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Thermally activated flow in models of amorphous solids
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Amorphous solids yield at a critical value �c of the imposed stress � through a dynamical phase transition.
While sharp in athermal systems, the presence of thermal fluctuations leads to the rounding of the transition
and thermally activated flow even below �c. Here we study the steady-state thermal flow of amorphous solids
using a mesoscopic elastoplastic model. In the Hébraud-Lequex (HL) model we provide an analytical solution
of the thermally activated flow at low temperature. We then propose a general scaling law that also describes
the transition rounding. Finally, we find that the scaling law holds in numerical simulations of the HL model,
a two-dimensional (2D) elastoplastic model, and previously published molecular dynamics simulations of 2D
Lennard-Jones glass.
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I. INTRODUCTION

Amorphous solids as diverse as metallic glasses, colloidal
glasses, emulsions, foams, and granular matter exhibit a finite
yield stress �c beyond which they begin to flow. In ather-
mal systems, this corresponds to a sharp yielding transition,
separating solid and fluid phases, which has been extensively
studied [1,2]. At finite temperature, the transition is rounded
by thermally activated flow and becomes a smooth crossover.
Understanding the properties of the thermally activated flow
is a problem of both fundamental and practical importance.

Plastic deformation of amorphous solids proceeds through
localized plastic events [3–5]. Each plastic event produces a
localized nonaffine strain field which redistributes stresses in
the material [6]. The ensuing dynamics has been described
on a mesoscopic scale by shear transformation zone theory
[4] and soft glassy rheology [7]. In these approaches, the me-
chanical noise produced by stress redistribution of individual
events is described by an effective temperature. A different
mesoscopic approach, the elastoplastic model, accounts for
the stress redistribution induced by a local rearrangement
[2,8]. In this model, yielding is a dynamical phase transition.
The central quantity describing the system is the density P(x)
of regions about to undergo a plastic event, with x denoting
the additional stress required locally to trigger an event. In
the solid phase P(x) is singular implying system spanning
avalanches of plastic events [9,10], consistent with the obser-
vations in numerically simulated amorphous solids [11–13].
The flowing phase exhibits nonlinear rheology with a diverg-
ing correlation length as �c is approached from above [14].

This phenomenology is similar to the one found in the
depinning transition, where an elastic sheet is driven by a
force density F through a disordered potential, and a critical
value Fc separates moving and static states [15,16]. However,
unlike for the yielding transition, stress redistribution after
a depinning event is destabilizing everywhere, which leads
to a nonsingular P(x) and different exponents characterizing

the critical behavior close to the transition [10]. At finite
temperature [17–24] a scaling law for the interface velocity
V ∼ T ψg[(F − Fc)/T ψ/β] was proposed by Fisher [17] in
the context of charge density wave, where ψ is the transi-
tion rounding exponent and β is the athermal flow exponent
V ∼ (F − Fc)β . It was further argued that ψ = β/α [18],
where α is a parameter characterizing the disordered potential
(α = 1.5 for smooth potentials), which is supported by sim-
ulations [18,19]. On the other hand, numerical investigations
of elastic string depinning [23,24] found a different value of
the rounding exponent. Furthermore, in [25] the measured
steady-state flow was found not to follow the scaling law from
[17],1 which was further supported by analysis of elastic line
depinning in a washboard potential [26].

The thermal rounding of the yielding transition has been
much less studied. In Ref. [27] it was proposed that the
thermal fluctuations can be incorporated in the athermal
steady-state flow γ̇ ∼ (� − �c)β as an additive, strain rate
dependent, correction of local yield stresses. This approach,
supported by molecular dynamics simulations, predicts an ex-
ponentially suppressed steady-state strain rate ln γ̇ ∼ (�c −
�)3/2/T for �c − � � T 2/3. Here the exponent 3/2 is a
particular value of α for a smooth disordered potential. In
this regime, a gap is found in distribution P(x), and the as-
sumption of additivity corresponds to assuming that the gap
size is proportional to �c − �. In the regime � − �c � T 2/3

flow is dominated by the athermal component and thus well
described by construction. It is interesting to note that the
rounding exponent at � = �c is consistent with the prediction
of Ref. [18], up to a logarithmic correction. However, in this

1Instead, an alternative scaling law was proposed from which fol-
lows a logarithmic correction to the rounding exponent. However, the
latter is derived by considering the limit T → 0 in a finite system. It
remains to be seen if this result holds when the thermodynamic limit
is taken first.

