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Two separate decay timescales of a detonation wave modeled by the Burgers equation
and their relation to its chaotic dynamics
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This study uses a simplified detonation model to investigate the behavior of detonations with galloping-like
pulsations. The reactive Burgers equation is used for the hydrodynamic equation, coupled to a pulsed source
whereby all the shocked reactants are simultaneously consumed at fixed time intervals. The model mimics
the short periodic amplifications of the shock front followed by relatively lengthy decays seen in galloping
detonations. Numerical simulations reveal a sawtooth evolution of the front velocity with a period-averaged
detonation speed equal to the Chapman-Jouguet velocity. The detonation velocity exhibits two distinct groups
of decay timescales, punctuated by reaction pulses. At each pulse, a rarefaction wave is created at the reaction
front’s last position. A characteristic investigation reveals that characteristics originating from the head of this
rarefaction take 1.57 periods to reach and attenuate the detonation front, while characteristics at the tail take
an additional period. The leading characteristics are amplified twice, by passing through the reaction fronts of
subsequent pulses, before arriving at the shock front, while the trailing characteristics are amplified three times.
This leads to the two distinct groups of timescales seen in the detonation front speed.

DOI: 10.1103/PhysRevE.104.025103

I. INTRODUCTION

Recently, Radulescu and Tang [1] and Kasimov et al. [2]
found that the reactive Burgers equation describing one-
dimensional detonation waves in reactive media admits
chaotic pulsating dynamics, and follows the classical period-
doubling route to chaos seen in many other nonlinear systems.
The reactive Burgers equation recovers the more general ob-
servations of chaotic dynamics from detonations modeled
with the Euler [3,4] or Navier-Stokes equations [5]. Their
discovery of chaotic dynamics relied on numerical integration
of the partial differential equations but did not explain why the
system follows that universal route.

The periodic solution of pulsating detonations can be char-
acterized in two parts: one associated with the very rapid
reamplification of the detonation by energy release behind the
front, and the second by a long inert-like decay of the lead
shock. This has been observed experimentally in so-called
“galloping” detonations in thin tubes [6,7], and numerically
in low-velocity detonations [8].

Nevertheless, the chaotic dynamics shown in the limit cy-
cle of Fig. 1 are characterized by three timescales. There are
two distinct groups of decay of the lead shock, highlighted
in red and blue, punctuated by rapid reamplification periods.
Each decay rate appears as a straight line with constant slope
Ḋ/D in Fig. 1 and represents a characteristic timescale (D is
the detonation velocity and Ḋ is its time derivative). These
two distinct groups of decay timescales seem to be intrinsic to
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the period-doubling bifurcations, are inherited by subsequent
period-doubling bifurcations, and persist into chaos. The two
decay groups are observed in the Euler equations [Fig. 1(a)]
and Burgers-based models [Figs. 1(b) and 1(c)].

The present study seeks to explore why there are two
distinct periods of decay in chaotic detonations. In order to
focus on the decay timescales only, a pulsating model is
assumed in which the reamplification stage is infinitely fast
and occurs periodically. This is based on a model introduced
by Radulescu and Shepherd [10] for the reactive Euler equa-
tions. In their model, inert hydrodynamics of shock decay
were periodically interrupted by the instantaneous release of
all chemical energy stored in the unreacted gas accumulated
behind the lead shock. The sudden pressure gain caused by
reactions was followed by the inert decay of the shock front
and the shock wave traveling into the products of the previous
pulse

A similar model was studied by Mi and Higgins using the
Euler equations [11] and the Burgers equation [12]. In their
model, a shock wave traveled through an inert medium inter-
leaved with thin, regularly spaced sources of energy. After a
prescribed time delay, a shocked source would release all of
its energy into the flow, causing a local blast wave behind the
shock front, initiating the reamplification phase. This phase
terminated when the forward-traveling portion of the blast
reached and amplified the front. The decay phase then began
once again.

