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Competition of overstability and stabilizing effects in viscoelastic thermovibrational flow
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Attention is paid to a specific form of thermal convection which encompasses viscoelastic and thermovibra-
tional effects in a single problem or framework. The main objective is understanding the relationship between
the phenomenon of overstability and periodic forcing through numerical solution of the governing equations in
their complete, time-dependent, and nonlinear form. Fluid motion is found for values of the control parameter
one order of magnitude smaller than the threshold to be exceeded in the equivalent Newtonian case. When
the disturbances saturate their amplitude, patterns emerge that are reminiscent of the superlattice structures
typical of complex order. In the present case, such peculiar modes of convection are driven by the coexistence
of two distinct spatial scales, each displaying a different temporal dependence, driven by the interplay of the
time-varying (stabilizing or destabilizing) acceleration induced by vibrations and the ability of the fluid to store
and release elastic energy.
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I. INTRODUCTION

Thermal convection driven by different forces is om-
nipresent in nature and technology [1–12]. Despite the
significant amount of results available for Newtonian fluids,
however, the finite-amplitude states of this kind of flows in
viscoelastic liquids have so far resisted an extensive and ex-
haustive analysis due to their inherent complexity and the
intrinsic difficulties associated with the solution of the gov-
erning equations (well-known problems resulting from the
existence of mathematical singularities which can jeopardize
the stability of numerical algorithms [13–18]).

Most of the current knowledge is due to the linear stability
analysis (LSA) approach. By virtue of these valuable studies,
it is known that the presence of elasticity can determine the
onset of convection from an initially quiescent state uniformly
heated from below for values of the governing parameter
(the so-called Rayleigh number) smaller than that needed to
induce fluid motion in an equivalent Newtonian medium. It
is also known that such modes of convection are generally
oscillatory (as opposed to the intrinsically stationary nature of
standard Rayleigh-Bénard convection emerging in nonelastic
fluids). The existence of these two distinct classes of solutions
simply reflects two fundamental instability mechanisms that
can be enabled to produce convection from a motionless state,
namely, either the so-called exchange of stabilities, where the
sign of a real stability exponent changes from negative to
positive as the control parameter is increased (just as in the
Newtonian case), or a concurrent process (known as oversta-
bility), where the real part of a pair of complex conjugate
stability exponents becomes positive on passage through crit-
icality.

*marcello.lappa@strath.ac.uk

Although the first LSA-based results for the idealized sit-
uation of an infinite layer date back to the work of Green
[19], Vest and Arpaci [20], and Sokolov and Tanner [21], nu-
merical simulations for cavities with finite size, based on the
direct solution of the overarching equations in their original
(nonlinear) form, have been produced much more recently. As
outlined above, indeed, these problems are still a challenging
task for numerical simulation and have instigated different
possible strategies of attack; these efforts have led to disjoint
glimpses of a broad range of qualitatively and quantitatively
different results in widely disjoint subregions of the parameter
space [22–36].

This lack of consistently obtained results becomes even
more evident if other types of thermally driven flows are con-
sidered, especially the variants of buoyancy convection where
(unlike standard gravity) the driving force is not constant and
varies in time. This is the case of so-called thermovibrational
convection, i.e., fluid motion induced in a nonisothermal fluid
by the application of vibrations (shaking a closed cavity
results in the fluid contained in it being subjected to an ac-
celeration that periodically changes its sign with the same
frequency of vibrations [37]). If such a container is consid-
ered in microgravity conditions, this is the only acceleration
effectively producing convection [2,6,7,38].

Unlike standard flows of thermogravitational nature (which
can be found in a plethora of natural and industrial terrestrial
processes), this specific form of fluid motion is extremely
relevant to the area of space research; indeed, interest in it has
sharply increased over recent years as a result of the advent
of new orbiting platforms, which have made relatively long
microgravity times available, and new technologies based on
standard and complex fluids possible (see, e.g., [39–43]).

Thermovibrational convection can occur in Newtonian
and viscoelastic liquids as well as in other complex fluids,
thereby further expanding the variety of possible spatiotempo-
ral phenomena. Notably, even if attention is limited to purely
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Newtonian fluids, modifications with respect to standard ther-
mogravitational flow are substantial and concern both the
structure of the flow and the related hierarchy of bifurcations
[44,45].

By virtue of existing studies for Newtonian fluids (see,
e.g., [2,4,6,7,40,46–54]), it has been clarified that in addition
to the values of the acceleration and imposed temperature
difference �T (contributing to the magnitude of the Rayleigh
number), other important influential factors must be sought in
the angle that the direction of shaking forms with the imposed
temperature gradient and the frequency (and amplitude) of
vibrations. In particular, the latter can be used to split the
range of possible solutions into two main branches, namely,
that of high frequency and small amplitude (also known
as Gershuni’s asymptotic regime [38,55–59]) and a second
regime corresponding to low frequencies and high amplitudes.
In the former, nonlinear effects associated with the (Navier-
Stokes and energy) equations governing fluid flow can enable
a significant steady component of fluid velocity (which can
typically be revealed by time averaging the velocity field),
whereas in the latter, the time-dependent response of the fluid
to the application of vibrations is dominant (the fluid moves
with the same frequency of vibrations as if it were driven by a
linear cause-and-effect relationship with the imposed forcing).

As shown by several investigators, if the asymptotic Ger-
shuni regime is attained, vibrations perpendicular to the
temperature gradient can produce interesting patterns [60–63]
and, vice versa, their main effect is that of suppressing any
form of convection if they are parallel to such a gradient [64].
However, the outcomes become dramatically different when
the complementary (opposite) regime with low frequencies
is considered. In this case, a variety of interesting states be-
come possible in Newtonian fluids if vibrations are parallel to
the temperature difference [65,66]. Their complexity should
essentially be regarded as a consequence of the interplay be-
tween the specific destabilizing and stabilizing effects that are
established in these circumstances.

While an appreciable amount of knowledge has been pro-
duced for Newtonian fluids (as evidenced by the literature
cited above), unfortunately, only a handful of results are
available for viscoelastic liquids. As an example, in the at-
tempt to shed some light on these behaviors, Lyubimova and
Kovalevskaya [67] investigated the case of an infinite layer
of viscoelastic liquid simultaneously subjected to a steady
and a time-varying acceleration (the steady and oscillatory
components having similar amplitude). Although different in-
teresting new physical mechanisms were identified, the root
dynamics driving these types of solutions is still largely un-
known. In particular, no studies have appeared where the
“pure” thermovibrational flow in viscoelastic fluids has been
examined (the only exception being that in [68] where the
focus however was on the situation with vibrations perpen-
dicular to the temperature difference for which overstability is
not a relevant mechanism).

This automatically results in two important issues or ques-
tions which need to be pinpointed suitably here: Is the
overstability concept still applicable to pure thermovibrational
convection? Moreover, it is unknown whether the mechanisms
supposed to be operative in the case of Newtonian fluids still
play a role in this case. Beyond the mere motivation to bridge

FIG. 1. Sketch of the geometry and scheme of the problem.

the above-mentioned gap, we are specifically interested in
pushing forward viscoelastic thermovibrational convection in
a shallow cavity as an archetypal problem to improve our fun-
damental understanding of the interesting aspects discussed
before.

