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Dislocation avalanches from strain-controlled loading: A discrete dislocation dynamics study
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We study strain-controlled plastic deformation of crystalline solids via two-dimensional discrete dislocation
dynamics simulations. To this end, we characterize the average stress-strain curves as well as the statistical
properties of strain bursts and the related stress drops as a function of the imposed strain rate and the stiffness of
the specimen-machine system. The dislocation system exhibits strain-rate sensitivity such that a larger imposed
strain rate results in a higher average stress at a given strain. In the limit of small strain rate and driving spring
stiffness, the sizes and durations of the dislocation avalanches are power law distributed up to a cutoff scale,
and exhibit temporally asymmetric average shapes. We discuss the dependence of the results on the driving
parameters and compare our results to those from previous simulations where quasistatic stress-controlled

loading was used.
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I. INTRODUCTION

Plastic deformation of crystalline solids is governed by
stress-driven collective dynamics of dislocations [1,2], often
exhibiting “complexity” manifesting itself as fluctuations of
the deformation process, i.e., dislocation avalanches span-
ning a wide range of sizes [3,4]. For small, micrometer-sized
crystals, these avalanches are visible directly as fluctuations
and irregularities in the stress-strain curves, with quantities
like strain increments (i.e., strain bursts) and/or stress drops
exhibiting broad, power-law-like size distributions [5]. When
deforming macroscopic samples, one often observes broadly
distributed acoustic emission energies and amplitudes [6,7],
even if the stress-strain curves tend to be smooth. Besides the
acoustic emission measurements, high-resolution extensom-
etry experiments on Cu single crystals have been performed
to analyze the statistics of the local strain rate and strain
bursts [8]. In addition, dislocation plasticity is also dependent
on crystal structure and orientation [9], and is characterized
by size effects—typically in agreement with the paradigm
“smaller is stronger” [10—12]—as well as rate effects, where
the flow stress exhibits a dependence on the imposed strain
rate (often referred to as “strain-rate sensitivity”) in strain-
controlled simulations and experiments [12—-15].

To grasp the origin and nature of the experimentally ob-
served broadly distributed critical-like dislocation avalanches
and related phenomena, a wide range of numerical work
has been performed. Notable examples are given by discrete
dislocation dynamics (DDD) simulations, considering either
simplified two-dimensional (2D) geometries with pointlike
dislocations [16,17], or more realistic 3D systems describing
dislocations as flexible lines [18,19]. These simulations have
contributed to a theoretical picture where the key concepts
include dislocation jamming [16,18,20] for systems with neg-

*david kurunczi-papp @tuni.fi

2470-0045/2021/104(2)/025008(11)

025008-1

ligible quenched disorder interacting with the dislocations,
which are often found to exhibit slow, glassy dynamics, as
well as (de)pinning transitions of dislocation assemblies in
systems where strong enough static obstacles such as pre-
cipitates interfere with dislocation motion [17,19]. Another
numerical model successfully reproducing the properties of
dislocation systems is the integer-valued automaton repre-
senting the crystal as an array of Frenkel-Kontorova chains
[21,22]. This computationally efficient 2D model, accounting
for both short- and long-range elastic interactions, including
nucleation and immobilization, is capable of reproducing crit-
ical exponents of compression tests on Mo submicron pillars
[23,24].

Many previous DDD simulations in 2D and 3D with the
aim to model strain bursts in crystal plasticity have focused
on stress-controlled loading where the applied stress o is
increased quasistatically [16-19]. This protocol leads to a
staircase-like stress-strain curve o (€), consisting of horizontal
segments (the strain bursts) where strain is accumulated at
constant stress, separated by parts where the stress increases,
producing quasireversible deformation [25]. This quasistatic
stress ramp loading has been demonstrated to result in power-
law stress-resolved strain burst distributions P(Ae€; o) with a
stress-dependent upper cutoff Aey(o),

P(Ae;0) o (Ae) ™ f| 2|, (1)
Aeg(o)

where f is a scaling function, typically an exponential, f(x) =
exp(—x). The exponent 7. has been found to be close to
7. ~ 1 for 2D pure dislocation systems [16]. Moreover, the
cutoff scale Aey(o) is found to exhibit an exponential increase
with o, and a power-law dependence on the number of dislo-
cations N [16]. One may also consider the stress-integrated
distribution Pnt(A€) = fP(Ae;a)da ~ (Ae)~ "N which
has been found to be characterized by a larger exponent value
of 7 (Nt & 1.3 in stress-controlled 2D DDD simulations [16].

©2021 American Physical Society


https://orcid.org/0000-0003-0598-630X
https://orcid.org/0000-0001-6627-3915
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.025008&domain=pdf&date_stamp=2021-08-25
https://doi.org/10.1103/PhysRevE.104.025008

DAVID KURUNCZI-PAPP AND LASSE LAURSON

PHYSICAL REVIEW E 104, 025008 (2021)

Similar results have been obtained also in stress-controlled 3D
DDD simulations of pure Al single crystals [18].

