
PHYSICAL REVIEW E 104, 025009 (2021)

Universal fluctuation of polygonal crack geometry in solidified lava
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Outcrops of columnar joints made of solidified lava flows are often covered by semiordered polygonal cracks.
The polygon diameters are fairly uniform at each outcrop, but their shapes largely vary in the number of sides
and internal angles. Herein, we unveil that the statistical variation in the polygon shape follows an extreme value
distribution class: the Gumbel distribution. The Gumbel law was found to hold for different columnar joints,
regardless of the locality, lithologic composition, and typical diameter. A common distribution for columnar
joints implies a universal class that may integrate the polygonal crack networks observed on the surface of
various fractured brittle materials.
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I. INTRODUCTION

Nature often fascinates our eyes with its sculptural beauty.
A familiar example is the autonomous formation of polygonal
patterns, which is observed in a variety of fields such as
wasp nests in biology [1,2], bubble clusters in fluids [3,4],
and terrestrial fragmentation in geology [5–7]. Under labo-
ratory conditions, polygonal crack patterns occur in various
materials including calcium carbonate mixture [8,9], alumina-
water mixture [10], metal thin films [11], and frozen impacted
water droplets [12]. A spectacular and eye-catching exam-
ple of polygonal pattern formation in geology is columnar
jointing [13,14]. It is an ordered assembly of long slender
prismatic cracks that spontaneously develop in volcanic rock.
Self-organization of the spatially periodic prismatic cracks
is the result of the thermal contraction of solidified lava
flow followed by its shrinkage fracture that penetrates inward
gradually [15]. In most fracturing phenomena, the direction
of cracks is greatly influenced by the spatial variation of
the strength distribution of the material [16,17], resulting
in a random crack network often found in aged concrete
walls and windowpanes. Compared to that random fractur-
ing, the ordered cracks observed on columnar joints seem
to be extremely curious, and thus have long aroused interest
in elucidating the driving force that autonomously creates a
collection of elongated columns with polygonal cross sections
of quasiequal diameter (see Fig. 1).

It is broadly accepted that the mechanism of columnar joint
formation is attributed to the maturation process of shrinkage
cracks penetrating inward, as theoretically derived from the
principle of the maximum energy release rate [18,19]. The
formation starts from a superficial random crack network that
has occurred during the initial cooling stage on the solidifying
lava surface. In the random network, intercrack spacings are
rather inhomogeneous, whereby most intercrack junctions are
T shaped [20]. As the lower parts of the lava cool, the cracks
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penetrate the solidified lava body while intercrack junctions
transform gradually into Y shaped ones; as a consequence,
the shape of column sections approaches quasi-equal-sized
polygons with a preference for hexagons [21]. Simultane-
ously, adjacent crack fronts interact with each other; i.e., when
one crack grows, the contraction stress around it is relaxed,
inhibiting the growth of adjacent cracks. As a result, a few
adjacent columns merge into one, and the cross-sectional area
increases intermittently with crack growth [22]. A sequence
of such transformation and coarsening processes leads to the
maturation of the polygonal pattern toward a quasiuniform
one with quasiequal crack spacings.

It should be noted that the polygonal crack network in real
columnar joints is not ideally regular but exhibits a mixture
of different edge lengths and internal angles, involving non-
hexagons in a considerable proportion [23]. This irregularity,
which is partly a remnant of the initial random cracking at the
early stage, causes the geometric deviation of cross-sectional
polygons from regular counterparts. Nevertheless, maturation
is thought to suppress the degree of deviation so that the diam-
eter of each column is comparable to or not much smaller than
the characteristic crack spacing determined by the mechani-
cal energy balance [24,25] as well as lava composition [26].
The two competing effects, i.e., the persistence of irregularity
and the maturing evolution toward equidiameter columns,
raise the question as to what kinds of statistical properties
dominate the polygon geometry over the real columnar joints.

In this paper, we demonstrate that the statistical fluctu-
ation in the polygon geometry observed at real columnar
joints falls into a specific class of probability distribution.
Surprisingly, this fact is true for all the data obtained from
different investigation sites, despite large differences in lo-
cality, lithologic composition, and typical column size. The
robustness of the probability distribution implies the existence
of a previously unknown universal class that governs the ge-
ometric fluctuation in polygonal crack patterns. A physical
interpretation of these results can be obtained from numerical
simulations based on two-dimensional Voronoi tessellation.
We also discuss the possible relevance of our findings to
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(a) (b)

FIG. 1. Aerial photos of the polygonal crack network observed at
the outcrop of columnar joints in Japan: (a) Tatami-Ishi in Okinawa
(O site) made from andesite and (b) Hino-Misaki in Shimane (Sm
site) made from rhyolite.

non-Gaussian fluctuation phenomena, characterized by the
generalized Gumbel law, which are ubiquitous in various
complex systems.