Motivated by the period-doubling bifurcation route to
chaos, this paper introduces a similarly simple model to study
the two distinct groups of decay rates. The Euler equations
are simplified to the Burgers equation, and the fast dynam-
ics of reamplification are replaced by simple pulsations in
order to focus on decay timescales. This combination of
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FIG. 1. Phase diagrams of period-2 detonations (three left subfigures) and a chaotic detonation (right) in three models: (a) the Euler
equations [4], (b) an asymptotic model of the Euler equations [2], and (c) an evolution equation derived from Fickett’s detonation analog [9];
two groups of decay rates are highlighted in red and blue.

simplifications was presented by Lau-Chapdelaine and Rad-
ulescu [13]. In contrast to the work of Mi and Higgins [11,12],
the entire medium is reactive and reactions are periodically
forced in time, not at discrete points in space. At every pulse
time, all shocked yet unburnt gas in the detonation is instan-
taneously reacted. This effectively makes the reamplification
phase infinitely fast, leaving only the dynamics of decay. The
decay dynamics are studied numerically and analytically to
find the source of the two distinct groups of decay timescales
seen in chaotic detonations.

The model is described in further detail in Sec. II and the
numerical method is explained in Sec. III. Simulation results
are presented in Sec. IV and an analytical model is developed
and tested against the simulations in Sec. V. The conclusion
can be found in Sec. VI.

II. MODEL

The Burgers equation with a source term

∂u

∂t
+ 1

2

∂

∂x
(u2 + λq) = 0 (1)

is used for the hydrodynamic equation. The variable u is the
local information speed, t is time, and x is location. The
hydrodynamics are coupled to a source term qλ to account for
reactions. The constant q = 1 is the heat released by combus-
tion and the reaction progress variable λ = 0 when unburnt,
or λ = 1 when burnt.

The reactive Burgers equation arises naturally in transonic
flows with weak energy release. This occurs, for exam-
ple, in detonations where most of the energy is released
quickly, followed by a slower release of the remainder near
a sonic plane [14]. The equation can also be asymptotically
derived [15–17] from the Navier-Stokes equations in the New-
tonian limit with weak heat release.

Burgers-based detonation analogs were first introduced by
Fickett [18] and Majda [19] as qualitative models for reactive
gas dynamics problems. They have since been used to under-
stand a range of dynamic detonations phenomena including
direct initiation [20], the eigenvalue structure and limits in the
presence of losses [21,22], their stability [1,2,16,23], glanc-
ing detonation reflections [14], detonations in heterogeneous

systems [12,24], and rotating detonation engines [25]. The
reactive Burgers equation (1) was used to model the hydro-
dynamics in these studies with reaction models that differed
between applications.

A simple reaction model that captures the slow decay of the
detonation velocity below the steady Chapman-Jouguet (CJ)
velocity followed by a rapid reamplification [6–8] is sought by
taking the limit of an infinitely fast re-amplification compared
to the decay phase. This is accomplished by forcing reactions
at fixed time intervals tp = 1, independent of the hydrody-
namics. At each pulse, all shocked reactants are consumed
completely, instantly, and simultaneously. No reactions occur
between pulses and the “reaction front,” the interface between
burnt and unburnt gasses, remains stationary in the model’s
frame of reference (referred to as the “laboratory” frame of
reference herein). In other words, whenever the simulation
time t reaches a multiple n of the pulse time tp, λ is set to
1 to the left of the shock, and λ remains zero to the right of
the shock; i.e., λ = 1 ∀ x � xs when t = ntp, for n ∈ N; xs is
the shock position. The resulting step-like reaction profile is
equivalent to having a reaction zone that is very thin compared
to the detonation structure.

The pulsed reaction greatly simplifies the complicated
dynamics of reamplification of unsteady detonations. Using
the Burgers equation also simplifies the characteristics, leav-
ing only forward-traveling characteristics which move at the
speed u to be considered.

The problem is scaled by parameters q and tp, so values of 1
are used for both. The Rankine-Hugoniot jump conditions for
this system [shown later in Eq. (4)], give a Chapman-Jouguet
detonation velocity of DCJ = √

q = 1 and a shock speed that
is the average of the pre- and post-shock states D = us

2 (for
u = 0 in the unshocked gas; the subscript “s” denotes the
shocked state).

III. NUMERICAL METHOD

The flow field was initiated by an under-driven piston
where u = 0.5 behind the shock, u = 0 elsewhere, and λ = 0
everywhere. The simulations were run for 100 pulse times, but
reached their regular oscillatory behavior much sooner.
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(a)

(b)

FIG. 2. Effect of resolution on profiles and error at t = 99.5;
(a) profiles of u (solid) and λ (dashed), and (b) error vs resolution;
the dashed line shows (1/�x)−1/2.