II. MATHEMATICAL MODEL

As discussed in the Introduction, briefly stated, the prob-
lem is to determine how a relatively high level of elasticity
can interfere with the low-frequency branch of thermovibra-
tional convection when vibrations are parallel to the imposed
temperature gradient. From a mathematical point of view,
for simplicity, we model this problem as a parallelepipedic
shallow domain having a square symmetry (same size along
the x and z directions) and aspect ratio R = w/� = 15 (where
w represents the side of the bases and � is the related distance
along the y axis). The top and bottom boundaries are consid-
ered as solid no-slip walls (solid-solid configuration) having
fixed temperature (Dirichlet boundary condition) in such a
way that the difference of temperature �T = Th − Tc is main-
tained constant. Moreover, in order to mimic the behavior of
an infinite layer, cyclic boundary conditions are implemented
at the sides. A sketch of this configuration is shown in Fig. 1.

External vibrations are taken into account assuming that
the displacement evolution follows a sinusoidal motion law

s(t∗) = b sin(ωt∗)n̂, (1)

where b is the amplitude, ω is the angular frequency (ω =
2π f ), n̂ is the direction of the vibrations (in this work it is
fixed and parallel to the temperature gradient ∇T , as sketched
in Fig. 1), and the asterisk means that the quantities are in di-
mensional form. The resulting acceleration, that is, the second
derivative of the displacement, is

aω(t∗) = γ sin(ωt∗), (2)

where γ = −bω2n̂. This acceleration formally replaces the
steady gravitational acceleration g in the buoyancy term de-
rived with the Oberbeck-Boussinesq approximation.

At this stage, it is worth recalling that, unlike other forms of
natural convection, historically, the investigation of this topic
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has taken a peculiar path of progression due to the discovery
of the possibility to greatly simplify the inherent computa-
tional complexity. This potential simplification stems from the
aforementioned ability of these flows to develop a dominant
stationary response (in addition to the oscillatory one) in the
limit of high frequency and small amplitude of the imposed
vibrations. As a result of this peculiar property, alternate math-
ematical formulations (based on a potential-flow approach)
have been developed which are able to provide directly the
time-average component of the velocity with no need to deter-
mine the associated fluctuating one (relevant examples of this
modus operandi being the works in [38,51,55,57]). Notably,
several investigators could successfully use this strategy to an-
alyze thermovibrational flow in cavities with different aspect
ratio and vibrations orthogonal to the temperature gradient.

This formulation, however, is not suitable for the situation
in which vibrations are parallel to the imposed temperature
gradient. Moreover, it requires the flow to be in the Gershuni
asymptotic regime (which would actually limit the investiga-
tion to the condition for which this approximation is satisfied).

For these reasons, the fluid motion balance equations have
been solved here in their original formulations, which in di-
mensional form read

∇ · u∗ = 0, (3)

ρ
∂u∗

∂t∗ + ρ∇ · (u∗u∗) = −∇p∗ + ηs∇2u∗ + ∇ · τ̃∗

+ ρβT (T − Tref )aω(t∗), (4)

∂T ∗

∂t∗ = −∇ · (u∗T ∗) + α∇2T ∗, (5)

where t∗ is the time, u∗ is the velocity, T ∗ is the temperature,
p∗ is the pressure, ρ is the density of the fluid, ηs is the
dynamic viscosity of the solvent (see the later discussion for
additional information on this specific point; obviously, if a
Newtonian fluid is considered, ηs = η, i.e., ηs will account for
the total viscosity of the fluid), βT is the thermal expansion
coefficient, and α is the thermal diffusivity. Eventually, τ̃∗
represents the extra-stress tensor due to the viscoelasticity of
the fluid.

In order to get closure of this problem from a mathematical
point of view, it is crucial to model τ̃∗ as a function of other
fluid-dynamics quantities. This relationship can be obtained
using different rheological frameworks. In the present study,
we adopt the well-known model based on the assumption that
the viscoelastic liquid is a combination between a Newtonian
solvent, having dynamic viscosity ηs, and a polymeric solute,
having dynamic viscosity ηp. Moreover, with this approach,
the polymeric part, which from a physical point of view con-
sists of long polymeric chains, is schematized as two beads
linked by a spring. This assumption is at the root of the so-
called dumbbell paradigm, able to describe adequately a class
of liquids known as Boger fluids, i.e., highly elastic solutions
that show a constant viscosity over a wide range of shear rate.
These fluids are characterized by a total dynamic viscosity
η0 = ηs + ηp. Accordingly, two mutually dependent dimen-
sionless groups related to the viscosity can be defined, i.e.,
the solvent-to-total viscosity ratio ξ = ηs/η0 and the viscosity
ratio ζ = ηp/ηs [ζ = (1 − ξ )/ξ ].

There are several variants that have originated from the
dumbbell paradigm; however, the Oldroyd-B model has been
the most widespread archetype for the investigation of thermal
convection (see, e.g., [36,69,70]). Moreover, this framework
has been used to tackle thermal convection with modulated
gravity in the work by Lyubimova and Kovalevskaya [67].
Therefore, to be consistent with the existing literature and
be able to compare our three-dimensional (3D) results with
previous 2D or LSA studies, we intentionally rely on the
Oldroyd-B paradigm for the investigation of the present prob-
lem. Accordingly, the transport equations of τ̃∗ can be cast in
compact dimensional form as

λ

(
∂ τ̃∗

∂t∗ + u∗ · ∇τ̃∗
)

+ τ̃∗

= ηp[∇u∗ + (∇u∗)ᵀ] + λ[τ̃∗ · ∇u∗ + (∇u∗)ᵀ · τ̃∗], (6)

where λ is the relaxation time.
The nondimensional form of Eqs. (3)–(6) is obtained in

the present work by scaling the length with the depth � of
the layer, the velocity with α/�, the time with �2/α, the
frequency with α/�2, the pressure with ρα2/�2, the temper-
ature with �T = Th − Tc, and the extra-stress tensor τ̃∗ with
ρνsα/�2. Here νs is the kinematic viscosity of the Newtonian
solvent (νs = ηs/ρ). Therefore, the nondimensional balance
equations in their time-dependent nonlinear form read

∇ · u = 0, (7)

∂u
∂t

= −∇p − ∇ · (uu) + Pr∇2u + Pr∇ · τ̃

− PrgRaωT sin(�t )n̂, (8)

∂T

∂t
= −∇ · (uT ) + ∇2T, (9)

ϑ

(
∂ τ̃

∂t
+ u · ∇τ̃

)
+ τ̃ = ζ [∇u + (∇u)ᵀ]

+ ϑ[τ̃ · ∇u + (∇u)ᵀ · τ̃]. (10)

As the reader might have realized at this stage, putting the
equations in this form naturally leads to the introduction of
some additional relevant nondimensional numbers (ζ and ξ

have been previously defined), namely, the Prandtl number
for the Newtonian solvent Pr = νs/α, a generalized version
of this parameter for the viscoelastic fluid Prg = Pr/ξ , the
nondimensional frequency � = �2ω/α, the elasticity number
ϑ = λα/�2, and the vibrational Rayleigh number

Raω = bω2βT �T �3

ν0α
, (11)

where ν0 = η0/ρ is the total kinematic viscosity. The
Rayleigh number introduced here is a variant of the classical
Rayleigh number traditionally used to characterize standard
buoyancy convection. The expression is the essentially the
same; however, the steady gravitational acceleration is re-
placed by the amplitude of the acceleration induced by the
considered monochromatic (single frequency) vibrations.