Here, we perform simulations of a 2D DDD model us-
ing strain-controlled loading, to characterize the dislocation
avalanche statistics and related rate effects, and contrast the
results with those from previous studies of the same and
related models using quasistatic stress-controlled loading.
When using strain-controlled loading, the stress-strain curves
exhibit a sawtooth-like shape, consisting of a series of stress
drops, coinciding with the strain bursts, separated by segments
where o increases. We note that depending on the employed
loading mode (stress versus strain-controlled [26]), previous
studies have observed different avalanche size scaling behav-
iors both theoretically and experimentally [27,28].

First, we demonstrate the system-size dependence of rate-
dependent plastic deformation. Our findings show that small
systems are characterized by large fluctuations, the magnitude
of which is reduced as the system size is increased [10].
Afterwards, having chosen a sufficiently large system, by
considering the average stress-strain curves, we find a clear
rate effect in the average flow stress at a given strain, i.e.,
the 2D DDD model exhibits nonzero strain-rate sensitivity
[12,14,15]. Interestingly, our results suggest that dislocation
avalanches in the simple 2D DDD model appear to exhibit
nonuniversal avalanche dynamics in that the statistical prop-
erties of the avalanches seem to depend on the parameters
of the strain-controlled driving, i.e., the imposed strain rate
and the stiffness of the specimen-machine system. This also
implies that we find different avalanche exponents for the two
loading modes, i.e., stress-controlled and strain-controlled
loading. In the limit of small imposed strain rate and stiffness
of the specimen-machine system, we find consistently larger
exponent values for both strain burst and stress drop distribu-
tions than found previously for the strain bursts in quasistatic
stress-controlled loading [16]. We discuss how different def-
initions of the avalanche threshold arising in the context of
the two loading modes might give rise to these differences
in observed avalanche scaling. Furthermore, we characterize
the dependence of the average avalanche shape, including its
temporal asymmetry, on the driving parameters. We find a
clear temporal asymmetry exhibiting dependence on both the
imposed strain rate and the stiffness of the specimen-machine
system.

The paper is organized as follows: In Sec. II, we present
the DDD model used in our study, and show the results from
numerical simulations of the model in Sec. III, starting with
the analysis of system-size effects in Sec. IIl A, and the char-
acterization of the average stress-strain curves in Sec. III B,
followed by statistical analysis of stress drops and strain in-
crements as well as event durations in Sec. IIIC, and the
average avalanche shapes in Sec. III D. The paper is finished
with conclusions and discussion in Sec. IV.

II. DDD SIMULATIONS

The DDD model we consider is a simple and compu-
tationally efficient 2D model. The parallel, straight edge
dislocations with equal number of positive and negative Burg-
ers vector of magnitude b are represented in the 2D Cartesian
coordinate system as point-like objects moving along parallel

lines in the x direction. The dynamics of the dislocations
is simulated in a square box of linear size L with periodic
boundary conditions, initially containing Ny dislocations. The
long-range shear stress field of a single dislocation is given by

o4(r) = Db)(%_vﬁ’;) with the appropriate elastic constant D as
the prefactor [29]. Assuming overdamped dynamics where the
dislocation velocity is proportional to the total Peach-Koehler
force acting on it, the equation of motion of the ith dislocation

along the x direction becomes

1%? :Sib|:ZSjO'd(I‘i—rj)~|—Ui|, (2)
J#

where M is the dislocation mobility, s; € {—1, 1} is the sign

of the ith Burgers vector, and o the external shear stress.

The strain-controlled loading is realized by adjusting the time-

dependent external stress o (¢) at each time step according to

o(t) = k[éat — €(1)], 3)

where k is the driving spring stiffness (“stiffness of the
specimen-machine system”) and €, the imposed strain rate.
Notice that the driving protocol of Eq. (3) pushes the time-
average of € towards the imposed strain rate €,, which also
acts as a threshold level to define dislocation avalanches or
strain bursts as events during which ¢ exceeds €,. It should
also be noted that the strain control in our simulations is not
perfect, but an intermediate situation between “soft” (stress-
controlled) and “hard” (strain controlled with an infinitely
stiff machine) driving. As we consider different values of the
specimen-machine stiffness, we are simulating systems with
different levels of strain control, such that the limiting case of
a vanishing stiffness would approach purely stress-controlled
loading. However, the driving protocol used in our study will
ensure that in the long-time limit the time-averaged strain rate
will converge to the imposed strain rate, and in this sense
strain is controlled in our simulations. We also compare the
results from our strain-controlled simulations with ones using
stress-controlled loading, where a small strain-rate threshold
is defined, and o is kept constant whenever the instantaneous
€ exceeds the threshold (i.e., during the strain bursts), and
increased at a slow rate in between the bursts (when € is below
the threshold).