A uniform grid of 4000 points per DCJtp was used to dis-
cretize the domain. The effect of resolution is shown in Fig. 2.
Increasing the resolution increased the sharpness of disconti-
nuities, but had no qualitative effect on the phenomena. The
L2 relative error norm

√∑
(u − uref.)2/

∑
(uref.)2 in Fig. 2(b)

shows convergence of the solution towards the most-resolved
case (uref., with 1

�x = 4000) at the expected rate.
The Riemann problem was solved at every cell interface

using a first-order Godunov method [26] with a first-order
Euler method in time. The time-step size was the minimum
between the time step dictated by the Courants-Freidrich-
Lewy (CFL) condition and the time to the next scheduled
pulse,

�t = min

(
CFL × �x

umax
, tp − t mod tp

)
(2)

with CFL = 0.5. A source dλ
dt = (1−λ)

�t was activated every-
where in the domain when a pulse occurred.

Simulations were performed in the shock-attached frame of
reference. The post-shock state was used as the right boundary
condition, and a zero-gradient condition was used on the left
side of a domain with a length of 2DCJtp. The domain size did
not impact the traveling wave solution because a sonic point
was formed a distance DCJtp behind the shock, isolating the
detonation from the left boundary condition.

Simulations were also performed in the laboratory frame of
reference, where the reaction front is stationary and the shock
moves relative to the mesh. The laboratory-frame results were
qualitatively and quantitatively similar to the shock-fit simu-
lations that will be presented.

Numerical shock splitting problems [27] did not appear
because the reaction and shock fronts only coincide for a short

FIG. 3. Detonation speed evolution.

period of time, and the shock-fit boundary does not permit
numerical diffusion ahead of the shock wave.

IV. RESULTS

The time evolution of the shock front speed is plotted in
Fig. 3. The initial shock speed is maintained until the first
pulse at t = 1. The instantaneous reaction of all shocked ma-
terial when the pulse occurs causes the sudden acceleration
of the shock front. This is repeated at every pulse. A cyclical
sawtooth profile is developed by t = 4.

The phase diagrams of Fig. 4 show ten superimposed cy-
cles once the oscillatory behavior is reached. The front speed
is plotted against its position in the cycle in Fig. 4(a). It has a
cycle-averaged detonation velocity Davg = 1 = DCJ equal to
the CJ detonation velocity. Mi and Higgins [12] found the
same averaged velocity in their model based on the Burg-
ers equations; however, Radulescu and Shepherd [10] and
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FIG. 4. Phase diagrams of ten superimposed cycles (black, 90 �
t � 100); (a) D over the cycle, (b) Ḋ and D, and (c) timescale; dashed
lines show fits; xs,n is the shock position at the n = 90 pulse.

025103-3



LAU-CHAPDELAINE AND RADULESCU PHYSICAL REVIEW E 104, 025103 (2021)

Mi et al. [11] observed average detonation speeds above of
the CJ speed in their models using the Euler equations.1 Mi
et al. [11] hypothesized the discrepancy was due to the lack
of backwards-traveling characteristics in the Burgers system,
but, to date, this finding remains unexplained.

The sawtooth velocity profile shown in Fig. 4(a) has a kink
that separates a segment of slow decay from a segment of fast
decay. The unsteadiness of detonation waves has previously
been modeled [28] after Taylor-Sedov blast decay. In similar
fashion, the shock speed is fit to a power law

D ∝ (xs − xb)θ , (3)

where the fitting parameters are the decay exponent θ and
the blast origin xb. The decay exponents, fit before and af-
ter the kink [dashed lines in Fig. 4(a), θ = −0.143 in red,
θ = −0.378 in blue2], are found to be different from each
other despite the system only oscillating at period 1.

Plotted in Ḋ-D phase space, the two segments have similar
slopes [dashed lines in Fig. 4(b), −0.77 in red, −0.81 in blue].
Nevertheless, two distinct groups of timescales are formed,
expressed as Ḋ/D in Fig. 4(c), ranging continuously from
Ḋ/D = −0.11 to −0.074 at the start of the cycle, and from
Ḋ/D = −0.18 to −0.14 at its end. This simple model, forced
at a single period, recovers two decay exponents and two
clearly distinct groups of timescales.