2470-0045/2021/104(2)/025010(7) 025010-1 ©2021 American Physical Society

https://orcid.org/0000-0003-2360-3982
https://orcid.org/0000-0002-1694-3375
https://orcid.org/0000-0003-1465-3953
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.025010&domain=pdf&date_stamp=2021-08-31
https://doi.org/10.1103/PhysRevE.104.025010
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approach, the influence of elastic interactions on the distribu-
tion P(x) is not considered.

In this work, we study the thermal flow of amorphous
solids for different values of the parameter α. In particular,
we first study the thermal steady-state flow and P(x) in a
Hébraud-Lequeux (HL) model [28,29] which is a mean-field
version of elastoplastic model with a Gaussian mechanical
noise. (Note that here we do not consider the mean-field
elastoplastic model [30], which preserves the fat tails in
mechanical noise distribution found in a finite-dimensional
elastoplastic model, where our scaling analysis should hold
but for which we do not have analytical solutions.) We derive
analytical expressions for both steady-state flow and P(x)
in the limit T → 0 and verify these results numerically. We
find that the strain rate in the HL model can be written in
the scaling form as proposed by Fisher [17] and Middleton
[18]. Finally, we propose that this scaling form holds in finite
dimensions with a particular form of the scaling function
in the regime �c − � � T 1/α and test it in the HL model,
a two-dimensional (2D) elastoplastic model, and molecular
dynamics simulations available in the literature [27].

II. ELASTOPLASTIC MODEL AT FINITE TEMPERATURE

Elastoplastic models aim to capture mesoscopic features of
yielding in amorphous solids [2,31,32]. The system is divided
into N mesoscopic blocks that are larger than localized plastic
events. A block i is characterized by the local stress compo-
nent σi along the external loading direction and a local yield
stress σY,i. We choose σY,i to be narrowly distributed around
the mean value 〈σY 〉 (see the Appendix).2

In athermal systems, the block i fails when |σi| � σY,i.
Then, over a time τ the local stress is decreased by an amount
δσi, which in our numerical implementation is equal to σi up
to a small random term; see the Appendix. It corresponds to
an increment of local plastic strain of magnitude γ0,i. In our
implementation we choose γ0,i = δσi/〈σY 〉. The stress in the
rest of the system is redistributed according to an elastic force
dipole propagator δσiG(�r), where �r is the distance from the
failing block.

To study thermal plastic flow we introduce a possibility of
thermal activation when |σi| < σY,i. To each block we assign
a potential barrier Ei = cE xα

i , where xi ≡ (σY,i − σi )/〈σY 〉 and
cE > 0. In a system with a smooth disorder potential a plastic
event corresponds to saddle-node bifurcation and α = 1.5.
We also consider values α = 2 and α = 1 corresponding to
parabolic and linear potentials with a cusp at the instability
[25]. The failure probability for the block i with xi > 0 is
proportional to exp (−cE xα

i /T ), using units where kB = 1.
The imposed shear stress in the system sets the average block
stress � ≡ ∑

i σi/N = 〈σY 〉(1 − ∑
i xi/N ). The plastic strain

rate is the sum of rates over individual plastic events γ̇ ≡∑
i niγ0,i/(τN ), where ni = 1 as long as the block is failing,

while ni = 0 otherwise. In the yielding regime |�c − �| 	
�c, at low strain rates blocks fail at σi ≈ 〈σY 〉 and thus γ0,i ≈

2We expect this choice not to affect the universal properties studied
here, as they should not change with the choice of microscopic
parameters.