In what follows, lengths, times and stresses are measured in
units of b, (MDb)~" and D, respectively. Figure 1(a) illustrates
the simulation box, including the dislocations with positive
and negative Burgers vectors, respectively, and the strain-
controlled loading with its governing equation. A resulting
stress-strain curve is shown in Fig. 1(b), where the inset
zooms on typical strain bursts and indicates the definitions
of a monotonic stress drop Ao and its corresponding strain
increment or strain burst Ae. The corresponding strain rate
¢ = (b/L*)Y ;si% and collective velocity veon = 1lez %]
signals as well as the imposed strain rate é, as a function
of time are shown in Fig. 1(c). A notable difference between
these two signals is that the strain rate can become negative,
while the collective velocity is a strictly positive quantity.
The strain-rate signal é together with Eq. (3) explains the
occurrence of stress drops: o is a monotonically decreasing
function of time whenever € > €,.
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FIG. 1. (a) A schematic figure illustrating the simulation setup,
with red and blue symbols corresponding to positive and nega-
tive Burgers vectors of the edge dislocations, respectively, under
strain-rate-driven shear; periodic boundary conditions apply. (b) The
resulting stress-strain curve for the parameters k = 1 and ¢, = 1073,
indicating also the definitions of the monotonic stress drops Ao and
the corresponding strain increments Ae. (c) Strain rate €, collective
velocity v signals as a function of time and the imposed strain-rate
threshold €,.

To eliminate eventual singularities caused by the interac-
tion of two dislocations very close to each other, annihilation
of two dislocations with opposite Burgers vectors is simu-
lated by removing both from the system when their distance
becomes less than b [15,30-32]. Other features commonly
implemented into 2D DDD simulations, such as immobile
impurities accountable for dislocation pinning [33-35], and
dislocation climb or cross-slip allowing the dislocations to
move in the y direction [30,33] are not included into this sim-
plified model. The lack of nucleation in our 2D DDD model
is a nonnegligible limitation, however real dislocation multi-
plication mechanisms such as Frank-Read sources [31,35] are
fundamentally a property of curved, flexible dislocation lines,
and hence they cannot be properly modelled in our 2D system,
where the dislocations are understood to be straight lines with
the line direction perpendicular to the simulation plane. These

somewhat arbitrary choices of the simulation mechanisms are
limitations of the 2D DDD models in general, and to properly
describe such processes one would need to consider 3D DDD
simulations. Here, considering the same 2D DDD model as in
previous works where stress-controlled loading was applied
[16,17] is justified to be able to compare our results with those
studies.

In this study we consider initially random configurations
of N, dislocations in a simulation box of linear size L with
the initial dislocation density fixed to py = Ny/L? = 0.04.
These random dislocation configurations are first let to relax
at 0 =0 for r = 15000 to reach a metastable dislocation
configuration containing various dislocation structures such
as dislocation dipoles and walls. During this initial relaxation,
approximately half of the dislocations get annihilated. After
this initial relaxation stage, the loading protocol of Eq. (3)
is switched on, and the resulting stress-strain curve is mea-
sured for each sample by storing the values of ¢ and € =
(b/L?)Y",; si:Ax; during the simulations.

II1. RESULTS

A. System-size effects

First we investigate the system-size effects by varying the
number of initial dislocations Ny, while fixing the imposed
strain rate €, = 107> and the spring stiffness k = 0.1. Figure 2
shows representative single-sample (dashed lines) and the
ensemble-averaged (solid lines) stress-strain curves. Smaller
systems result in accumulation of larger stress during the
loading process, and the single-sample curves exhibit high
deviations from the averaged curves. Additionally, the small
number of dislocations allows the formation of fewer disloca-
tion structures, resulting in abrupt single-sample stress-strain
curves. Above a number of initial dislocations Ny = 900 the
system-size dependence of the accumulated stress starts to be
weaker, and the fluctuations around the average curves (i.e.,
the dislocation avalanches) become smaller.

The integrated distributions of the stress drop magnitudes
Pint(Ao) and strain increments Pint(Ae€) for varying number
of initial dislocations N, are shown in Figs. 2(b) and 2(c),
respectively. The resulting cutoff scales of the distributions
as a function of Ny are shown in the corresponding insets.
Generally, small systems result in larger cutoffs, however
the evolution of the cutoff with increasing system size slows
down to an extent that the model at hand with the system
sizes reachable numerically is unable to reach the vanishing
stress drop magnitudes and strain increments of macroscopic
systems. This is due to the long range pair interaction of
dislocations, implying that the computational time increases
quadratically with the number of dislocations. Thus, for the
rest of this work the number of initial dislocations is held
constant at Ny = 1600, corresponding to a linear system size
of L = 200.