It is now worth recalling that the elasticity number (see
[27,36,69]), just like the equivalent Deborah number (see, e.g.,
[35]), represents the ratio between two characteristic times,
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i.e., the characteristic time of the polymer molecules dynamics
(λ) and the thermal diffusion time (tα = �2/α). However, it
should also be recalled that, for the case of thermovibrational
convection, another timescale is involved, i.e., that of the
considered external forcing: The nondimensional frequency �

can also be seen as a ratio between the period of oscillations
T ∗

ω = 2π/ω and tα up to a multiplicative constant 2π . Given
these arguments and following the same rationale as in [68],
therefore, we also introduce �, i.e., the ratio of the relaxation
time λ and T ∗

ω :

� = λ

T ∗
ω

= ϑ�

2π
. (12)

Although these three nondimensional times are interwoven
and thus ϑ and � would be sufficient for a complete char-
acterization of the problem, we will also use the parameter �

given its ability to account for the relative importance of other
concurrent physical effects.

III. NUMERICAL METHOD

The numerical procedure used in this study relies on the
discretization of Eqs. (7)–(10) over the computational domain
through a segregated finite volume method (as available in
OpenFOAM). In particular, the exploited algorithm [pressure
implicit with splitting of operators (PISO)] pertains to the
general category of primitive-variable techniques originally
introduced in [71–73] and improved over the years by many
other researchers (see, e.g., [74–77]). It solves the set of bal-
ance equations interpolating the unknowns on a colocated grid
though the scheme of Rhie and Chow [78].

The reason we have not used other methods such as PIMPLE

[79] (generally faster than PISO) for the present simulations
is the following: In this specific problem, the time step is
constrained by two different aspects: (i) the frequency of the
vibrations and (ii) the stability of the viscoelastic model (not
related to the classical Courant number). The time step must
be sufficiently small to avoid aliasing with respect the external
vibrations and to guarantee stability of the time-marching
algorithm at the same time. For these reasons, the advantages
associated with other computational variants (such as PIMPLE)
become irrelevant (while related drawbacks, such as the in-
creased computational cost, would be retained).

For the practical implementation of the PISO approach,
the diffusive and convective terms appearing in the different
equations have been discretized here using a central difference
scheme (CDS) accurate to second order. However, the CDS
has been replaced with the MINMOD variant for the specific
solution of Eq. (8). This work-around has been introduced to
mitigate some of the known numerical difficulties related to
viscoelastic fluids and ensure stability of the numerical proce-
dure over a wide range of parameters. Nonetheless, to further
improve the algorithm stability, following the methodology of
Favero et al. [80], Eq. (8) has been implemented numerically
as

∂u
∂t

+ ∇ · (uu) − Pr(1 + ζ )∇2u

= −∇p − Prζ∇2u + Pr∇ · τ̃ − PrgRaωT sin(�t ). (13)

With such a strategy, generally referred to in the litera-
ture as the discrete elastic-viscous split-stress method (see,
e.g., [81]), an extra diffusive term Prζ∇2u is added at the
left- and right-hand sides of Eq. (8). Hence, from a purely
mathematical point of view, Eqs. (8) and (13) are equiva-
lent. Nevertheless, to increase appreciably the ellipticity of
the momentum equation and therefore improve the numerical
stability of the time-marching procedure, one extra term is
discretized in an implicit way while the other is implemented
explicitly. The beneficial stabilization stems from the fact
that the different treatment of the right- and left-hand-side
terms produces a quantitatively negligible numerical diffusion
which however appreciably improves the robustness of the
solver.

A. Validation

The scope of the validation process is to verify the ability
of the numerical procedure to capture and predict the onset of
relevant fluid-dynamics instabilities. An extensive discussion
of the several tests used to validate the solver described earlier
in this section is available in [27,68]. Good agreement with the
existing literature was found for both isothermal-fluid bench-
marks (where the emerging instabilities are entirely elastic in
nature) and nonisothermal-fluid conditions (Rayleigh-Bénard
convection).

For the convenience of the reader, here we limit our-
selves to recalling (briefly) the outcomes of the comparison
with the linear stability analysis by Martinez-Mardones and
Perez-Garcia [70] for the onset of standard Rayleigh-Bénard
convection in a layer of Oldroyd-B fluid with Prg = 10, ξ =
0.5, and ϑ = 0.1. The LSA estimates that the bifurcation
from a quiescent to an unsteady state occurs at Ra = 1700 if
solid-solid boundary conditions are applied to the layer. This
bifurcation is subcritical (overstability) and the emerging flow
oscillates with an angular frequency ω̃ = 4.63. Through 2D
nonlinear simulations and using a mesh having 4500 elements,
we calculated the value of ω̃ for different values of Ra. Extrap-
olating with a quadratic law ω̃ to Ra = 1700, we obtained a
value of the angular frequency that differs by approximately
2% from the one predicted by the linear stability analysis.

Given the range of values of the elasticity parameter
considered in the present analysis, as an additional step of
validation, we have considered comparison with the recent
work (LSA) by Lyubimova and Kovalevskaya [67]. These
authors focused on buoyancy convection in a horizontal layer
of Oldroyd-B fluid with free-free boundary conditions sub-
jected to vibrations [the problem therefore being equivalent
to considering an acceleration aω(t ) added to the steady
gravitational acceleration g]. Moreover, they used a square
wave as the external acceleration profile. Accordingly, for the
present nonlinear unsteady simulations, the acceleration has
been modeled using the function

aω(t∗) = γ tanh(10 sin(ωt∗)), (14)

leading to rewrite the buoyancy term appearing in the momen-
tum equation (in dimensional and in nondimensional form,
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TABLE I. Comparison with the linear stability analysis by Lyu-
bimova and Kovalevskaya [67] for a layer of viscoelastic fluid
delimited by top and bottom stress-free walls with Prg = 7, � =
26.5, � = 1, ξ = 0.1, and ϑ = 0.38 (� = 1.6). The present results
have been obtained using a structured mesh (2D simulation) with
14 350 nodes and a domain having nondimensional horizontal exten-
sion 15 with periodic boundary conditions at the lateral boundaries.
Here A is the nondimensional amplitude of the (axial) velocity signal
in the center of the layer.