II. METHODS

A. Field observation of columnar jointing

Our field observation of columnar jointing was conducted
in Japan, which is one of the most volcanically active coun-
tries worldwide. In fact, various columnar joints with diversity
in both lithological character and column diameter are dis-
tributed over more than 60 locations. We investigated four
specific sites with different lithologies, as depicted in Fig. 2;
the corresponding polygonal fractures on the exposed surfaces
were photographed from above by a drone. Figure 1 shows
two exemplary aerial photos taken at the O site and Sm site.
From the photos, it follows that the entire outcrop is occupied
by polygonal cracks, wherein nonhexagons are involved in
a portion, and the side lengths and internal angles can be
also quite different from those of regular polygons. We also

FIG. 2. Location map for the four investigation sites: Okinawa
(O site), Yamaguchi (Y site), Shimane (Sm site), and Shizuoka (Sz
site) prefectures in Japan.

FIG. 3. Schematic of the calculation method of the degree of
geometric deviation of a polygon from a cyclic polygon. Only two
circumcenters R1 and R2 among Ri (1 � i � N ) are depicted.

observed that the typical diameter of the polygons depends
on the locality; particularly, the typical diameters are about
2 m at the O site and a few centimeters at the Sm site, with a
difference by two orders of magnitude. At the Y site and Sz
site, the typical diameters amount to 1 m and 40 cm, respec-
tively (see Table I). The total number of polygons acquired
by drone shooting at each investigation site was 1069, 894,
1012, and 3987 at the O site, Y site, Sm site, and Sz site,
respectively. Based on the photos, we calculated the coordi-
nates, side lengths, and internal angles of the polygon vertices
using an image analysis software named ArcGIS (Esri).

B. Quantification of geometric irregularity

To quantify the geometric deviation of constituent poly-
gons from regular ones, we proposed the following hypothe-
sis. As the cracks grow, the inner angles of Y-shaped junctions
tend to be adjusted so that all opposing sides of each polygon
are evenly spaced; namely, the typical column diameter is
assumed to approach the characteristic crack spacing deter-
mined by the maximum energy release rate. This hypothesis
can be fulfilled by a regular honeycomb lattice, which is the
optimal side configuration that enables a significant energy
release owing to small fracture energy needed to create a
new crack surface along the sides, provided all polygons are
hexagons. In reality, however, a significant proportion of non-
hexagons is involved, which hinders the ideal evenly spaced
side configuration. Nevertheless, the tendency to reduce the
local mechanical energy (strain energy plus newly created
surface energy) regulates the junction angle to achieve as large
an amount of energy release as possible. Subsequently, the
ratio of the polygon area to the total side length enclosing the
area is enlarged.

Under the above-mentioned assumption, we quantified the
geometric irregularity of constituent polygons through the
following procedure (see also Fig. 3). Assuming n sides with
fixed lengths are connected to form an n-sided polygon, the
corresponding area is maximized for a cyclic polygon (i.e.,
a polygon inscribed in a circle). Therefore, the degree of the
polygon geometric fluctuation can be quantified by examin-
ing the degree of deviation of the vertices from a reference
circle (i.e., the degree of similarity of the polygon to a cyclic
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FIG. 4. Diagram of the crack evolution process defined in
Ref. [14]. (a) Within the transverse section across adjacent columns,
the lava temperature is the highest at the center of each polygon,
marked by the “hottest point.” (b) As cooling progresses, a crack
front is expected to be generated along the dotted lines, i.e., the
vertical bisectors of the neighboring two hottest points, because
the local maximum tensile stress occurs in the direction connecting
the two hottest points.

polygon). To this aim, given an n-sided polygon obtained
from the aerial photo, we selected three vertices and then
evaluated the center of the circumscribed circle that passes
through the selected points. This calculation was repeated N
times [with N ≡ (n

3

)
] for all N triangles comprising the n-gon

and a set of N circumcenters, designated by Ri (1 � i � N ),
was obtained. Then, we evaluated the center of the N-point
set defined as G = ∑N

i=1 Ri/N and calculated the distances
ri = |Ri − G| (1 � i � N ) and their average rav = ∑N

i=1 ri/N .
Finally, we defined the degree of deviation of the n-gon from
the corresponding cyclic polygon, χ , as

χ = s

rav
− 1, s =

√√√√ N∑
i=1

r2
i

N
. (1)

Note that χ approximates zero when the n-gon is almost
inscribed in a circle, while it assumes a large positive value
when the n-gon deviates considerably from a cyclic polygon
(see Appendix B).