1, so that the plastic strain rate can be approximated by the
rate of plastic events γ̇ ≈ ∑

i ni/(τN ).
Finally, to express this elastoplastic model in dimension-

less quantities we use t̃ = t/τ , �̃ = �/〈σY 〉, ˙̃γ = γ̇ τ/γ0, T̃ =
T/cE , where γ0 is a typical value of γ0,i. Here we normalized
the temperature by the potential barrier energy scale cE and
the dimensionless parameter c̃E = cE/(γ0〈σY 〉ad ), where d is
the spatial dimension and a is the block size, characterizes a
particular physical system.

III. FLOW IN HéBRAUD-LEQUEUX MODEL

A. Framework

We introduce an activated version of the Hébraud-Lequeux
model where the state of the system is fully described by the
density P(x, t̃ ) whose dynamics follows:

∂t̃ P(x, t̃ ; T̃ ) = ˙̃γ
[
D∂2

x P(x, t̃ ; T̃ ) + v∂xP(x, t̃ ; T̃ ) + δ(x − 1)
]

−
[
�(−x) + e− xα

T̃ �(x)
]
P(x, t̃ ; T̃ ). (1)

Here � is the Heaviside theta function, the diffusion constant
D characterizes the Gaussian mechanical noise experienced
by the system after each plastic event, the drift velocity v

accounts for the externally controlled stress loading, and stress
relaxation after a failure is described by the delta function
term.3 The last two terms account for athermal and thermally
activated block failures, respectively. In a driven system it is
very unlikely for a block to fail with σi < −σY , and we neglect
this contribution.4

The system stress is given by:

�̃ = 1 −
∫ ∞

−∞
xP(x, t̃ ; T̃ ) dx. (2)

In this work we consider only steady-state flows, and the strain
rate is equal to the plastic strain rate:

˙̃γ =
∫ ∞

−∞
P(x, t̃ ; T̃ )

[
�(−x) + �(x)e− xα

T̃

]
dx. (3)

B. Gap at T = 0

The full solution of Eq. (1) is in general not available.
However, we can calculate the strain rate ˙̃γ for �̃c − �̃ 	 �̃c

and T̃ 1/α 	 �̃c − �̃. Below �̃c there is no flow in the absence
of temperature, and therefore plastic events mainly occur by
thermal activation. Therefore, in the limit T̃ → 0, we ex-
pect an Arrehnius type of flow ˙̃γ ∼ exp (−A/T̃ ), with A > 0.
Given this assumption we show that a gap appears in P0(x) ≡
limT̃ →0 P(x) by considering the steady state of Eq. (1):

0 = D∂2
x P(x) + v∂xP(x) + δ(x − 1)

− 1
˙̃γ

[
�(−x) + e− xα

T̃ �(x)
]
P(x). (4)

3This corresponds to δσi = σi at each block failure, with the choice
σY,i = 1.

4For a block to reach x = 2 starting from x = 1 it has to diffuse
distance �x = 1 against the imposed stress. Common values [8] are
D = 0.18 and v ≈ 1 so only exp (−v/D) ≈ 0.004 of blocks that start
from x = 1 reach x = 2.
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In the limit T → 0, for x < A1/α the relative failure rate
exp (−xα/T̃ )/ ˙̃γ diverges, and for x > A1/α it vanishes. There-
fore, the point xc = A1/α acts as an absorbing boundary. For
x > xc, P0(x) satisfies:

0 = D∂2
x P0(x) + vc∂xP0(x) + δ(x − 1). (5)

The solution of Eq. (5) is:

P0(x) = 1

vc

(
1 − e− vc

D (x−xc )
)
�(x − xc)�(1 − x)

+ 1

vc

(
1 − e− vc (1−xc )

D
)
e− vc

D (x−1)�(x − 1). (6)

Normalization of P0(x) requires xc = 1 − vc, and thus we can
express the gap size xc in terms of the stress �̃ by evaluating
Eq. (2) in the limit T̃ → 0:

�̃ = 1 −
∫ ∞

−∞
xP0(x) dx = 1

2
vc − D

vc
, (7)

and we find:

xc = 1 − �̃ −
√

�̃2 + 2D. (8)

Since xc → 0 as �̃ → �̃c we have �̃c = 1/2 − D so that for
(�̃c − �̃) 	 �̃c:

xc � �̃c − �̃
1
2 + D

. (9)

C. Thermal rounding of P(x)

At a small but finite temperature the activation occurs in
a region around xc of a width vanishing with T . To find an
approximation of P(x) we linearize the potential barrier E (x)
around xc and look for a solution of

D∂2
x P(x) + v∂xP(x) − 1

˙̃γ
e− xαc

T̃ e− αxα−1
c
T̃

(x−xc )P(x) = 0. (10)

Using a change of variables and functions

R̃(x) = e
v

2D (x−xc )P(x), (11)

z = 2

m
e− a

2 (x−xc ), (12)

R(z) = R̃(x), (13)

we can rewrite Eq. (10) as

z2∂2
z R(z) + z∂zR(z) −

[( v

aD

)2
+ z2

]
R(z) = 0, (14)

where

a ≡ α
xα−1

c

T̃
, (15)

m2 ≡ a2Dγ̇ e
xαc
T̃ . (16)

Equation (14) is the modified Bessel equation, and the
solution, which vanishes for x → −∞, reads

P(x) = Ce− v
2D (x−xc )K v

aD

(
2e− a

2 (x−xc )

m

)
, (17)

where Kλ(x) is the modified Bessel function of the second
kind, of order λ. Finally, we can determine the integration

constant C and parameter m by requiring that P(x) → P0(x)
as T̃ → 0. In the limit T̃ → 0 and for x > xc + ε, ε > 0, the
lowest order terms in the series representation of the Bessel
function are:

K v
aD

(
2e− a

2 (x−xc )

m

)
≈ 1

2
�

( v

aD

)
m

v
aD e

v
2D (x−xc )

+ 1

2
�

(
− v

aD

)
m− v

aD e− v
2D (x−xc ), (18)

where � is the gamma function. We assume that ˙̃γ exp(xα
c /T̃ )

does not depend exponentially on T̃ so that higher order terms
are negligible when T̃ → 0. Equating P(x) with P0(x) in the
limit T̃ → 0 yields

C = 2m− v
aD

vc�
(

v
aD

) , (19)

m = eγ , (20)

where γ is the Euler-Mascheroni constant. With these expres-
sions Eq. (17) provides a solution of P(x) in the vicinity of
xc.

Finally, from Eq. (16) and Eq. (20), the thermal flow in the
low-temperature limit T̃ 1/α 	 �̃c − �̃ is

˙̃γ = e2γ

α2Dτ
T̃ 2

(
�̃c − �̃

1
2 + D

)−2(α−1)

e
− 1

( 1
2 +D)α

(�̃c−�̃)α

T̃
. (21)

The thermal flow is exponentially small in (�̃c − �̃)α , consis-
tent with [27,33]. It can be written in scaling form

γ̇ ∼ T
2
α fHL

(
��̃

T̃ 1/α

)
, (22)

where ��̃ ≡ �̃ − �̃c and limy→−∞ fHL(y) =
|y|2(1−α) exp (−c|y|α ) with c = 1/(1/2 + D)α . Since the
flow exponent β = 2 in the HL model this scaling form is
consistent with the prediction ψ = β/α in [18].

IV. SCALING LAW

We propose the scaling form in Eq. (22) to hold in finite-
dimensional systems as

˙̃γ ∼ T̃ ψ f

(
��̃

T̃ 1/α

)
, (23)

where ψ = β/α and β is the athermal flow exponent ˙̃γ ∼
��̃β . This form is the same as the one suggested by Fisher
for thermal flow in depinning [17]. This scaling hypothesis
assumes a characteristic stress scale |��̃| ∼ T 1/α , set by the
activation e−xα/T̃ in the vicinity of the transition. The thermal
rounding exponent ψ = β/α then follows by considering the
athermal limit T̃ 1/α 	 ��̃ in the vicinity of the transition. In
this limit we conclude that limy→∞ f (y) ∼ yβ , and therefore
ψ = β/α, in order to match the athermal flow.