B. Stress-strain curves

Examples of single-sample as well as ensemble-averaged
stress-strain curves are shown in Figs. 3(a), 3(b) and 3(c)
with dashed and solid lines, respectively. In general, the prop-
erties of these curves depend on the driving parameters €,
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FIG. 2. (a) Average stress-strain curves (o (¢€)) (with the average
taken over different realizations of the initial configuration, solid
lines) and examples of individual, single-sample stress-strain curves
(patterned lines) for varying number of initial dislocations N, (the
corresponding average curve increases with decreasing Ny), an im-
posed strain rate €, = 1073 and driving spring stiffness k = 0.1.
Integrated distribution of the (b) stress drop magnitudes Pinr(Ao)
and (c) strain increments Pint(Ae€) for an imposed strain rate €, =
1073 and driving spring stiffness k = 0.1 for varying system sizes
defined by the initial number of dislocations Ny. The upper cutoff
evolution of the distributions are shown in the insets.

and k. Varying k with a fixed €, [see Fig. 3(a)] shows that
even if the average stress-strain curves are largely unaffected
by the value of k, the magnitude of the fluctuations around
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FIG. 3. Average stress-strain curves (o(e€)) (with the aver-
age taken over different realizations of the initial configuration,
solid lines) and examples of individual, single-sample stress-
strain curves (patterned lines) for (a) an imposed strain rate
&, = 107> and different driving spring stiffnesses k; (b) a fixed
driving spring stiffness k = 0.1 and different imposed strain rates
€, (the corresponding average curve increases with increasing €,);
(c) both fixed driving spring stiffness k = 0.1 and strain rate
€, =107, showing additionally the standard deviation (shaded
region) and multiple single-sample stress-strain curves. (d) The
dependence of the ensemble-averaged stress-strain curves on the
strain rate €, at specific strain values € obeying the shifted power
law [Eq. (4)].
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the average curve increases significantly with increasing k.
However, varying €, with a fixed k [see Fig. 3(b)] results in
a significant dependence of the average stress-strain curves on
€., while the fluctuations visible in the single-sample stress-
strain curves appear to be less sensitive to €,. To visualize
the sample-to-sample variation of the individual stress-strain
curves Fig. 3(c) shows multiple single-sample curves along
with the ensemble-averaged stress-strain curve and its stan-
dard deviation for the case with ¢, = 107> and k = 0.1.

A detailed study of the properties of the average stress-
strain curves for different imposed strain rates is shown in
Fig. 3(d). The dependence of the accumulated average stress
at a given strain € on the imposed strain rate ¢, is well-
described by a shifted power law

o(€, &) = 0(€, &, = 0) + A&, 4)

with the exponent b =~ 0.4 and the shift equal to the stress
at zero strain rate. The exponent b characterizing the rate
dependence of the stress level at a given strain in our 2D DDD
simulations is smaller than that in the linear dependence found
recently for 3D simulations in Ref. [13]. This applies to all the
tested strains during the loading process.

C. Stress drop and strain burst statistics

First, we investigate the nonstationary behavior of the dis-
tributions using the curves obtained for the imposed strain
rate ¢, = 107> and spring stiffness k = 0.1. Figure 4 shows
the strain burst distributions P(Ae€) with stress [Fig. 4(a)] and
strain [Fig. 4(b)] binning, where the values in the legend repre-
sent the upper limits of the bins. A strain burst is characterized
by the stress and strain values at which the event starts. To
assure that every strain burst finishes before the simulation
ends at e = 0.2 a strain interval above the largest bin is not in-
cluded. The stress-binned distributions can be well-described
by power laws with exponential cutoffs [Eq. (1)]. The data to
be fitted was chosen so that the fitting error in the pure power-
law regime would be minimal, and the fits of this form are
indicated by lines in Fig. 4. The cutoffs, shown in the insets of
Fig. 4, exhibit a dependence on stress and strain. The general
trend is that for small stresses and strains, the cutoffs increase
with stress and strain (i.e., the avalanche dynamics is initially
nonstationary), but the growth of the cutoffs seems to slow
down and saturate for larger stresses and strains, resulting in
an approach to a quasistationary avalanche dynamics towards
the end of the simulation. For the largest bins considered,
both stress and strain binned distributions appear to exhibit a
power-law exponent t. ~ 1.6, i.e., a significantly larger value
than found in previous studies employing stress-controlled
loading [16]. In what follows, due to this quasistationary
nature of the avalanche dynamics after the initial transient, we
focus on considering the “integrated” distributions, where all
events irrespective of the stress or strain at which they occur
are included in the same distribution.

Here, we aim at shedding some light on the origin of
the large exponent value 7, &~ 1.6 found above. In previous
studies using quasistatic stress-controlled loading a collective
velocity threshold was driving the loading process [16—19],
meaning that a collective velocity below the threshold re-
sulted in stress increasing with a small rate, while during a
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FIG. 4. (a) Stress and (b) strain binned distributions of the strain
increments P(Ae¢) for an imposed strain rate ¢, = 10~ and driving
spring stiffness k = 0.1. The legend shows the upper limit of the
corresponding stress and strain bins. The insets show the evolution
of the upper cutoff with the stress and strain levels, respectively.

