗, Fig. 8(g); when z∗ >

0.96, βzone,4 depends on mainly the local liquid saturation, and
βzone,4 = 0.0067Szone,4

–5.752, Fig. 8(h).
As illustrated in Fig. 8, for zone 1 connected to the open

side of the pore network, βzone,1 is a linear function of the
Szone,1 when Szone,1 < 0.9. However, for the other zones away
from the open side of the pore network, βzone,i(i>1) is a power-
law function of the local liquid saturation when z∗ is larger
than a critical value. That is to say, the functions depicting the
relation between βzone,i and Szone,i can be different for various
zones. The main reason could be as follows. Evaporation-
induced gas invasion into zone 1 is from the open side of the
pore network; thus, all the pores at one side of the zone 1 are
available to gas. By contrast, gas invasion into the other zones
[e.g., zones 2, 3, and 4 in Fig. 1(a)] is from the neighboring
zone, and not all the pores at the interface between two ad-
jacent zones are available to gas. That is to say, the boundary
conditions for evaporation-induced gas invasion into the zones
attached to and away from the open side of the pore network
are different. Because of this difference in the boundary condi-
tion, the topology of the liquid clusters in the zones attached
to and away from the open side of the pore network can be
different. This contributes to explain why functions depicting
the relation between βzone,i and Szone,i for the zones attached
to and away from the open side are different. Thus, different
constitutive relations may be needed for the zones adjacent
to and away from the open side of the porous media in the
continuum model for evaporation.

IV. CONCLUSIONS

Pore network studies are performed to reveal the distri-
bution of the liquid flow in a pore network during slow
evaporation. The pore network is composed of pore bodies
connected by pore throats. To obtain the distribution of the liq-
uid flow from a macroscopic perspective, a large pore network
composed of 2.5 million pores is employed. A modified liquid
cluster identification algorithm is proposed. We find that for
evaporation in porous media with the two-phase displace-
ment, the location of the moving meniscus in the main liquid
cluster is of great importance to the liquid flow distribution.
The probability density function, fq, of the magnitude of the
normalized liquid flow rate, q, is determined to characterize
the liquid flow distribution. For low q, fq can be scaled as
fq ∼ q−β .

When the fractional distance of the moving meniscus in
the main liquid cluster, z∗, is z∗ � 0.875, then β for the
distribution of the liquid flow in the pore network is influenced
mainly by z∗. When z∗ > 0.875 (i.e., at the bottom of the pore
network), β depends on mainly the total liquid saturation, St .
The distribution range of z∗ is different for various evaporation
periods. Thus, the distribution of the liquid flow in the pore
network can be different for various evaporation periods.

We find that the liquid flow in the pores in the pore network
can be correlated. For various zones between the moving
meniscus and the open side of the pore network, the trends
of the variation of fq with q can be similar. However, for
various zones at downstream of the moving meniscus, the
trend of variation of fq with q is different. fq for various zones
in the pore network is also a power-law function of q when
q is low. The power-law exponent for a zone (e.g., zone i),
βzone,i depends on z∗ and the local liquid saturation, Szone,i.
The functions to depict the relation between βzone,i and Szone,i

for the zones adjacent to and away from the open side of the
pore network are different.

The present pore network studies reveal that during evapo-
ration in the pore network, the distribution of the liquid flow
is always changing, since the location of the moving meniscus
is varied randomly. Such change of the liquid flow definitely
influences the transport of the solute, e.g., salt and colloid, in
the liquid phase in the pore network during evaporation. Since
the distribution range of z∗ is different for various evaporation
periods, the characteristics of the solute transport in the pore
network could be varied in the course of evaporation. Such
variation in the characteristics of the solute transport due to
the change of the moving meniscus may need to be consid-
ered in the continuum model. We also find that the functions
depicting the relation between βzone,i and Szone,i for the zones
adjacent to and away from the open side of the pore network
are different. This indicates that different constitutive relations
may be needed for the zones adjacent to and away from the
open side of the porous media in the continuum model. These
findings from the pore network studies provide insights into
developing the accurate continuum model for evaporation in
porous media.
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