Moreover, to propose the form of the scaling function
f in the thermally activated flow regime �̃c − �̃ � T̃ 1/α

we consider a system in the limit T̃ → 0 with a finite gap
xc. In this limit blocks become unstable in the vicinity of
xc, and the potential barrier in the activation function can
be expanded to the first order around the gap xc as in

025010-3
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Eq. (10): exp (−xα
c /T̃ ) exp [−αxα−1

c (x − xc)/T̃ ]. The first fac-
tor can be interpreted as a new timescale τ̃ (xc) = exp (xα

c /T̃ ),
and the second factor as a new effective activation function
exp [−(x − xc)αeff./T̃eff.], with effective values αeff. = 1 and
T̃eff. = T̃ /(αxα−1

c ).
Since in the limit T̃ → 0 the effective absorbing boundary

is at xc, we expect that in the vicinity of xc the distribution
P0(x) = limT̃ →0 P(x) corresponds to an athermal P(x) of a
system at a critical stress. Therefore, in this state the system
will respond to adding a small amount of temperature in the
same way as a system at the critical stress. The flow can
thus be described by the thermal rounding exponent ˙̃γ ∼
T̃ β/αeff.

eff. /τ̃ (xc) leading to:

˙̃γ ∼ x−β(α−1)
c T̃ βe− xαc

T̃ (24)

∼ |��̃|−β(α−1)T̃ βe−c |��̃|α
T̃ . (25)

The last relation stems from xc ∼ |��̃|, i.e., the existence
of a unique vanishing stress scale at �̃c, and c is a positive
parameter. Therefore, the scaling function in the thermally
activated regime reads:

f (y 	 −1) ∼ |y|β(1−α)e−c|y|α . (26)

V. NUMERICAL TESTS

To test the analytical results obtained in the HL model
and the proposed finite-dimensional scaling form for ˙̃γ we
perform numerical simulations using HL and 2D elastoplastic
models; see the Appendix for details.

A. Hébraud-Lequeux model

We first compare the analytical approximation of the den-
sity P(x) in the vicinity of xc in Eq. (17) to the one obtained
in HL model simulations. We find a good agreement between
simulations and the analytical result for α = 1 at all tested
temperatures; see Fig. 1(a). For α = 1.5 the analytical approx-
imation fails at higher temperatures, but a good agreement
is recovered at lower temperatures; see Fig 1(b). This is ex-
pected since the analytical solution was obtained assuming
T̃ 1/α 	 xc, which does not hold at higher temperatures, and
consequently the linearization of xα is not justified.

We next compare the analytical prediction in Eq. (21) and
the proposed general scaling form Eq. (23) with the results of
HL and 2D elastoplastic model simulations for α = 1, 1.5, 2.
We find that the strain rate measured at different temperatures
collapses when the axes are scaled according to the proposed
scaling form; see Fig. 2. The analytical prediction of the
mean-field strain rate given by Eq. (21) is shown as a black
line in Fig. 2, and it is in good agreement with numerical
simulations at low temperatures in the thermally activated
regime �̃c − �̃ � T̃ 1/α .

B. 2D elastoplastic model

We further test the generalized scaling form in Eq. (23)
using elastoplastic simulations in two dimensions for
α = 1, 1.5, 2. The flow exponent measured in [30] for this

(a)

(b)

FIG. 1. Distribution P(x) measured in HL model simulations
(symbols) compared to the analytical approximation Eq. (17) (dashed
lines) in the vicinity of the gap xc, indicated by a black line. (a) For
α = 1 simulations and theory agree well at all measured tempera-
tures. (b) For α = 1.5 the agreement is good at the lowest measured
temperatures, but it becomes significantly poorer at higher tem-
peratures, as expected since the linearization of thermal activation
function is not a valid approximation.

model is β = 1.52. We find that the steady-state flow rate
collapses on a single curve when axes are scaled according
to Eq. (23); see Fig. 3. We demonstrate that increasing system
size from N = 20 164 (full symbols) to N = 99 856 (empty
symbols) does not affect the scaling function. Furthermore,
the scaling function Eq. (26), represented by a black dashed
line, is consistent with simulation data for all three values
of α.