C. Voronoi-based simulation of the maturing evolution

In the geophysical community, Voronoi tessellation has
been considered to be particularly useful in modeling the
crack patterns of actual columnar joints [14,27]. The relevance
of Voronoi tessellation to real cracking patterns is supported
by the following ideas [14].

(i) Within a two-dimensional transverse section across the
columns at the crack front, the maximum local tensile stress is
expected to occur in the direction parallel to the line segments
that connect the centers of adjacent polygons.

(ii) Shrinkage cracks are likely to emerge at the midpoints
of these line segments, perpendicular to these segments, sim-
ilar to the drawing of vertical bisectors between Voronoi seed
points, to relieve the accumulating tensile stress.

Figure 4 illustrates the stepwise evolutionary nature of a
columnar joint pattern, suggested in Ref. [14], which demon-
strates the rationale for describing this evolution via Voronoi
tessellation.

FIG. 5. Discrete probability distribution of the distortion variable
χ at the four investigation sites. A fit of each locality datum to a
Gumbel law given by Eq. (2) was obtained by the nonlinear least-
square method.

To compare the real field observation data with Voronoi-
based simulation results, we computed the values of χ

[defined by Eq. (1)] of the Voronoi polygons and examined
the dependence of χ values on the degree of maturation. First,
we generated Voronoi tessellation using randomly distributed
seed points and matured the tessellation using Lloyd’s algo-
rithm [28] through the following steps.

(1) Compute the centroid zi(i = 1, 2, . . . , n) for each n
Voronoi polygon.

(2) Define a new set of seed points yi as the centroid zi.
(3) Create a new Voronoi tessellation using the new set of

seeds yi.
(4) Return to step 1.
At each iteration of steps 1–4, we computed the value

of χ of all Voronoi polygons to examine its dependence on
the degree of maturation. The numerical implementation was
performed in MATLAB (MathWorks, Inc.).

III. RESULTS

A. Similarity of probability distributions for χ

Figure 5 shows the discrete probability distribution of the
χ value for each of the four investigation sites. All the dis-
tributions are upward convex and slightly slanted to the left.
The salient observation is that all four histograms look quite
similar, exhibiting comparable peak heights at almost the
same position and wide tails. Interpreting this similarity is far
from trivial. As the polygon sizes and lithologic composition
of the rocks differ greatly from site to site (see Table I), one
may expect that the distribution of χ will also differ from site
to site. However, our results show that the distribution of χ is
surprisingly similar at all the four sites. A minor difference in
the four distributions is the presence of the leftmost isolated
peak at χ = 0 in the Sm data (also the Y data) and the absence
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TABLE I. Optimal value of parameter a for the GGD fitting.

Site a Lithology Mean diameter

O site 0.85 ± 0.52 Andesite 1.78 m
Y site 0.88 ± 0.51 Trachybasalt 94.4 cm
Sm site 1.54 ± 1.78 Rhyolite 5.22 cm
Sz site 0.57 ± 0.29 Andesite 42.2 cm

of it in the other two; the origin of the isolated peak will be
clarified in the discussion of Fig. 7.

The common statistical behavior of χ implies a hidden
universality regarding the geometric fluctuation in polygons
appearing at real columnar joints. In fact, it is demonstrated
in Fig. 5 that all four histograms can be well fitted by a
special class of extreme value distributions, called the Gumbel
distribution [29,30] (solid curves). The Gumbel distribution is
a probability distribution with a density function:

f (χ ) = f0 + f1e−ze1−e(−z)
, z = χ − χc

w
, (2)

where χc indicates the peak position at which f (χ ) has the
maximum value of f0 + f1, w is the peak width, and f0 is the
offset such that f (χ ) → f0 at χ → ∞. In the field of fracture
mechanics, the Gumbel distribution is known to describe the
probability distribution of the strength of brittle materials, as
well as other deterioration phenomena and accidental fracture
phenomena over time [31]. Figure 6 shows the confidence
intervals of the four fitting parameters for each investigation
site (the Voronoi simulation results, shown in Fig. 6, are
discussed in Sec. III D). The intervals largely overlap for the
four investigation sites, which supports the robustness of the
functional form of the Gumbel law for the columnar joint.
This is the main result of the present paper.