There have been numerous investigations of the one-
dimensional dynamics of detonations using more complex
systems such as the Euler equations with single-step reac-
tions [3,4] and losses [29], the Navier-Stokes equations with
one step [5], and full chemistry [30,31]. In all cases, two
distinct groups of decay rates can be found in period-1 os-
cillations [30], in higher periods [4,29,30], and in the chaotic
behavior [30]. The phase diagram of Fig. 4(b) shows a slow
decay when the shock is strong and rapid decay when the
shock is weak. In the complex models, the fastest decay is
observed when the shock is strong. This phase shift might
be explained by the lack of reamplification phase in the sim-
plified model, but further study of the complex systems is
required.

The initial transient is plotted in Fig. 5 in the laboratory
frame of reference through snapshots of u and the reac-
tion front position. The uniform initial conditions [Fig. 5(a)]
of u = 0.5 behind the shock initially maintain the constant
shock speed Fig. 5(b)]. When the first pulse occurs at t = 1
[Fig. 5(c)], the reaction front is moved to the shock front,
strengthening it. The shock travels faster than before the pulse,
leaving the motionless reaction front behind [Fig. 5(d)]. There
is a jump in u across the reaction front, with a higher value
of u in the reactants than in the products. The same events
are repeated for the second pulse [Fig. 5(e)]. Additionally,
an expansion wave is created at the reaction front’s prepulse
location because the discontinuity in u is no longer supported

1Mi et al. [11] found that the averaged detonation velocity increas-
ingly exceeded the CJ velocity as the ratio of specific heats was
decreased.

2Both segments decay slower than an inert blast (θ = −1) would
decay. The other fitting parameters are xb = −1.36 (red) and xb =
−1.46 (blue).

FIG. 5. Profiles of u (solid, left axis) and the reaction front (at
the shaded/unshaded interface) in the laboratory frame of reference
during the initial cycles; expansion fan head (circle) and expansion
fan tail (square).

by the reaction front [Fig. 5(f)]. The head of this expansion
fan (the fastest portion of the rarefaction, circled in green)
travels towards the shock front and is amplified as it crosses
through the reaction discontinuity [Fig. 5(h)]. The head of the
rarefaction reaches the shock just before the third pulse and
begins to attenuate the shock [Fig. 5(i)]. The same events are
repeated at the third pulse [Fig. 5(j)]; however, the shock now
immediately decays because it is attenuated by the previous
pulse’s rarefaction. A regular oscillating cycle is soon formed.
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FIG. 6. Profiles of u (solid, left axis) and the reaction front (at the shaded/unshaded interface) over one regular cycle in a frame of reference
moving at DCJ; expansion fan heads from current (solid circle) and previous (dashed circle) cycles, and expansion fan tail (square); n = 99.

The regular cycle is shown in Fig. 6, plotted in the frame of
reference moving at DCJ with the origin located at the shock
at the beginning of the nth cycle. The shock front is located
on the right side and the reaction front moves to the left at a
speed DCJ in this frame of reference.

The nth cycle starts at a pulse, with the reaction front at the
shock [Fig. 6(a)]. A rarefaction wave forms at (x − xs,n) −
DCJ(t − tn) = −1, where the reaction front was located prior
to the pulse. The head of the rarefaction (solid circle) travels to
the right faster than its tail (square) and the shock speed. The
speed disparity between the head and tail forms the expansion
fan, i.e., the sloped segment seen between the square and
circle in Fig. 6(b). The fan originates when the jump in u that
was supported by the reaction front is abandoned at the pulse
because the reaction front moves to the shock after a pulse.

As time passes [Figs. 6(b), 6(c) and 6(d)], the spread be-
tween the head and tail of the rarefaction grows, the reaction
front falls further to the left of the shock, and the shock
strength us diminishes. The rarefaction head is amplified as
it crosses the reaction front [Fig. 6(e)]. The cycle terminates
[Fig. 6(f)] with the reaction front at the rear, supporting the
discontinuity in u that will become the next cycle’s expansion
wave. In the next cycle [returning to Fig. 6(a)], the head of
the previous expansion (dotted circle) continues to propagate
to the right and is amplified once more [Fig. 6(c)] before
reaching the shock. The head brings a change in the slope of
u, causing the shock to decay at a new rate.