Ra A

100 4.60
110 6.45
120 7.98
130 9.28
79.5a 0
84b 0

aExtrapolated.
bLSA.

respectively) as

B(t∗) = ρgβ(T ∗ − T ∗
0 )

(
1 + bω2

g
tanh(10 sin(ωt∗))

)
îg

(15)
and

B(t ) = RaT [1 + � tanh(10 sin(�t ))]îg, (16)

where Ra is the classical Rayleigh number based on the steady
gravitational acceleration, � = bω2/g is the nondimensional
amplitude of the oscillatory acceleration, and îg is the direc-
tion of the gravitational acceleration. Moreover, the condition

{[∇u + (∇u)ᵀ] + τ̃} · n̂B = 0 (17)

has been assumed for the top and bottom boundaries, where
n̂B is the unit vector perpendicular to the boundary. For Prg =
7, � = 26.5, � = 1, ξ = 0.1, and ϑ = 0.38, Lyubimova and
Kovalevskaya [67] found a critical value of the Rayleigh num-
ber for the onset of buoyancy convection of Rac ≈ 84.

Following the same approach already undertaken in our
previous analysis [68], here we report the nondimensional
amplitude A of the unsteady convective state for different
values of Ra and the value of Rac obtained through (quadratic)
extrapolations of A to 0 (Table I). Even in this case it is
straightforward to verify the good agreement between our
calculations and the data available in the literature. Along the
same lines, we wish to recall that in [68] we found Rac ≈ 472
for ϑ = 0.06, the corresponding value determined in [67] be-
ing Rac ≈ 470. The reader will find further details concerning
the validation of the thermovibrational solver for Newtonian
fluids in [66].

B. Mesh refinement study

In the present work we consider a 3D geometry. Since
conducting a grid independence study would be extremely
expensive from a computational point of view, following a
common practice in the literature, the mesh refinement study
has been (initially) limited to the equivalent 2D configuration

TABLE II. Mesh refinement study for the case with Prg = 7, � =
26.5, Raω = 1170, ϑ = 0.38, � = 1.6, and viscoelastic fluid.

Mesh Auy Nu

150 × 30 24.46 1.13
150 × 35 24.73 1.14
200 × 30 26.67 1.15
200 × 35 27.15 1.15
300 × 35 29.52 1.18
410 × 35 31.23 1.21
450 × 40 31.87 1.22

(assumed to have infinite extension along the third direction
z). Such a modus operandi relies on the realization that since
the considered 3D problem is isotropic with respect to the
horizontal direction (i.e., no preferred direction exists in the
xz plane), the required grid resolution for the x direction can
also be considered valid for the perpendicular direction z.

As sensitive quantities for such investigation, we have an-
alyzed the amplitude Auy of the y component of the u signal
measured with a virtual probe located in the center of the layer
and the time-average value of the Nusselt number [defined
by Eq. (19)] for the following set of representative parame-
ters: viscoelastic fluid with Prg = 7, � = 26.5, Raω = 1170,
ϑ = 0.38, and � = 1.6. As quantitatively substantiated by the
data reported in Table II, a mesh with 300 × 35 cells can
provide a reasonable level of grid independence. Indeed, when
the number of points in the horizontal direction exceeds 300,
the solution becomes essentially independent of the mesh (the
percentage variations for a variation of 100 points being 5%
only for the instantaneous velocity and less than 3% for the
average Nusselt number, a reasonable approximation from an
engineering standpoint).

In order to verify the applicability of these findings to the
complete (original) problem, the study has also been repeated
considering a 3D parallelepipedic shallow domain having a
square symmetry (yet referring to both the velocity signal and
the Nusselt number). As evidenced by Fig. 2, apart from a
small vertical shift in the position of the curves, a change in
the mesh has no impact on the system temporal response. The
same conclusion also stems from Fig. 3, where the 3D pattern

FIG. 2. Time evolution of the Nusselt number for two different
densities of the mesh, 200 × 35 × 200 (black line) and 300 × 35 ×
300 (blue line), and the qualitative evolution of the acceleration (red
line), from 3D simulations.
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FIG. 3. 3D isosurfaces of the axial velocity for the case with
Prg = 7, � = 26.5, Raω = 1170, ξ = 0.1, ϑ = 0.38, t = 14.92, and
(a) mesh 200 × 35 × 200 and (b) mesh 300 × 35 × 300.

(system behavior in space) is shown for the same conditions
of Fig. 2.

Taking into account the main implications of Figs. 2 and
3, in the present work most of the simulations have been con-
ducted using a grid with 200 × 35 × 200 cells (a reasonable
compromise between accuracy and the required simulation
time).

IV. RESULTS

The present study may be regarded in a certain way as an
extension of the earlier work by Lyubimova and Kovalevskaya
[67]. While in that analysis emphasis was given to the influ-
ence exerted by vibrations on Rayleigh-Bénard convection for
a comparable magnitude of the involved accelerations (steady
gravity and bω2), here we focus on pure thermovibrational
flow. Moreover, we continue the line of inquiry originating
from that work by probing the role of solid-solid boundary
conditions and a different shape of the forcing wave (si-
nusoidal vibrations being considered in place of the square
wave).

As assessing 3D effects against numerical simulations
conducted under the constraint of two-dimensionality is al-
ways beneficial (actually the history of thermal convection is
full of examples where focused comparisons of such a kind
were instrumental in clarifying the nature of the dominant
disturbances and possible regimes of motion), we initially
discuss some simulations carried out neglecting the z direction
(see Sec. IV A; the third dimension is reintroduced later in
Sec. IV B, which is entirely dedicated to the presentation and
critical analysis of the related results). On the one hand, this
modus operandi is intentionally implemented to discern the

TABLE III. Extrapolation of the critical vibrational Rayleigh
number Raω,cr for a layer of viscoelastic fluid delimited by differen-
tially heated solid-solid walls with Prg = 7, � = 26.5, and ξ = 0.1.
The present results have been obtained using 2D simulation and a
domain having R = 15 with cyclic boundary conditions at the lateral
boundaries.

ϑ Raω,cr

Newtonian 16070
0.06 3245
0.24 1207
0.38 956

ability of the flow to develop 3D components of velocity when
the disturbances saturate their amplitude. On the other hand,
it fits into a more practical strategy where 2D simulations are
used to determine the critical threshold for the onset of fluid
motion (known to be driven by two-dimensional disturbances)
with notable computational savings.

In particular, we consider a layer of an Oldroyd-B liquid
having Prg = 7 and ξ = 0.1 subjected to external vibrations
with a frequency � = 26.5 (low-frequency regime). Three
different levels of elasticity are examined, i.e., ϑ = 0.06, 0.24,
and 0.38, corresponding to values of � = 0.25, 1.01, and 1.6,
respectively.

A. Two-dimensional results and critical convective threshold

This section is dedicated to the aforementioned 2D study
by which the value of the critical vibrational Rayleigh number
Raω,cr is computed for any considered value of the elasticity
number ϑ . In particular, in order to mimic the typical approach
envisaged by LSA (as already done in Sec. III A to support the
validation of the present solver), the needed threshold values
are determined by extrapolating the amplitude A of probe
signals to 0. For this purpose, a grid with 410 × 35 nodes is
used. The ensuing results are presented in Table III.

As quantitatively substantiated by this table, the critical
threshold for the onset of convection strongly depends on the
level of elasticity (ϑ). As expected, in accordance with other
studies on Rayleigh-Bénard (RB), Marangoni-Bénard (MB),
and Marangoni or thermocapillary convection in viscoelastic
liquids [30,35,36,70,82,83], the bifurcation occurs at lower
values of the governing parameter (in this case Raω,cr) for
more elastic fluids. Interestingly, there is a shift of one order of
magnitude if the results for Newtonian and viscoelastic fluids
are compared [i.e., from O(104) to O(103)].