C. Molecular dynamics

Finally, to further verify the generality of the proposed
scaling law, we extract strain rate curves obtained by molec-
ular dynamics simulations of 2D glass in Ref. [27]. The
good collapse of data when the axes are scaled according to
Eq. (23) is shown in Fig. 4. The scaling function we propose
in Eq. (26), shown as dashed black line, is consistent with the
data. Note that we normalized stress and temperature by shear
elastic modulus and potential barrier scale using the values
provided in [27].
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(a)

(b)

(c)

FIG. 2. Strain rate measured in numerical simulations using the
HL model, using the values α = 1 (a), α = 3/2 (b), and α = 2 (c).
The flow exponent in the HL model is β = 2 [28]. When scaled
according to the proposed scaling law Eq. (23), the strain rates col-
lapse. System size is N = 20 000. In addition, we find the analytical
solution Eq. (21) (black solid line) is in excellent agreement with the
simulations in the regime T̃ 1/α 	 �̃c − �̃ for which the solution was
derived.

VI. DISCUSSION

We have derived an approximation of thermally activated
steady-state strain rate in HL model of amorphous solids. We
confirmed the validity of this expression with numerical sim-
ulations and generalized this result to a general scaling law for
the steady-state strain rate. We find that the proposed scaling
form collapses both strain rate data from a 2D elastoplastic
model and from molecular dynamics simulations [27]. Our

(a)

(b)

(c)

FIG. 3. Strain rate measured in numerical simulations using the
2D elastoplastic model, using the values α = 1 (a), α = 3/2 (b), and
α = 2 (c). The flow exponent for this model is β = 1.52 [30]. When
scaled according to the proposed scaling law Eq. (23), the strain
rates collapse. To test finite-size scaling we show results obtained
in system sizes N = 20 164 (full symbols) and N = 99 856 (empty
symbols). The proposed scaling function in Eq. (26), shown with the
dashed black line, can account for the thermally activated regime.

results support that the thermally activated flow of amorphous
solids can be described by a simple scaling law dependent
only on the flow exponent β and a parameter α reflecting
properties of the disordered potential.

It is interesting to note that values of α different from
1.5 have practical applications, for example, in cellular ma-
terials such as epithelial tissues or dry foams α = 2 [34].
While thermal fluctuations are usually negligible in foams,

025010-5
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FIG. 4. Steady-state strain rate measured in molecular dynamics
simulations of 2D glass extracted from [27]. We replotted the strain
rate data as a function of � − �c on axes scaled according to the
proposed scaling law Eq. (23). In this model particle interactions are
smooth (α = 1.5), and the flow exponent was measured to be β = 2.
We find a good collapse of the data, indicating that Eq. (23) holds
beyond elastoplasic models. To have comparable values of control
parameter (� − �c )/T 1/α with Figs. 2 and 3, stress and temperature
are normalized by shear modulus κ and potential barrier scale cE ,
respectively, using the reported values [27]. The proposed scaling
function in Eq. (26) is shown as the dashed black line.

mechanical noise from active processes in tissues can be a
relevant factor in tissue flow [35,36], and future research of
yield stress behavior in biological tissues will be able to utilize
and test results presented here.

The scaling form of the steady-state strain rate was orig-
inally proposed in the context of depinning, and it seems
to describe well the rounding of the yielding transition in
amorphous solids. The similarity between the two transitions
is therefore useful to motivate further research of the yielding
transition. An interesting research direction will be to study
the low-stress regime �̃ 	 �̃c. In the corresponding depin-
ning regime of low forcing F 	 Fc, the interface velocity
grows with ln V ∼ −F−μ. The exponent μ is associated with
a diverging length scale on which the interface has to reorga-
nize to cross the effective potential barrier [37–39].