FIG. 6. Obtained values for the four fitting parameters. Error bars
indicate confidence intervals. V represents the results for the Voronoi
tessellation at itnum = 0, 1, 100 from left to right.

B. Relevance to generalized Gumbel law

We also tested a possibility that our data fit an alternative
class of Gumbel distribution, called a generalized Gumbel
distribution (GGD). The GGD is known to describe non-
Gaussian fluctuation phenomena in a variety of seemingly
unrelated systems, including turbulent flows [32–34], viscous
fluids [35], liquid crystals [36–38], and granular materials
[39]. It was empirically and analytically [30] suggested that
in these fluctuating systems, the temporal fluctuation of a
spatially averaged quantity, χ∗, follows a GGD defined by

fa(χ∗) = aa

wa�(a)

{
e−za e−e(−za )}a

, za = χ∗ − χ∗
a

wa
. (3)

Here,

wa = σ√
ψ ′(a)

, χ∗
a = 〈χ∗〉 + wa{log a − ψ (a)} (4)

and ψ = �′/�, where σ 2 is the variance of χ∗, 〈χ∗〉 is the
average of χ∗, and � is the Gamma function. In Eq. (3),
a is the only free parameter, and it depends on the system.
Particularly, when a = 1, the function form of fa is reduced to
that of f given in Eq. (2).

Table I summarizes the nonlinear square fitting results of
our χ data to Eq. (3). The obtained values of a are fairly
close to a = 1.0 for the four sites, considering wide margins
of error due to the limited number of polygon samples on
the order of O(103). This result may indicate the validity
of GGD-based interpretation of real columnar joint patterns,
while the physical meaning of a remains to be clarified.

C. Contribution to χ from different n-gon sets

The isolated peak at χ = 0 shown in Fig. 5 for the Sm site
as well as the wide error margin of the a value (see Table I)
can be explained by considering the contribution from each
set of n-gons for different n to the χ distribution, as plotted
in Fig. 7. Note that the vertical axis indicates the frequency
of appearance, instead of the probability, in order to show the

FIG. 7. Occurrence frequency of χ for each set of n-gons (n =
4, 5, 6, 7) obtained at the four investigation sites.
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difference in the total number of n-gons observed for different
n. The histogram for n = 4 exhibits a sharp peak close to
χ = 0 for all investigation sites. This possibly occurs because
fluctuation of the quadrilateral shape is severely restricted.
In fact, when the distance between opposite sides happens
to be small, the energy release rate is significantly reduced
[40]. Therefore, as maturation proceeds, the distance between
opposite sides in all quadrilaterals is expected to approach
the characteristic length determined by effective energy re-
lease; subsequently, the quadrilateral shape will approximate
a cyclic quadrilateral. Specifically, at the Sm site, linearly long
cracks and T-shaped junctions, which may have been created
during the initial fracture stage, persist in the outcrop despite
the long maturing process, as clearly observed in Fig. 1. These
T-shaped junctions may promote the generation of quadrilat-
erals, which results in the pronounced peak at χ = 0 observed
in the Sm data shown in Fig. 5. In contrast, the value of χ for
n = 7 is broadly scattered with an almost constant distribu-
tion. This is because when n is large, the internal angle at a
vertex can be occasionally close to 180◦ or a bit larger, causing
a quasi-T-shaped branch (see Appendix C). Because the two
sides extending from this quasi-T-shaped branch should line
up almost linearly, the circumcenter of the triangle containing
this branch point deviates significantly from the circumcenter
of the other triangles. As a consequence, χ for n-gons with
n � 7 exhibits significant fluctuation.