collective velocity above the threshold strain was accu-
mulated at a constant stress. The same collective velocity
threshold also defined the avalanches. A similar protocol,
defining the loading process by a strain-rate threshold, leads
to staircase-like stress-strain curves, where we take the
avalanche definitions (in contrast to the imposed strain rate €,
of the strain-controlled loading) to not follow directly from the
loading protocol, and instead consider an arbitrary avalanche
threshold é€j;y,. Figure 5(a) shows a sample strain-rate signal
for a strain-rate threshold based quasistatic stress-controlled
loading, where the horizontal lines (including the employed
driving threshold ¢, = 0.5 x 107> and the time average of
the strain rate (€),) represent possible avalanche thresholds.
Notice especially that with the exception of a few short neg-
ative spikes, €(z) is either above the driving threshold, or
only very slightly below it, implying that the mean value
of the signal is well above the driving threshold. The inte-
grated strain burst distributions Pnt(A€) for these avalanche
thresholds (accounting for the variation of the strain-rate time
average (¢), from sample to sample) are shown in Fig. 5(b).
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FIG. 5. (a) Sample strain rate ¢ signal as a function of time
for stress-controlled loading including different avalanche thresholds
éim (With 0.5 x 1073 being the driving threshold) and the strain-rate
time average (€),; and (b) strain increment distributions of samples
with stress-controlled loading for varying avalanche thresholding,
including the strain-rate time average (€), as a threshold and the
resulting power-law exponents in the inset.

The tails of the distributions are fitted with a power law
with exponential cutoff according to Eq. (1), indicated by
solid lines in the main panel and the corresponding exponents
7. N7 1n the inset. For the lowest avalanche threshold, which
corresponds to the driving threshold, the power-law exponent
Te Nt = 1.25 £ 0.03 is comparable to the literature value of
1.3 (where collective velocity threshold was used as both
the driving and the avalanche threshold) [16]. However, as
the avalanche threshold increases and distances itself from
the driving threshold, the power-law exponent is found to
increase monotonically. Notice that as the threshold increases,
the avalanche events defined by the thresholding process are
increasingly the individual short spikes in the rather spiky
€(t) signal, and our analysis shows that these exhibit a larger,
threshold-dependent exponent as compared to the events de-
fined by the driving threshold. Given that strain-controlled
loading imposes a threshold equal to the mean of the é(r)
signal, this finding could explain the larger exponent found
above for that driving protocol.

We then proceed to study the integrated dislocation
avalanche distributions using strain-controlled loading. Fig-
ure 6 shows the integrated distributions of the stress drop
magnitudes Pnr(Ao) [Fig. 6(a)] from our strain-controlled
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FIG. 6. Integrated distributions of the (a) stress drop magnitudes
Pnt(Ao), (b) strain increments Pnt(A€), and (c) avalanche du-
rations Pr(T) for an imposed strain rate €, = 107> and varying
driving spring stiffnesses k, with corresponding power-law exponent
obtained from the fits shown in the insets.

simulations, those of the corresponding strain increments
Pint(A€) [Fig. 6(b)], as well as of the avalanche durations
Pint(T) [Fig. 6(c)] for an imposed strain rate of €, = 1073
and spring stiffnesses k varying in a range of two decades
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(corresponding to different levels of strain control). The tails
of the distributions are again fitted with a power law termi-
nated at an exponential cutoff according to Eq. (1). In the
case of the stress drop distributions [Fig. 6(a)], the fitting
range depends heavily on the spring stiffness k, such that
the range of Ao values following a power-law distribution
extends to smaller Ao values for smaller k. Below this interval
the distributions flatten and hence can no longer be described
by a power law. The resulting power-law exponents 7, Nt as
a function of k lie within the interval [1.3 — 1.7], such that
the largest exponent value 7, Nt &~ 1.7 is obtained for the
smallest k. [see the inset of Fig 6(a)]. This small-k limit also
has the longest power-law scaling regime, while the largest k
values considered lead to a very narrow (possibly nonexistent
for k = 10) scaling regime, and hence the exponent values
from the fits in this limit might not be very accurate (the
same applies to the k = 10 strain increment and event duration
distributions, discussed below). As a consequence, the large k
limit is expected to break scale invariance. The cutoff scale
Aoy of the stress drop distribution is found to increase with
increasing k.

The strain increment distributions Pyt (Ae€) [Fig. 6(b)] ex-
hibit many similarities to the stress drop distributions, such
as flattening of the distributions below the pure power-law
regime and power-law exponent 7 ny depending on k in a
similar way. Specifically, the longest power-law regime is
again obtained for the small k£ = 0.1, and is characterized
by an exponent 7. ~ 1.7. However, the lower limit of the
power-law regime is found to be roughly independent of k,
and the cutoff scale Ae¢p exhibits the opposite dependence
on k compared to the stress drop distributions, i.e., a larger
Agq is observed for smaller k. The similarities between the
stress drop magnitude Ao and strain increment Ae distribu-
tions can be interpreted by considering the driving equation
Eq. (3), ending up with the expression Ao = k[é,T — A€],
where T is the avalanche duration. Thus, in the ideal case
of an infinitesimally low applied strain rate €,, the magni-
tudes of these are simply proportional, Ao = —kAe, so that
one expects the stress drop and strain burst distributions to
scale with the same exponent. Finite €, results in a correction
such that Ao is a sum of k¢,T7 and —kAe, with both of
these contributions obeying their own truncated power-law
distributions.