The periodic creation of a rarefaction when the reaction
front moves to the shock drives the dynamics of the system.
The shock strength is amplified every pulse, then attenuated
by the arrival of the expansion wave at the front.

V. ANALYSIS

The flow can also be visualized by looking at a charac-
teristic diagram, shown in Fig. 7 once the regular oscillatory
behavior is reached. The characteristics are plotted (thin black
lines) in the frame of reference moving at DCJ. The charac-
teristics have slopes of dt/dx = 1/(u − DCJ). Characteristics
to the left of the limiting characteristic travel slower than the
average detonation speed and will never reach the detona-
tion front, whereas characteristics to the right of the limiting
characteristic eventually reach the front. The reaction fronts
(dotted red line segments) are angled to the left with slope
−1/DCJ in this frame of reference. Characteristics ahead of

FIG. 7. Characteristics diagram (black) and reaction front posi-
tion (red dotted line, reacted where shaded) over three periods of
the regular pulsating behavior; blue and green characteristics delimit
characteristics amplified twice from those amplified three times (n =
97).
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the detonation are omitted for clarity, but would form lines
parallel to the reaction fronts.

The expansion fan created at the beginning of each
pulse lies between the limiting characteristic and the char-
acteristic highlighted in green, centered at t = tn = n and
(x − xs,n) − DCJ(t − tn) = −DCJtp, where xs,n is the shock lo-
cation at the nth pulse. The green characteristic represents the
head of the rarefaction, the fastest characteristic in the expan-
sion fan. The characteristics in the fan have constant slope
(i.e., constant u) until they cross the reaction front, where
they are amplified and accelerate, seen by their change in
slope. The characteristics are amplified a second time as they
pass through the reaction front from the next pulse. The head
characteristic reaches the shock front around t ≈ n + 1.6.
However, not all of the characteristics from this fan reach the
front before the next pulse. The last characteristic to reach
the front before the n + 2 pulse is highlighted in blue. All
characteristics above the blue characteristic are amplified once
more before reaching the shock, more than two periods after
they were released.

Characteristics that are only amplified twice cause faster
decay than those amplified three times, leading to the two
distinct decay exponents of the shock speed. This timescale
separation of forward-facing pressure waves may be responsi-
ble for the period-doubling behavior of detonations.

The strength of the characteristics, times, and locations of
their amplifications can be found analytically thanks to the
simplicity of the model. An expansion fan is created at every
pulse at distance DCJtp behind the detonation front. From here,
each characteristic travels at a constant speed towards the
detonation front until it is amplified across the reaction front.
The amount of amplification across the reaction front is given
by the Rankine-Hugoniot jump condition

S =
[

1
2 u2 + 1

2 qλ
]

[u]
=

(
1
2 u2

r + 1
2 qλr

) − (
1
2 u2

l + 1
2 qλl

)
(ur − ul )

(4)

for a discontinuity with speed S.3 Subscripts l and r denote
the states to the left and right of the discontinuity. Since the
reaction front is immobile in the laboratory frame of reference
(S = 0), fully reacted to its left (λl = 1) and unreacted to its
right (λr = 0), the equation simplifies to

ur =
√

u2
l + q. (5)

Given the strength ul of a characteristic that enters the reac-
tion front from the left side, its amplified strength ur on the
right is known. This means the expansion fan created at each
pulse ranges from u = DCJ at the tail of the fan, where the
limiting characteristic is unamplified, to u =

√
D2

CJ + q at the
head where it is the strongest. The strength of intermediate
characteristics in the expansion fan, before their amplification

3Solving the Rankine-Hugoniot equation (4) for a CJ detonation
yields S = DCJ = √

q using the sonic condition ul = DCJ (and λl =
1, λr = 0, ur = 0); for a shock propagating into ur = 0 it yields S =
us
2 , where us is the post-shock state (and λl = λr = 0, ul = us, ur =

0).