D. Comparison of the Voronoi simulation model
and real columnar joints

To generate the Voronoi tessellation, we used the open-
source program developed by Burkardt [41]. For this MATLAB

code, it is necessary to set the number of iterative steps
(itnum), number of generators (gnum), and number of sample
points in the unit square considered to estimate the Voronoi
regions (snum). In the actual simulations, we varied itnum from
0 to 100 by setting gnum = 1.0 × 105 and snum = 1.0 × 107.
Figures 8(a) and 8(b) show the result of Voronoi tessellation
at itnum = 0; after 100 iterations (itnum = 100), we obtained
a more regular Voronoi tessellation, as shown in Fig. 8(c).
The results of the discrete probability distribution of the χ

value for the Voronoi tessellation created for each iteration
are shown in Fig. 9. As in the case of the field observation
data, all the distributions are upward convex and slightly
inclined to the left. In particular, for the histogram with one
iteration (itnum = 1), both the peak height and tail width are
in quantitative agreement with those of the field measurement

FIG. 8. Simulation results of Voronoi tessellation: (a), (b) initial
condition and (c) 100th iteration.

FIG. 9. Discrete probability distribution of the distortion variable
χ at the Voronoi tessellation. The number of iterative steps is 0,
1, and 10. The fit of each iteration data point to the Gumbel law
specified by Eq. (2) is obtained using the nonlinear least-squares
method.

data. Moreover, the three histograms obtained by the Voronoi
simulations can be well fitted by the Gumbel distribution, as
shown by the curves in Fig. 9.

Figure 10 shows the four fitting parameters of the Voronoi
tessellation for various iterations ranging from 0 to 100.
All the parameters change monotonically as the iteration
proceeds, in a nearly exponential manner, and eventually con-
verge to constant values. To compare the simulation results
with the field observation data, we selected the four fitting
parameters at itnum = 0, 1, and 100, as shown in Fig. 10, and
plotted them in Fig. 6; the values correspond to the leftmost
three data points in each panel of Fig. 6. Clearly, the fitting
parameter values of the Voronoi tessellation at itnum = 1 (solid
symbols) are most similar to those of the actual columnar
joints. The same conclusion is drawn if the data points at
itnum = 1 are replaced by those at itnum = 2, 3, or slightly
larger values (not shown). The results shown in Figs. 6 and 9
validate the theoretical hypothesis that the real columnar joints
matured according to the Voronoi process, and the degree of
maturation is limited to that attained by one or a few iterative
numerical simulations.

FIG. 10. Values of the four fitting parameters for each iterative
step. Only the data points at one iteration are highlighted by cir-
cles (marked in red). Error bars indicate confidence intervals. Inset:
Semilogarithmic plot showing the nearly exponential behavior of the
data.
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IV. DISCUSSION

It is expected that the Gumbel law applies not only to the
solidified lava flow but also to fracturing systems that show
polygonal cracking in general [42,43]. For instance, columnar
jointlike prismatic patterns can be reproduced by table-top
analog experiments using starch-water mixtures [44–49].
Other candidates are two-dimensional polygonal fractures ob-
served at the surface of mud and clay after repeated drying
cycles [50] and polygonal terrain that has undergone an annual
thermal cycle [7], both of which are dominated by Y-shaped
junctions. Considering the similarity in the cracking mech-
anism, it is possible that the Gumbel distribution governs
the cross-sectional shape of this polygonal cracking; partial
experimental verifications on the issue will be presented in
future work.

The numerical simulations quantitatively demonstrated
that the statistical properties of the distortion variable χ

for real columnar joints are consistent with those deduced
from the Voronoi-based maturing process. This result sup-
ports the existing hypothesis that the formation process of
columnar joints can be explained by the coupling of the
isothermal distribution and crack propagation [14]. More-
over, we could reproduce the geometric fluctuation of the
columnar joints with the Voronoi tessellation in only a few
iterations. A large number of iterations is not required for
this reproduction owing to the following reason: In the case
of lava, fractures propagate slowly, and thus, a geological
timescale is required to complete the maturation process; this
timescale corresponds to only one iteration in the context
of Voronoi simulations. Moreover, in reality, the maturation
is likely inhibited by external environmental factors (e.g.,
changes in cooling conditions owing to diastrophism and
sea level changes). The fusion of a few adjacent columns
into one [51], which was not considered in the numer-
ical simulations, may also affect the evolution of the χ