The avalanche duration distributions Pnt(7) [Fig. 6(c)]
show a very similar behavior to the strain increment distri-
butions, with the evolution of the cutoff scale with k£ and the
lower limit of the fitting range being independent of k be-
ing the common properties. Also the k-dependent power-law
exponents t7 Nt obtained from the fits are rather similar to
the corresponding e Nt’s, With 77 vt & 1.75 for the small
k=0.1.

Figure 7 shows the corresponding distributions for a fixed
spring stiffness k = 0.1 (“soft spring”), varying the imposed
strain rate €,. First, the stress drop distributions Pnr(Ao) in
Fig. 7(a) have a cutoff Aoy shifting to larger values as the
imposed strain rate ¢, decreases. The combination of a soft
spring (k = 0.1) and high strain rate (¢, = 10 x 107°) results
in a very small number of stress drop and strain burst events
per stress-strain curve, and hence the distribution cutoff for
¢, = 10 x 1073 is not well-resolved. The power-law part is

5
(a) 10 _:‘x
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4 €, =06x10
10% ¢ éZ:SXIWEA'
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10 €0 =05x107°
o 102 [ 4
4
e 100} 10° ¢, 3
d: 100 (0.5 1 3
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10° ¢ ; ; . ,
(b) 4 €a=10x107" =

104 5:.AA ¢ =6x1075 1

e3ld 1075
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Pint(A€)

Pixr(T)
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FIG. 7. Integrated distributions of the (a) stress drop magnitudes
Pnt(Ao), (b) strain increments Pnt(Ae€), and (¢) avalanche dura-
tions Pyt (T') for a fixed driving spring stiffness kK = 0.1 and varying
imposed strain rates €,, with corresponding power-law exponent
obtained from the fits shown in the insets.

most pronounced in the limit of low strain rates, with the
exponent for €, = 0.5 x 1073 given by 7, Nt ~ 1.7.

Figure 7(b) shows the strain-rate dependence of the strain
increment (strain burst) distribution Pint(A€). In the limit
of low strain rate, the strain-controlled distributions have an
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exponent TNt ~ 1.6 and 7. Nt seems to slightly increase
with increasing €,. Notice, however, that for large €, there are
not that many events per stress-strain curve, and hence the
accuracy of the measured exponent is limited.

The avalanche duration distributions Pyt (7) for the fixed
spring stiffness [Fig. 7(c)] visualizes well how the events
take place for varying strain rates €,. The lowest €, generally
results in longer events, and the cutoff 7j of the event dura-
tion distribution decreases with increasing €,. The power-law
exponent 77 Nt is found to be around 1.7 for the lowest strain
rate, and possibly exhibit a modest increase with €,. However,
the lack of statistics for the highest strain rates, together with
the limited extent of the power-law scaling regime, might
render the high-é, exponents somewhat inaccurate.

Having seen the behavior of the integrated distributions for
varying parameters €, and k, we come to conclusions relating
the present model to the previously implemented systems
using quasistatic stress-controlled loading. In the limit kK —
0 and fixed €, our model would approach stress-controlled
loading, however the threshold value applied to the strain-rate
signal to define the avalanches needs to be considered addi-
tionally. Thus, enforcing a very low imposed strain rate €,, SO
that the threshold (equalling ¢,) would approach zero, is also
required to reproduce stress-controlled simulations. The diffi-
culty arises from the implementation of the strain-controlled
loading, where taking the limit of both €, and k going to
zero would result in infinitely slowly progressing simulations.
Also, the avalanche distributions even for the smallest ¢, and
k considered in our study appear to exhibit differences com-
pared to stress-controlled simulations (notably, 7. Nt =~ 1.3
for stress-controlled loading [16]). Hence, using our simula-
tion results, we cannot conclude that our avalanche behavior
would be fully in agreement with the stress-controlled loading
mode, even if in the limit of k — 0 one would expect to reach
a limit characteristic of quasistatic stress-controlled loading.