at x = xs,n, is given by

u = x − xf

t − tf
(6)

where (xf , tf ) is the center of the fan.
At the nth pulse, a characteristic of strength u0 travels to-

wards the shock from its birth place (x0 = xs,n − DCJtp, t0 =
n). Along this characteristic, t = 1

u0
(x − x0) + t0 until it

reaches the reaction front at x = x1 = xs,n and the character-
istic is amplified to u1 =

√
u2

0 + q. The procedure is repeated
until the characteristic reaches the shock front. Generally, the
kth intersection between a characteristic and a reaction front
occurs at the point (xk, tk )

xk = xs,n + (k − 1)DCJtp, tk = t0 +
k−1∑
i=0

DCJtp√
u2

0 + iq
(7)

and amplifies the characteristic from u0 to

uk =
√

u2
0 + kq. (8)

Between the kth and k + 1 intersections, the characteristic
follows

t = 1

uk
(x − xk ) + tk for xk � x � xk+1. (9)

This procedure can be used to find the minimum and
maximum shock speed, for example. Consider the blue char-
acteristic which arrives at the shock exactly at a pulse. It is
the characteristic’s third intersection with the pulse (k = 3)
and the intersection occurs two pulses after its formation
(tk − t0 = 2tp). Substituting u0 from Eq. (8) into the time
equation of (7) gives

2tp = DCJtp√
u2

3 − 3q
+ DCJtp√

u2
3 − 2q

+ DCJtp√
u2

3 − q
, (10)

and solving numerically for u3 yields the characteristic
strength u3 = 2.113 at the shock immediately after the
pulse. Equation (5) is used to find its strength immediately
before the pulse, u2 = 1.862. The shock speed calcu-
lated from the Rankine-Hugoniot relation [Eq. (4)] yields
Dmin = u2

2 = 0.931 and Dmax = u3
2 = 1.057. This agrees with

the values obtained from simulations.
Now consider the time at which the green characteristic

(the head of the rarefaction) reaches the shock front. The head
characteristic initially has the strength of the limiting char-
acteristic amplified once, u0 =

√
D2

CJ + q = √
2, and travels

along the path given by Eq. (9) until it reaches the shock, after
being amplified twice (k = 2). Unfortunately there is no ana-
lytical expression for the shock position. It can be integrated
numerically but, for simplicity, assume the shock travels at
a steady velocity DCJ because the detonation deviates little
from the CJ velocity, as evidenced in Figs. 4(a) and 7. With
this assumption, the shock path follows t ≈ 1

DCJ
(x − xs,n) + t0.

The intersection of the two paths occurs

t ≈ t0 + DCJtp

(
1√
u2

0

+ 1√
u2

0+q
− 1√

u2
0+2q

)
1 − DCJ√

u2
0+2q

= 1.57 (11)
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pulses after the head characteristic is born, which agrees with
simulations. The analytic description accurately represents the
simplified detonation model.

VI. CONCLUSION

A simplified pulsating detonation model was studied using
the Fickett-Majda asymptotic model for detonations in the
limit of small heat release and the Newtonian limit; a periodic
reaction that instantaneously consumed all shocked gases was
implemented. The simple system was used to study the decay
behavior of pulsating detonations. The detonation was found
to travel at a pulse-averaged speed equal to the Chapman-
Jouguet velocity. The shock speed decay between pulses was
fit to a power law. Two decay exponents were found for each
oscillation due to a kink in shock speed. This is accompanied
by the presence of two distinct groups of timescales every
cycle, a feature present in period-2 detonations.

After each pulse, a strong expansion wave is created
at the last location of reaction front. A characteristic

investigation revealed that characteristics originating from the
head of this expansion take approximately 1.6 periods to reach
and attenuate the detonation front, while characteristics from
the tail take an additional period. The leading characteristics
are amplified twice by passing through subsequent reaction
fronts, before arriving at the shock, while the initially weaker
trailing characteristics are amplified three times. These dy-
namics produce a kinked velocity profile with two groups of
timescales. The two sets of timescales intrinsic to pulsating
detonations may be the source of period-doubling bifurcations
which lead to chaos in more complicated systems. Further
study is required to see how the dynamics described in this
study may contribute to the two distinct decay rates also seen
in more complex systems.
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