distribution.
Before closing the paper, we emphasize that the existence

of a common rule for the statistics of polygon geometry over
different geological sites is totally nontrivial. The lava we
investigated has different chemical compositions and differ-
ent crack length scales. In addition, environmental conditions
(erosion of solidified lava and heat dissipation, for instance) as
well as physical conditions (spatial distribution of stress field
and temperature field, for instance) during the columnar joint
formation should be also different for each investigation site.
Therefore, there is no trivial reason for our measurement data
from different sites to follow a single particular class of proba-
bility distribution. The present paper also revealed that a series
of environmental and physical factors listed above, which
are locality dependent, can be excluded as a dominant factor
for realizing the universal Gumbel law. Neither lithographic
composition nor crack length scale should be the dominant
factor as they are also different between investigation sites.
These exclusions may provide a guideline for identifying the
dominant factor of the universal fluctuation law using numer-
ical simulations or analog experiments.

V. CONCLUSION

In conclusion, we have demonstrated that polygonal frac-
tures observed at the outcrop of several columnar joints are
commonly described by the Gumbel distribution function.
The robustness of the Gumbel law, governing the spatial fluc-
tuation of the vertex configuration in each polygonal cross
section, is a surprising finding considering the diversity of
the field conditions in terms of the column size, locality, and
lithologic composition. We expect that this discovery will help
establish a classification of polygonal crack patterns that are
ubiquitous in nature.
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APPENDIX A: AREA OF A POLYGON INSCRIBED
IN A CIRCLE

In Appendix A, we prove the following theorem.
Theorem. The area of a convex polygon with sides �i

(i = 1, . . . , n) is maximized when the polygon is inscribed in
a circle. The maximum area is independent of the order of the
sides {�i}.

The following proof is based on the argument presented
by Hewes in Ref. [52]. For the sake of simplicity, we first
show that the above theorem holds for convex quadrilaterals
and then extend it for n-sided convex polygons with n � 5.

Suppose the quadrilateral with sides �i (i = 1, 2, 3, 4) de-
picted in Fig. 11. We assume that the length of each side �i is
fixed. The order in which the sides are connected is arbitrary,
and the angle between the sides can be arbitrarily chosen as
long as the resulting quadrangle is convex. The area S of the
quadrilateral can be computed from

S = 1
2 (�1�2 sin α + �3�4 sin γ ). (A1)

Here, α and γ are the angles between sides �1 and �2 and sides
�3 and �4, respectively. Using the two angles, the length of the

FIG. 11. A convex quadrilateral ABCD and a convex pentagon
ABCHD formed by adding a point H to the quadrilateral.
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diagonal line 	 can be expressed as follows:

	 = (
�2

1 + �2
2 − 2�1�2 cos α

) 1
2 = (

�2
3 + �2

3 − 2�3�4 cos γ
) 1

2 .

(A2)
Using the identity sin2 γ + cos2 γ = 1, we can eliminate γ

from Eqs. (A1) and (A2). We then obtain(
2S − p sin α

q

)2

+
(

k − 2p cos α

2q

)2

= 1. (A3)

Here, p = �1�2, q = �3�4, and k = �2
1 + �2

2 − �2
3 − �2

4 are con-
stants. Therefore, to maximize the quadrilateral area, we must
have

dS

dα
= p

4

(
k sin α − 4S cos α

p sin α − 2S

)
= 0, (A4)

which implies S = (k tan α)/4. Substituting it to Eq. (A3), we
obtain

cos α = k

2(p + q)
= �2

1 + �2
2 − �2

3 − �2
4

2(�1�2 + �3�4)
. (A5)

From Eqs. (A2) and (A5), we deduce that cos γ = − cos α,
i.e., α + γ = π . This corresponds to the necessary and suffi-
cient condition for the given quadrilateral with sides �i (i =
1, 2, 3, 4) to be inscribed in a circle.

We next consider a convex pentagon with sides �i (i =
1, 2, 3, 4, 5), as depicted by ABCHD in Fig. 11. If the pen-
tagon area is maximized, then the quadrilateral ACHD area is
also maximized, because the area of triangle ABC is uniquely
determined. It thus follows that quadrilateral ACHD is in-
scribed in a circle. To determine whether the circumscribing
circle passes by point B, we consider that when the area
of the unchanged pentagon is maximized, then the area of
quadrilateral BCHD is also maximized. Therefore, quadrilat-
eral BCHD should be inscribed in the circle defined by points
D, H, and C. Finally, we conclude that, if the pentagon area
is maximized, the pentagon is inscribed in a unique circle.
Similarly, the inscribed property can be extended to an n-gon
with n � 6.