Finally, in this work, we have studied the steady-state flow
where all information about the initial state of the material
has been erased. Interestingly, amorphous solids can exhibit
a complex transient flow characterized by an initial slowing,
followed either by eventual arrest or by sudden fluidization.
This phenomenon has been studied in the athermal HL and
elastoplastic models [40,41]. However, it is important to un-
derstand the transient flow of thermal materials, where the
arrest scenario is not available, and previously sharp transi-
tions are smoothed on the stress scale ��̃ ∼ T̃ 1/α .
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APPENDIX: HEBRAUX-LEQUEUX AND ELASTOPLASTIC
MODEL SIMULATIONS

1. Implementation

We implement the 2D elastoplastic model on a periodic lat-
tice of linear size L/a = 142,5 following the implementation
we used in [42]. The elastic dipole propagator G(r, φ) is a
periodic version of an infinite system propagator G0(r, φ) ∼
cos 4φ/r2, and it is normalized so that G(�r = 0) = −1. The
sum of stresses along each row and column of elements is
preserved. To keep the sum of stresses in all rows and columns
the same during the initialization of the stress distribution
P(σ̃ ) we first apply the dipole propagator with a random
prefactor drawn from a normal distribution N (0, 0.42) at each
lattice block and then normalize the stress at each block by the
sum of the absolute values of the propagator on the periodic
lattice. The initial yield stress distribution P(σ̃Y ) is a normal
distribution N (1, 0.12) and redrawn each time the block fails.
These choices ensure that no stress overshoot and no shear
banding occurs during the transient loading period.

After a failure local stress in the block is drawn from a
normal distribution σ̃i,after = N (0, 0.12), which defines the
stress change in the block δσ̃i.

The HL model simulations, in which blocks have no spatial
information, contain N = 20 000 blocks for the strain rate
measurement and N = 50 000 blocks for the P(x) measure-
ment. After each plastic event the stress is changed in all other
blocks by an amount drawn independently from a normal
distribution N (0, 2D/N ), with D = 0.18.

To simulate thermal activation after each failure we draw
the time until the next failure in the system from a Poisson
distribution that takes into account all x in the system. Then
we draw randomly the failing block by weighting each block
with its failure rate exp (−xα/T̃ ). In this way duration of a
simulation is proportional to the plastic strain, independent of
the strain rate.

2. Data analysis

To measure the steady-state strain rate ˙̃γ and the distribu-
tions P(x) we begin recording the state of the system only
after it undergoes a plastic strain of 5. The steady-state strain
rate is then measured by sampling the strain rate after every
ns plastic events up to the system plastic strain of 15 and
then calculating the median.6 In the HL model simulations
ns = 100 in all cases except α = 1, T̃ = 0.001, which re-
quired ns = 10. In the 2D elastoplastic model simulations for
system size N = 20 164, ns = 1000 in all cases except α =
1, T̃ = 0.001, which required ns = 100, whereas for system
size N = 99856 ns = 10. The steady-state distribution P(x) is
measured in a system of size N = 50 000 at the imposed stress
�̃ = 0.29 for the values of α and T̃ reported in Fig. 1.

Values of �̃c in the 2D elastoplastic model and HL model
were estimated by collapsing the strain rate data in Figs. 2

5System size is N = L2 and lattice size is a = 1.
6Note that at low temperatures sampling the strain rate over too

large intervals becomes very susceptible to finite-size effects due to
the exponential dependence of activation time on x
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and 3. Note that this was also required in the HL model
since the relation �̃c = 1/2 − D holds only in the ther-
modynamic limit, while in finite systems the value of �̃c

is slightly modified by finite-size effects [14]. We find in
the HL model �c = 0.323 ± 0.002 and in the 2D model
�c = 0.5293 ± 0.0007.
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