In order to correlate our results for different values of ϑ

(the simulations with Newtonian fluid may be seen as the limit
of ϑ → 0), we define a new parameter r = Raω/Raω,cr, i.e.,
the ratio between the effective Raω used for the numerical
simulation and the corresponding critical value (the one deter-
mined through extrapolation, reported in Table III). To fix the
ideas, throughout the present study, this ratio is set to r ≈ 1.2
(in other words, all the presented results exceed the critical
threshold by a similar percentage).

Specific characterization of all these states is provided
through the introduction of suitable quantities used to assess
the “response” of the system from both fluid-dynamics and
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thermal points of view. More precisely, we consider an axial
velocity signal (the probe being located in the center of the
cavity) and the time evolution of the Nusselt number Nu(t )
defined as

Nu(t ) = 1

A

∫
A
∇T (t ) · nplatedA, (18)

where nplate in the unit vector normal to the boundary and A
is the area of the hot (or cold) plate (of course, in the case
of 2D simulations the area A simply reduces to the length of
the plate). In addition, we introduce the time-average Nusselt
number Nu by averaging the value of Nu(t ) over its period of
oscillation TNu:

Nu = 1

TNu

∫
TNu

Nu(t )dt . (19)

Following a logical approach, we conveniently start from
the analysis of the velocity signals. Moreover, the Newtonian
case is considered first (expected to be simpler in comparison
to the cases where overstability enters the dynamics). This
is shown in Fig. 4(a), where the typical behavior with the
fluid oscillating continuously between a quiescent state and
convective motion can be recognized. This is in agreement
with known solutions for square cavities (see, e.g., [65,66]).
These peculiar dynamics are due to the continuous transi-
tion from stabilizing (heating from above) to destabilizing
(heating from below) effects as the external dynamic force
(resulting from the application of vibrations) changes its sign.
As witnessed by the velocity signal spectrum [Fig. 5(a)], this
periodic alternation has the same frequency as the external
vibrations �. Therefore, the state shown in this figure can
be categorized as a synchronous-periodic (SP) one [65,66].
Further confirmation of this interpretation stems from the
evolution in time of the Nusselt number Nu(t ) [Fig. 6(a)].
When the fluid is in quiescent conditions, thermally diffusive
conditions are established and accordingly Nu(t ) = 1.

The situation dramatically changes when the viscoelastic
conditions are considered [see Figs. 4(b)–4(d)]. As the reader
will easily realize by inspecting these figures, no time interval
exists where quiescent conditions are attained (Figs. 4 and 6).
Moreover, as one would expect in light of the arguments pro-
vided before, for ϑ = 0.24 and 0.38, Nu(t ) is always higher
than one.

Another notable modification in the dynamics concerns the
frequency spectrum. The simple correspondence between the
forcing frequency and the frequency of the induced velocity
field is no longer a feature of these solutions. As evident in
Fig. 5, the flow displays frequencies that are lower than the
frequency of the imposed force (e.g., �/2). The behavior can
therefore be classified as half-subharmonic (SU) (see [66] and
references therein).

Interestingly, even if the velocity spectrum is different for
the two types of fluid, the Nusselt number spectrum (for the
sake of brevity, not reported) indicates that Nu(t ) exhibits a
SP evolution in all the cases analyzed (which indicates that
the SU components of the temperature gradient at the wall
reciprocally compensate when they are integrated).

The time-average Nusselt number Nu also provides mean-
ingful information. For the Newtonian fluid, Nu = 1.16; it
however increases to Nu = 1.22 for ϑ = 0.06 and Nu = 1.24

FIG. 4. Time evolution of the axial velocity signal. The probe
is located in the center of the layer. The numerical simulation is
with R = 15, Prg = 7, � = 26.5, ξ = 0.1, and (a) Newtonian fluid
and Raω = 19 750, (b) ϑ = 0.06 and Raω = 3500, (c) ϑ = 0.24 and
Raω = 1475, and (d) ϑ = 0.38 and Raω = 1170. The black line
represents the signal and the red the evolution of aω.

for ϑ = 0.24. Further increasing ϑ has the effect of making
Nu smaller (Nu|ϑ=0.38 = 1.21).

It can therefore be concluded that, for a viscoelastic fluid,
the heat exchange due to convective phenomena is more ef-
fective (NuNewt < Nuvisc). An explanation or justification for
this trend can be elaborated in its simplest form on the basis
of the argument that when overstability takes place, there are
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FIG. 5. Angular frequency of the axial velocity signal. The probe
is located in the center of the layer. The numerical simulation is
with R = 15, Prg = 7, � = 26.5, ξ = 0.1, and (a) Newtonian fluid
and Raω = 19 750, (b) ϑ = 0.06 and Raω = 3500, (c) ϑ = 0.24 and
Raω = 1475, and (d) ϑ = 0.38 and Raω = 1170.

no transitional stages where the fluid is quiescent or thermal
diffusive conditions are established.

As viscoelastic fluids are characterized by intrinsic 3D
patterning behavior when the disturbances saturate their am-
plitude (see, e.g., [27]), the next section is entirely dedicated
to the presentation of the related 3D nonlinear simulations.

B. Three-dimensional patterning behavior and evolution

A simple rationale for the expected 3D nature of the
emerging flow when the constraint of two-dimensionality
is removed can be gathered from the companion problem
related to the Rayleigh-Bénard convection in a viscoelastic
fluid. While in the Newtonian case it is well known that the
dominant flow structure in an infinite layer (or a sufficiently
shallow enclosure) is simply given by a set of perfectly par-
allel rolls, convection in viscoelastic fluids is generally three
dimensional even if relatively small values of the Rayleigh
number are considered. As an example, we [27] have shown
that the patterning behavior consists of parallel convective
rolls that continuously break and reassemble in a direction
orthogonal to the initial one (this mechanism being periodic
in time).

Following the same approach undertaken in Sec. IV A,
however, first we consider the limiting condition of ϑ → 0,
that is, the Newtonian liquid. In this regard, we wish also to re-
mark that in the present study all the 3D simulations (for both
Newtonian and Oldroyd-B fluids) have been conveniently
initialized by remapping the 2D solutions in the equivalent
3D geometry. Obviously, this approach relies on the crucial
information provided by earlier LSA studies, i.e., that the
disturbances are two dimensional at the onset of convection
and then they progressively become three dimensional as they

FIG. 6. Time evolution of Nu(t ). The numerical simulation is
with R = 15, Prg = 7, � = 26.5, ξ = 0.1, and (a) Newtonian fluid,
Raω = 19 750, and Nu = 1.16; (b) ϑ = 0.06, Raω = 3500, and
Nu = 1.22; (c) ϑ = 0.24, Raω = 1475, and Nu = 1.24; and (d) ϑ =
0.38, Raω = 1170, and Nu = 1.21. The black line represents Nu(t )
and the red the evolution of aω.

saturate their amplitude (a concept which applies to buoyancy
flow in both Newtonian and viscoelastic fluids [67]).