The scaling of the average stress drop magnitude (Ao (7))
and average strain increment (Ae (7)) with the event duration
T isreported in Fig. 8. In the midparts of their duration ranges,
both scale with the event duration as 77, where x = o and
€ for stress drops and strain increments, respectively. The
exponents Y, [Figs. 8(a) and 8(b)] and y. [Figs. 8(c) and 8(d)]
are both close to unity—in good agreement with the scaling
relation y, = (7 — 1)/(7y — 1), given that 7, and 7 were
above found to exhibit similar values—but possibly exhibit
a weak dependence on k and €. Solid lines in Fig. 8 indicate
the exponent values in the limiting cases, i.e., for the largest
and smallest k£ and &,. In the limit of low strain rate and soft
spring (¢, = 0.5 x 107> and k = 0.1), we find y, ~ 1.1 and
¥e & 1.05. We note that the value of the scaling exponent
obtained for quasistatic stress-controlled loading, y. = 1.32
[16], is significantly higher than our y, for strain-controlled
loading, again highlighting the difference between the two
loading protocols. It is also worth pointing out that the am-
plitudes of the (Ao (T')) and (Ae(T)) curves depend on k and
€,. The amplitude of (Ao (T')) increases quite strongly with &,
while that of (Ae(T)) is essentially independent of k. At the
same time, amplitudes of both (Ao (7)) and (Ae(T)) increase
with &,, with the amplitude of (Ae(T")) exhibiting a stronger
€, dependence.

T
100 10! 102

T
10" 102

10() 103
1072 ‘ (b) 11072
Yo = 1.0¢ 1074ﬁ
/ b
o 3
Pheos ~
o i 1106
B e, =10 x 1070
o e=6x10"°
. € =3x1075
ba=1x1077 «
(d) ¢4 =05x 107,00 ot
| ul L) 1072

FIG. 8. Scaling of the (a, b) average stress drop magnitude
(Ao (T)) and (c, d) average strain increment (Ae(7)) with the event
duration T'; (a, c) for an imposed strain rate €, = 107> and varying
driving spring stiffnesses k, and (b, d) for a fixed driving spring stiff-
ness k = 0.1 and varying imposed strain rates €,, respectively. Lines
correspond to power-law fits to the data with largest and smallest k
and €,, with the corresponding exponent values indicated in the plot.

D. Average avalanche shapes

In addition to the probability distributions of sizes and
durations, as well as the scaling of the average size with the
duration, avalanches are often characterized by their aver-
age shapes [36,37]. In plasticity the event shape means the
average strain-rate profile from the start of the strain burst to
the end of it, with the threshold strain rate €, subtracted from
the signal i.e., (é(%) — &,). Following Ref. [37], we expect
such average shapes to be parameterized by the exponent y,
which we expect to equal y,, characterizing the average stress
drop magnitude scaling (Ao (T)) with the event duration T
[given that Ao =k fOT (€ — €,)dt is proportional to the strain
burst size obtained when subtracting the threshold strain rate
€, from the é(¢) signal], and a parameter a describing the
temporal asymmetry of the avalanches,

() -el=r -] =53]

Eq. 5 consists of a symmetrical part parameterized by y, and
a lowest order correction to describe a weak asymmetry of the
shape, quantified by a.

Figure 9 shows the average strain burst shapes for events
with avalanche durations 7 found in the power-law regime
of the respective distributions, shown in Figs. 6(c) and 7(c).
Table I shows the minimum and maximum event durations
included in the average when computing the average shapes
shown in Fig. 9. The shapes for the fixed strain rate ¢, = 107>
and varying spring stiffnesses k, shown in Fig. 9(a) along
with fits of the form of Eq. (5) (lines), exhibit a shift in
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T T T T TABLE I. Minimum and maximum avalanche durations 7" be-
(a) 1 longing to the power-law part of Pyt (7') for different values of k£ and
€,4, corresponding to the duration range included in the average when
08 computing the average strain burst shapes shown in Fig. 9.
=] .
£ k €0 (x107%) Tain Tonex
]
A 3 1 28.41 108.0
- 1 1 21.12 145.3
< 04 0.3 1 21.12 1453
Rog 0.1 1 21.12 195.5
0.1 10 2.75 36.31
0.2 0.1 6 2.57 39.30
0.1 3 4.73 63.42
0 0.1 0.5 38.41 271.2
of Fig. 8(b), similarly to the varying spring stiffness case.
' ' ' ' All strain-rate values result in a leftward asymmetric shape
(b) 1+ . . function (positive a). Higher strain rates have flatter peaks and
ey temporal asymmetry parameters closer to zero. We note that
. 08 L v/ 6 —10x10°5 | similar asymmetric avalanche shapes have been observed be-
§ ‘éa — 6 x 103 fore in 2D DDD simulations using a different driving protocol
3 e e:a:3><10:2 . | B
| : C€a=1x 1()75 .
o fa =05 1077« IV. DISCUSSION AND CONCLUSIONS
~
= 0-4 10% & To conclude, we have presented an extensive study of dis-
he 0. location avalanches from strain-controlled loading in a simple
0.2 8 2D DDD model. First, we found rate dependent deformation
1'2 1o such that the average stress at a given strain is higher for a
0 Sl . . . higher imposed strain rate. For strain-controlled loading, the
0 0.2 0.4 0.6 0.8 1 broadly distributed dislocation avalanches are visible as fluc-

t/T

FIG. 9. Average strain burst (avalanche) shapes normalized by
their maximum values (€(¢/7T) — €,)norm foOr (a) an imposed strain
rate €, = 1075 and varying driving spring stiffnesses k; (b) a fixed
driving spring stiffness £k = 0.1 and different imposed strain rates
€,, also showing the resulting fitting parameters from Eq. (5) in the
insets.