APPENDIX B: THE LIMITING VALUE OF χ

FOR A CYCLIC POLYGON

In Appendix B, we show that χ defined by Eq. (1) con-
verges to zero in the limit at which the polygon approaches
infinitely a cyclic polygon. Without loss of generality, we re-
strict our argument to the case of a quadrilateral with a certain
symmetry; the argument can be extended straightforwardly to
other general n-gons with n � 4.

First, we consider a square ABCD, as shown in Fig. 12,
centered at the origin with a side length of 2a. Next, the
position of vertex D is displaced by d1 and d2 in the x and
y directions, respectively, and labeled D’. The coordinate of
the circumcenter of triangle ABD’, written as R1 = (x1, y1),
can be expressed as

x1 = Ka

2

(
1

2 + δ1

)
, y1 = 0, (B1)

where

K = δ2
1 + 2δ1 + δ2

2 + 2δ2, δ1 = d1

a
, δ2 = d2

a
. (B2)

FIG. 12. A square ABCD centered at the origin with a side length
of 2a.

Similarly, the coordinates of the circumcenters of triangles
BCD’, ACD’, and ABC given by R2, R3, and R4, respectively,
are expressed as

x2 = 0, y2 = Ka

2

(
1

2 + δ2

)
, (B3)

x3 = y3 = Ka

2

(
1

2 + δ1 + δ2

)
, (B4)

x4 = y4 = 0. (B5)

Using these results, the center of the four circumcenters de-
fined by G = ∑4

i=1 Ri/4 = (xG, yG) becomes

xG = Ka

8

(
1

2 + δ1
+ 1

2 + δ1 + δ2

)
, (B6)

yG = Ka

8

(
1

2 + δ2
+ 1

2 + δ1 + δ2

)
. (B7)

It is readily proven that every ri = |Ri − G| (i = 1, 2, 3, 4)
has the form of

ri = Ka

8
ηi. (B8)

Here, ηi is a function of δ1 and δ2, the functional forms of
which depend on i. As a consequence, rav = ∑4

i=1 ri/4 and
s =

√∑4
i=1 r2

i /4 are given by

rav = Ka

8

(∑4
i=1 ηi

4

)
, s = Ka

8

√∑4
i=1 η2

i

4
, (B9)

respectively, and thus

χ = s

rav
− 1 =

2
√∑4

i=1 η2
i∑4

i=1 ηi

− 1. (B10)

Assuming that the displacement of point D is infinitesi-
mally small so that δ1 � 1 and δ2 � 1, we expand

√∑4
i=1 η2

i

and
∑4

i=1 ηi in terms of δ1 and δ2, and keep the terms up to the
first order. Then, Eq. (B10) can be approximated by

χ = 2(8 − 3δ1 − 3δ2)

16 − 6δ1 − 6δ2
− 1 = 0. (B11)

This result completes the proof.
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FIG. 13. Schematics of a quasi-T-shaped branch.

APPENDIX C: REMARK ON QUASI-T-SHAPED
BRANCHES

In Appendix C, we provide an auxiliary explanation of
quasi-T-shaped branches. As mentioned in the main text, the
internal angle at a vertex of n-gons for large n can sometimes
takes a value close to 180◦, resulting in a quasi-T-shaped
branch as marked in the schematics of Fig. 13. Such quasi-T-
shaped branches are difficult to distinguish from real T-shaped
branches composed of a linear long crack. Therefore, in our
image analysis, Y branches containing the internal angles
the values of which are in the range of 170◦ to 190◦ were
identified as T branches, and these branch points were not
included in vertices of the corresponding n-gons. According
to this criterion, for example, the upper left polygon depicted
in Fig. 13 is regarded as a hexagon, not a heptagon.

FIG. 14. Occurrence frequency of 160◦–170◦ and 190◦–200◦ in-
ternal angles for each n-gons (n = 4, 5, 6, 7, 8) obtained at the four
investigation sites.

Figure 14 shows the occurrence frequency of large internal
angles within each set of n-gons at different investigation sites.
The vertical axis indicates the percentage of the number of
internal angles the values of which are in the range of 160◦
to 200◦ (with those close to 180◦ being excluded under the
above-mentioned criterion). It follows that the large internal
angles are more likely to appear in n-gons with larger n, which
causes the broad distribution of χ for polygons with n � 7 as
presented in Fig. 7.
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