The first figure of the sequence related to the 3D results
(Fig. 7) shows the time evolution of the Newtonian fluid over
half of the period of oscillation T�/2 (the second half of
the period is not represented as it simply corresponds to a
motionless state). A kind of pulsation occurs in the thermal
and velocity fields. In particular, it can be seen that the initial
diffusive state [Fig. 7(a)] is destabilized by the vibrations,
which promote the onset of convection. Quasilongitudinal
rolls arise and grow until they reach a certain (maximum)
dimension and intensity [Fig. 7(b)]. At this stage, a pulsat-
ing behavior is enabled, as evidenced by Fig. 7(c), where a
decrease in the strength of convection can be noticed due to
the stabilizing effect of the vibrations, which in the meantime
have changed direction, thereby tending to promote a new
diffusive (quiescent) state. The rolls then reemerge with the
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FIG. 7. Thermovibrational convection in a layer of Newtonian
fluid delimited by differentially heated solid walls (snapshots of the
isosurfaces of the y component of velocity evenly distributed over the
first half period T�), with Pr = 7, � = 26.5, and Raω = 19 750.

same arrangement that they were displaying in Fig. 7(b) but
with a different sense of rotation [Fig. 7(d)].

This behavior has a one-to-one correspondence with the
velocity signal. Put simply, for both the 2D [see Fig. 4(a)]
and the 3D case (not reported here due to the similarity
with the 2D data) a negative spike can be detected in the
velocity signal. It corresponds to the aforementioned pulsation
mechanism supported by a switch in the role of the dominant
acceleration (from destabilizing to stabilizing). As expected,
this simple temporal behavior, which in the literature is also
referred to as a standing wave, becomes more involved when
the Newtonian fluid is replaced by the equivalent viscoelastic
liquid [with the same Prg and r (see Figs. 8–14)].

Given the complexity of the overall scenario, recalling
briefly the trends already identified in the framework of the

FIG. 9. Thermovibrational convection in a layer of Oldroyd-B
fluid delimited by differentially heated solid walls (snapshots of the
isosurfaces of the vertical component of velocity evenly distributed
over the interval I2), with Prg = 7, � = 26.5, Raω = 3500, ξ = 0.1,
and ϑ = 0.06.

propaedeutical 2D analysis (Sec. IV A) is also beneficial. As
explained in that section, the convective phenomena that arise
when ϑ is not zero can display a SU response to the harmonic
action of the buoyancy force, i.e., the angular frequency of
the thermal and fluid-dynamics fields can be �/2. To fully
understand the physical implications of this type of behavior,
for instance, one may consider the velocity field u(t ). By
denoting by t0 the time at which flow sampling is started
and recalling that T� = 2π/� is the period of the external
vibrations, a SU behavior may be considered equivalent to
stating that u(t0) = u(t0 + 2T�). In order to fully characterize
or describe the system response in this case, it is therefore con-
venient to split ideally the oscillation period of the flow into
four identical subintervals. In the following we will refer to

FIG. 8. Thermovibrational convection in a layer of Oldroyd-B fluid delimited by differentially heated solid walls (snapshots of the
isosurfaces of the vertical component of velocity evenly distributed over the interval I1), with Prg = 7, � = 26.5, Raω = 3500, ξ = 0.1,
and ϑ = 0.06.
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FIG. 10. Thermovibrational convection in a layer of Oldroyd-B fluid delimited by differentially heated solid walls (snapshots of the
isosurfaces of the vertical component of velocity evenly distributed over the interval I3), with Prg = 7, � = 26.5, Raω = 3500, ξ = 0.1,
and ϑ = 0.06.

these as I1 = [t0, T�/2], I2 = [T�/2, T�], I3 = [T�, 3/2T�],
and I4 = [3/2T�, 2T�].

Along these lines, Fig. 8 illustrates the evolution of the
axial velocity (isosurfaces) in I1 for ϑ = 0.06 in the 3D case.
It can be immediately seen that, interestingly, parallel rolls are
no longer an emerging property of the flow. The parallel-roll-
based structure is indeed taken over [Fig. 8(a)] by a different
(latticelike) organization. While cold fluid moves from the
cold plate towards the hot one, it is interrupted by localized
islands of rising (hot) fluid. The isosurfaces of positive and
negative axial velocity form two lattices of cold and hot fluid,
perfectly entangled with one another.

As time passes, the aforementioned islands tend to split
[Fig. 8(b)]. A careful analysis of this mechanism (for the
sake of brevity, not illustrated in this study) has revealed that
this phenomenon is caused by the nucleation of additional

cold plumes in proximity to the cold plate. The currents of
hot fluid eventually merge together and form a lattice mirror
symmetric with respect to the one described at the beginning
of the evolution [Fig. 8(c)].

In this regard, an analogy might be established with the
earlier findings by us in [68]. Although obtained under the
constraint of two-dimensionality [finitely extensible nonlin-
ear elastic Chilcott-Rallison (FENE-CR) fluids evolving in a
vibrated square cavity], those results revealed the nucleation
of plumes or eddies close to the solid boundaries, which
therefore should not be regarded as an exclusive prerogative
of the dynamics reported here.

This pulselike behavior is retained throughout I1; however,
as the aforementioned stabilizing phase is approached, the
intensity of the velocity field decreases progressively until at
the end of the interval [Fig. 8(h)] an almost diffusive state is

FIG. 11. Thermovibrational convection in a layer of Oldroyd-B fluid delimited by differentially heated solid walls (snapshots of the
isosurfaces of the vertical component of velocity evenly distributed over the interval I1), with Prg = 7, � = 26.5, Raω = 1475, ξ = 0.1,
and ϑ = 0.24.
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FIG. 12. Thermovibrational convection in a layer of Oldroyd-B
fluid delimited by differentially heated solid walls (snapshots of the
isosurfaces of the vertical component of velocity evenly distributed
over the interval I2), with Prg = 7, � = 26.5, Raω = 1475, ξ = 0.1,
and ϑ = 0.24.

attained. Another key observation concerns the lattice struc-
ture seen in Fig. 8(c), which with time is taken over by a
checkerboardlike pattern.

Figure 9 refers to the next subinterval I2. This figure is use-
ful as it reveals that the flow field keeps pulsating [Figs. 9(a)
and 9(b)] until, at the end of this second phase, the intensity
of the velocity field starts to increase again [Fig. 9(d)]. In this
part of the time advancement it is evident that the layer dis-
plays a diffusive behavior in a subset of the interval (revealed
by both the patterning behavior [Fig. 9(c)] and the evolution of
Nu(t ), not reported here for the 3D case due to the similarity
to the 2D data of Fig. 6).

The next figure of the sequence (Fig. 10) illustrates what
happens when the third subinterval is entered. As a fleeting
glimpse at this figure would confirm, the pattern evolution

FIG. 14. Thermovibrational convection in a layer of Oldroyd-B
fluid delimited by differentially heated solid walls (snapshots of the
isosurfaces of the vertical component of velocity evenly distributed
over the interval I2), with Prg = 7, � = 26.5, Raω = 1170, ξ = 0.1,
and ϑ = 0.38.

is similar in I1 and I3. Eventually, in the interval I4 the
phenomena are almost identical to those seen in I2 and, for
the sake of brevity, we omit the related description here.