their asymmetry from right to left with decreasing spring
stiffness, with a increasing from a slightly negative value
for k = 3 to a large positive value for small k. As in case
of k =10 a pure power-law regime cannot be defined, we
could not determine a suitable averaging range for that case,
and hence the k = 10 shape is not shown in Fig. 9(a). The
scaling exponent y obtained from the fits of Eq. (5) to the data
shows smaller variation with the spring stiffness; however,
the values y &~ 1.25-1.35 do not match very well with the
¥, exponents obtained for the scaling of the average stress
drop magnitudes (Ao (T)) with T [Fig. 8(a)]; this could be
due to the rather strong asymmetry distorting the fitted value
of y, given that Eq. (5) assumes the asymmetry to be small.
Figure 9(b) shows the average avalanche shapes for the fixed
spring stiffness k = 0.1 and varying the strain rate €, together
with their fits to the model given by Eq. (5). The resulting
exponents y ~ 1.25-1.5 (with y =~ 1.25 found for the lowest
€,) are again somewhat higher than the scaling exponents

tuations around the average stress-strain curves in the form of
a sequence of stress drops during which strain is accumulated
in bursts. Distributions of both the monotonic stress drops and
strain bursts as well as their durations are well-described by
power laws with cutoffs.

In general, our results suggest that these distributions might
be nonuniversal such that both the measured exponents as
well as the cutoff scales exhibit dependence on ¢, and k.
Interestingly, in the limit of low driving spring stiffness and
low imposed strain rate, we found consistently larger expo-
nents for distributions of both stress drops and strain bursts as
compared to the exponent of the strain burst distribution found
before in simulations employing quasistatic stress-controlled
loading [16], although a crossover between the two loading
modes was initially expected. We note that this finding of
apparently loading mode dependent statistics of dislocation
avalanches is in contrast to results from a recent analysis of
a mean field model [38], and, more generally, to the scaling
picture of depinning phase transitions. In the latter case the
avalanche size exponent would be independent of the driving
protocol, and only the avalanche size distribution cutoff is
affected by the driving parameters. Specifically, for constant
velocity driving of elastic interfaces in random media close
to the depinning transition, the driving spring stiffness con-
trolling the rate at which the driving force decreases during
avalanches is found to tune the cutoff avalanche size while the
avalanche size exponent remains unchanged [39]. Here, we
have studied a dislocation system which is known to exhibit
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“glassy features” [18], such as “extended criticality” under
quasistatic stress-controlled loading [16,17,19], instead of the
typical signatures of depinning phase transitions. Here these
features are manifested as a larger avalanche size exponent in
the limit of small k and €, than the one found when employ-
ing the quasistatic stress-controlled loading where applied
stress is kept constant during the avalanches. Our study of
quasistatic stress-controlled loading with strain-rate thresh-
olding shows, however, that the power-law exponent depends
on the definition of the avalanche (given by a strain-rate
threshold in this case), being able to reach values up to
Te Nt ~ 1.8 for high strain-rate thresholds, comparable to the
results of the strain-controlled simulations. This investigation
of the avalanche threshold’s definition reveals the essential
difference between the two loading modes. The governing
equation of the strain-rate loading sets the imposed strain
rate (coinciding by definition with the mean of the strain-rate
signal in the long-time limit) as the avalanche threshold, while
stress-controlled loading is driven by a threshold close to the
minimum strain rate. Note that a previous 3D DDD study
found t. Nt & 1.55 for strain-controlled simulations [40],
while 3D DDD simulations with quasistatic stress-controlled
loading (thresholding the collective velocity signal to define
avalanches) found 7. vt & 1.3 [18], similarly to our observa-
tion here in the 2D case where the same strain-rate threshold
was used to define both the driving and the avalanches.

The driving parameter dependent nature of the strain bursts
in strain-controlled loading is further highlighted by the

evolution of the average strain burst shapes with €, and
k. When choosing the averaging range from the power-law
regime of Pny(T), the parameters quantifying the average
burst shapes, y and a in Eq. (5), are found to depend on ¢, and
k. This is again in contrast to observations in systems where
the avalanche dynamics stems from an underlying depinning
transition where the average avalanche shapes are “universal”
within the power-law scaling regime, and distortions of this
universal shape are found only for avalanches belonging to
the avalanche duration distribution cutoffs [37].

It would be interesting to check to what extent these
results are generalizable to 3D DDD simulations [18]. More-
over, studying avalanches due to strain-controlled loading
in DDD simulations with quenched pinning interfering with
dislocation motion would also be of interest, given that
there the dislocation avalanches have been found to exhibit
depinning-like characteristics [17,19]. The stiffness of the
specimen-machine system is not a controllable parameter in
typical experiments, but it would be interesting to carefully
analyze possible strain-rate dependence of avalanche statistics
in experiments along the lines proposed in this paper.
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