An increase in the elasticity parameter (ϑ = 0.24) does not
lead to substantial changes in the dynamics. By inspecting
Fig. 11(a), however, a new feature can be highlighted: The
interconnection between the different islands of hot fluid tends
to become more evident (they form a kind of net). Moreover,
the morphology of the islands is slightly different (their inner
boundary is no longer circular and resembles the shape of
a heart). The evolutionary progress in time is still similar
to that described before; e.g., in Fig. 11(b) the small rolls
transporting cold fluid in proximity to the cold wall are visible.
The intensity of the velocity still undergoes a decrease after
some time, but less than in the previous case.

FIG. 13. Thermovibrational convection in a layer of Oldroyd-B fluid delimited by differentially heated solid walls (snapshots of the
isosurfaces of the vertical component of velocity evenly distributed over the interval I1), with Prg = 7, � = 26.5, Raω = 1170, ξ = 0.1,
and ϑ = 0.38.
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Eventually, in Fig. 11(c) the inversion of the flow axial
direction takes place. At this stage, however, things become
more complex. Indeed, the hot fluid plumes that are now
detached one from each other start merging in proximity to
the cold boundary, pushing the cold fluid to the hot plate (and
vice versa) [see Figs. 11(d) and 11(e)]. The hot fluid close to
the cold wall is therefore cooled, the intensity of the veloc-
ity field becomes lower, and new cold plumes tend to form
again.

Two other “inversions” take place from Figs. 11(e) to
11(h); however, upon approaching the time interval I2, the
amplitude of u decreases. It is also worth observing that
now, at the end of I1, the flow field still displays convective
structures. This means that, unlike the case with ϑ = 0.06,
convection is not suppressed (Fig. 12). In particular, in I2

small pulsations of the rolls are still present. However, this
oscillatory mechanism is limited to a weak modulation of
the magnitude of the velocity field, which never changes its
sign. Put differently, the modulation is not strong enough to
cause the inversion of the velocity. At the end of I2 a situation
similar to the one described in the previous case is attained
[u(t0, x) = u(t0 + T�, x + a), where the generic vector a sim-
ple accounts for a certain spatial shift of the pattern in the xz
plane]. Therefore, for the sake of brevity, the second part of
the oscillation period is glossed over here (i.e., the evolution
of the pattern in I3 and I4 for ϑ = 0.24).

As a final case we analyze ϑ = 0.38 (Fig. 13). Surpris-
ingly, the structure of the lattice is now perfectly ordered
(the related convective features are evenly distributed in
space [Fig. 13(a)]). The increase in the elasticity parameter
has the effect of giving to cold plumes a well-defined and
rounded shape. This kind of self-organized structure is rem-
iniscent of the so-called complex order structures originally
reported by Rogers et al. [84–87] for modulated gravitational
convection in Newtonian fluids. Even for this case the en-
tanglement between cold and hot fluid lattices can be clearly
observed.

The dynamics is similar to that analyzed for lower values
of ϑ ; i.e., the formation of colder fluid eddies [see Fig. 13(b),
where the visible part is actually the imprint of the small
eddies on the main structures] is followed by the weakening
of the velocity field intensity that leads to an inversion of the
plume configuration [Fig. 13(d)]. In particular, we can observe
smaller blobs of hot fluid moving toward the center of the
main plumes.

As evident in Fig. 13(d), a checkerboard distribution is
eventually established. Blobs of hot and cold fluid occupy
the whole vertical space, i.e., there is no interconnection or
stratification of the plumes [as there was, e.g., in Fig. 13(a)].
Now the isolated plumes (see, e.g., the ones representing the
rising fluid) tend to merge together [Fig. 13(e)] in such a way
that all the blobs are interconnected and the stratification is
established once more. Later on, new cold eddies (not visible)
start forming again. This mechanism leads to the fascinating
convective structure depicted in Fig. 13(f). It is reminiscent
of the so-called bimodal convection observed in Newtonian
fluids (see, e.g., [1,88]). A direct comparison of Figs. 8(h),
11(h), and 13(h) finally reveals that the higher the elasticity
of the fluid, the higher the intensity of convection at the end
of I1.

FIG. 15. Color field of axial velocity (y component of u) as a
function of the time and the x coordinate in the center of the cavity,
with 0 < x < 15, y = 0.5, z = 7.5, and (a) ϑ = 0.06, (b) ϑ = 0.24,
and (c) ϑ = 0.38.

For the sake of completeness, the pattern evolution in t ∈
I2 is represented in Fig. 14. While, on the one hand, this figure
shows that the dominant mechanism essentially resembles that
already described for ϑ = 0.24, on the other hand, it qualita-
tively supports the realization that in these circumstances the
rolls have accumulated enough energy to invert their sense of
rotation.

V. DISCUSSION

As a relevant means to provide additional insights into the
dynamics described in Sec. IV, Fig. 15 provides an alternate
representation of the flow (for all the different conditions
considered in the present work) by revealing the evolution of
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FIG. 16. Color field of tr(τ̃) as a function of the time and the
x coordinate in the center of the cavity, with 0 < x < 15, y = 0.5,
z = 7.5, and (a) ϑ = 0.06, (b) ϑ = 0.24, and (c) ϑ = 0.38.

the axial velocity (perpendicular to the plates) along a fixed
line parallel to the x direction (belonging to the midheight
plane, i.e., 0 < x < 15, y = 0.5, and z = 7.5) as a function
of time (over the interval 2T�).

This figure is instrumental in showing synthetically the
various flow weakening and strengthening effects reported
in Sec. IV as a function of the elasticity parameter. Along
these lines, examination of another quantity, i.e., tr(τ̃), is even
more useful. Indeed, this parameter is known for its ability to
represent (be proportional to) the local elastic energy stored in
the fluid (see, e.g., [89]; owing to this relationship, in the fol-
lowing we will simply refer to it as elastic energy). These data
(Fig. 16) obviously serve as another source of information
for the interpretation of the fascinating mechanisms described
before. In particular, the significance of this additional figure

resides in its ability to make evident that the elastic energy
accumulated by the flow in the transitional stages of evolution
where the acceleration is destabilizing is released more grad-
ually (when the acceleration changes sign) for larger values of
ϑ [compare Figs. 16(a)–16(c)].

In this regard, it is also worth recalling the physical mean-
ing of the parameter �, i.e., the ratio between the relaxation
time λ and the period of external vibration T ∗

ω , formally
defined in Sec. II. In the present work, since the vibrations
frequency is constant, � is a linear function of ϑ . In particular,
its values are � = 0.25, 1.01, and 1.6 for ϑ = 0.06, 0.24,
and 0.38, respectively. One may therefore argue that when
ϑ = 0.06 the polymer molecule has sufficient time to relax
to the initial position before the cycle of external vibration is
finished. Obviously, similar considerations can be used to in-
terpret the other two cases for which the molecule’s relaxation
time and the vibration cycle coincide (for ϑ = 0.24) or for
which the polymer molecule cannot relax completely within
the oscillation period (for ϑ = 0.38). These facts can directly
be connected to the ability of the polymeric liquid to retain and
store elastic energy and to sustain specific convective states
along the oscillation period. Figure 17 provides the spatial
distribution of this energy at the two characteristic times t = t0
and t = t0 + T�/2, which paves the way to a brief excursus
on the analogies or affinities between this kind of dynamics
and the very similar ones previously identified by Rogers
et al. [84–87] for modulated Rayleigh-Bénard convection in
Newtonian fluids.

As spontaneous symmetry breaking and flow self-
organization are universal phenomena observed in a wide
variety of nonequilibrium systems, here we use this realization
as an opportunity to develop an analogy which may help the
reader glean hints and draw inferences about what factors
may facilitate the formation of patterns like those reported in
the present work. Along these lines, it is worth recalling that
canonical planforms such as those formed by RB or MB con-
vection display relatively simple basic structures, generally
consisting of stripes (rolls) or hexagons. It is also known that,
in some circumstances, such structures tend to be distorted on
long scales, that is, the pattern might have disordered local
orientations and/or contains defects of various types such as
domain walls, dislocations, or disclinations. These geometri-
cal features can make the flow slightly more complex than the
perfect planforms expected for the idealized infinite layer case
and/or for conditions very close to the critical ones. Another
known (although rarer) kind of complexity is represented by
complex order, namely, a structure where order manifests
itself in a nontrivial way. Exemplars pertaining to this class
of patterns are quasicrystalline states; their distinguishing
mark is the ability to develop a complicated spatial structure
that never repeats itself, but is well ordered in the Fourier
space.

Relevant theoretical background for this category of phe-
nomena can be found in the earlier work by Pismen and
Rubinstein [90], where the concept of complex order was
introduced on a set of rigorous bases. Towards the end of
interpreting the present results, here we limit ourselves to
discussing the most fundamental underlying idea, that is, the
relationship between complex order and the initial isotropy of
the considered system.
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FIG. 17. Distribution of tr(τ̃) on the xz plane at y = 1 (cold plate), (a) ϑ = 0.06 (t = t0 ), (b) ϑ = 0.24 (t = t0 ) and (c) ϑ = 0.38 (t = t0),
(d) ϑ = 0.06 (t = t0 + T�/2), (e) ϑ = 0.24 (t = t0 + T�/2) and (f) ϑ = 0.38 (t = t0 + T�/2).

Put simply, such a notion can be expressed as follows:
Transitions to nonsymmetric states in isotropic systems gener-
ally imply a preferred wavelength but no preferred direction;
as a natural consequence of this property, an indefinite number
of modes can be excited in principle at the same time, with
the related wave vectors having the same absolute value but
being directed in arbitrary directions. In such a process, in
some special conditions, a crystalline structure can be devel-
oped due to nonlinear interactions among these modes as they
grow and saturate their amplitude. Additional insights into
these concepts (these being beyond the scope of the present
section) can be found in the study by Lifshitz [91], where
these phenomena were further split into quasiperiodic crystals
and superlattices depending on certain properties of the modes
involved and their spatial relationships.

Returning to the original problem of interest in the present
study, i.e., the vertically oscillated layer, it is worth reempha-
sizing that such a system preserves the original isotropy of
the classical RB and MB paradigms. The analogy with the
systems investigated by Rogers et al. can be pursued further
by considering that, as illustrated in Sec. IV, the present
layer has displayed the ability to develop both harmonic and
subharmonic temporal responses when viscoelasticity enters
the dynamics even though conditions very close to the critical
ones are considered (r = 1.2).

Rogers et al. [84–87] had focused on RB convection in a
Newtonian fluid (Pr = 0.93) under the effect of vibrations. In
such a situation (and in analogy with the dynamics reported
in Sec. IV) they found both harmonic and subharmonic re-
sponses and even circumstances where both behaviors were
present (in a subregion of the space of parameters originat-
ing from a bicritical point). Over a parameter range where

the harmonic and subharmonic mechanisms have comparable
influence, the spatial scales associated with both responses
were found to coexist and lead to resonant states resulting in
complex highly ordered patterns.

These phenomena and related conditions may be consid-
ered formally similar to those examined in the present work
where superlattice structures have been observed in combi-
nation with the existence of two distinct spatial scales, each
displaying a different temporal dependence (the reader being
referred again to the information reported in Sec. IV). In
the framework of the analogy proposed here, one may argue
that while in Newtonian fluids the existence of disturbances
with different temporal scales does require concurrent mech-
anisms driving the flow (gravity and vibrations in the case
of Rogers et al.), in the present problem these are naturally
present as a result of the ability of viscoelasticity to cause
the coexistence of harmonic and subharmonic modes with
distinct critical wave numbers. Put simply, the presence of a
second driving force is not needed as viscoelasticity provides
the fluid with the natural capacity to develop disturbances
with various wavelengths (this being through the ability of
the molecules of dispersed polymer to stretch and deform
under the effect of a primary flow and exert a back influ-
ence on the flow which generated the deformation, thereby
leading to the emergence of a secondary flow); the reader
specifically interested in such arguments may consider also
[68].

VI. CONCLUSION

Thermovibrational flow in a layer of viscoelastic fluid with
imposed vibrations parallel to the temperature gradient has
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been investigated. This study has opened a path to a much
better understanding of this attractive system, which has many
interesting aspects. In particular, we have combined concepts
from disparate and segregated research areas to provide bet-
ter knowledge of viscoelastic thermovibrational convection
in specific subregions of the space of parameters where a
Newtonian fluid would display relatively simple (canonical)
behaviors.

It has been proven that the onset of thermovibrational con-
vection in Oldroyd-B fluids occurs for values of the control
parameter (Raω) which are one order of magnitude smaller
than the equivalent threshold to be exceeded in the companion
Newtonian case, thereby lending evidence to the applicability
of the concept of overstability to these circumstances.

We have shown that the relatively obvious dynamics typi-
cal of slightly supercritical states in Newtonian fluids, where
the flow is characterized by the existence of parallel rolls that
periodically disappear and reemerge with a different sense
of rotation, is taken over for viscoelastic fluids by a kind of
complex order driven by the interplay of the time-varying

(stabilizing or destabilizing) role of the vibration-induced ac-
celeration and the ability of the fluid to store and release
elastic energy.

The stored energy allows the viscoelastic medium to sus-
tain a convective flow even in the stages where the external
force plays a stabilizing role (i.e., it tends to suppress fluid
motion). In these specific phases, the intensity of the flow
field is directly related to the quantity of energy that the fluid
could store in the preceding stage. In turn, such a quantity is
directly related to the elasticity number, i.e., the fluid elasticity
level, and to the ratio between elastic and dynamic oscillation
characteristic times (i.e., the parameter �).

In the attempt to interpret the peculiar nature of the ob-
served 3D planforms and the overall related scenario we have
emphasized several prior investigations that can be linked to
the general problem relating to the emergence of superlat-
tices in isotropic systems. Building on these works, we have
introduced an interesting analogy and some different obser-
vations, both general and system specific, which will require
additional attention in the future.
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