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Hand-crumpled paper balls involve intricate structure with a network of creases and vertices, yet show
simple scaling properties, which suggests self-similarity of the structure. We investigate the internal structure
of crumpled papers by the microcomputed tomography (micro-CT) without destroying or unfolding them. From
the reconstructed three-dimensional (3D) data, we examine several power laws for the crumpled square sheets
of paper of the sizes L = 50–300 mm and obtain the mass fractal dimension DM = 2.7 ± 0.1 by the relation
between the mass and the radius of gyration of the balls and the fractal dimension 2.5 � df � 2.8 for the internal
structure of each crumpled paper ball by the box counting method in the real space and the structure factors in
the Fourier space. The data for the paper sheets are consistent with DM = df , suggesting that the self-similarity
in the structure of each crumpled ball gives rise to the similarity among the balls with different sizes. We also
examine the cellophane sheets and the aluminium foils of the size L = 200 mm and obtain 2.6 � df � 2.8 for
both of them. The micro-CT also allows us to reconstruct 3D structure of a line drawn on the crumpled sheets
of paper. The Hurst exponent for the root-mean-square displacement along the line is estimated as H ≈ 0.9 for
the length scale shorter than the scale of the radius of gyration, beyond which the line structure becomes more
random with H ∼ 0.5.
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I. INTRODUCTION

Crumpling a sheet of paper is the easiest way to make
effective shock absorbing buffer. A hand-crumpled paper ball
is very light, with typically more than 80% of its volume being
empty, and still shows strong resistance against compression.
These properties make it ideal spacer for box packing. The
origin of these properties is the large stretching energy in
comparison with the bending energy for a thin paper sheet.
As a result, on crumpling a sheet, Gaussian curvature re-
mains close to zero everywhere except for at singular points
of developable cone structures [1–4]. This imposes stringent
constraint on the way the paper sheet crumples, thus produc-
ing strong resistance against compression even if much of the
space is still empty [5,6].

In spite of their complex structure, the balls of crumpled
sheet have been known to show simple scaling laws [7–9].

The radius of the ball R follows the scaling relation with the
size of the original sheet L as

R ∼ Lα, (1)

and with the force F applied to make the crumpled ball as

R ∼ F−δ. (2)

The exponents have been estimated as 0.80 � α � 0.95
for aluminium foil and paper, and δ ≈ 0.2 for aluminium
foil [5–11]. The small value of δ corresponds to the fact that
the crumpled sheets resists strongly against compression.

These two power-law relations suggest the fractal struc-
ture in the object and may be combined into the single
relation [5,12]
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TABLE I. Sample specifications.

Tracing paper Cellophane Aluminium foil

Manufacturer Kokuyo Co., Ltd. Toyo Co. Shimojima Co., Ltd.
Thickness (mm) 0.0385±0.0008 0.0203±0.0002 0.0115±0.0004
Density (g/m2) 42.7±0.5 30.0±0.7 27.4±0.6

where Y and h are the two-dimensional (2D) Young modulus
and the sheet thickness, respectively. The scaling relations (1)
and (2), however, represent different aspects of the structure,
namely the former implies the scaling in the structure among
the crumpled balls with different sizes, and the latter sug-
gests self-similarity of internal structure of each crumpled
ball [13,14].

The internal structure of the crumpled paper ball has
been studied by examining the crease networks on unfolded
sheets [15–18], the cross sections obtained by cutting the
balls in half [11,18,19], or the sequences of holes made by
a needle piercing through the balls [13] as well as numerical
simulations [12,20–22]. These are indirect way of observing
the internal structure.

The x-ray microcomputed tomography (micro-CT) is com-
puter tomography with the high resolution of the order of
100 μm and makes it possible to study the internal structure of
crumpled sheets without either unfolding or destroying them.
It has been used to study the crumpled balls of aluminium
foil to examine the density distribution, the curvatures of the
sheets, and the fractal dimensions of the structure [23–25]. In
this paper, we use micro-CT to examine the internal structure
of crumpled sheets of paper, cellophane, and aluminium foils
to determine scaling properties of the structure. Experimental
procedure is described in Sec. II, the scaling analysis for
the observed quantities is provided in Sec. III, experimental
results are presented to obtain several exponents in Sec. IV,
and the discussions are given in Sec. V.

II. EXPERIMENTAL PROCEDURE

Square sheets of tracing paper with the side length L = 50,
100, 200, and 300 mm are hand crumpled without any spe-
cific protocol. Before being scanned, the crumpled balls are
left for 7 days under the environment with the temperature
25 ± 2◦C and the humidity 25 ± 5% to allow them to settle
in order to avoid structure relaxation during about 30 min
of the scanning time [26]. The x-ray micro-CT (inspeXio
SMX-100CT, Shimadzu Corporation, Kyoto, Japan) is op-
erated at 40 kV with 100 μA and scans a cubic region of
the space with the linear size around 4 cm at a resolution
∼50–150 μm with around 4003 voxels. We also scan hand
crumpled cellophane sheets and aluminium foils of the size
L = 200 mm following the same procedure described above
except that, in the case of aluminium foil, the samples are
scanned on the day when they are crumpled. The thicknesses
and densities of the samples are listed in Table I.

The micro-CT produces grayscale data for each slice of
cross section; the black and white binary data are generated by
setting appropriate threshold, and then the 3D structures are
reconstructed. Figure 1 shows examples of the reconstructed

3D structures from the CT images and the cross sections for
crumpled paper, cellophane sheet, and aluminium foil.

We also reconstruct the 3D configurations of a line drawn
on a crumpled paper (Fig. 2). A straight line is drawn using the
ink that contains tungsten (Macky gold, Zebra, Tokyo, Japan),
which absorbs x rays more efficiently than the paper. Thus the
line positions can be extracted from the CT images by setting
a higher threshold than that for the paper structure.

III. OBSERVED QUANTITIES AND SCALING ANALYSIS

Before we show our experimental results, we give some
scaling analysis for the physical quantities we observe.

a. Three-dimensional structure of crumpled sheets: The
mass fractal dimension DM is defined by the scaling relation
between the mass of the paper M and the radius of the crum-
pled paper ball R as

M ∼ RDM . (4)

Since the mass of the paper M is proportional to its area, M ∝
L2, the mass fractal dimension DM is related to the exponent
α in Eq. (1) as

DM = 2/α. (5)

On the other hand, the fractal dimension d f of the internal
structure of each crumpled ball is measured by the box count-
ing method, using the relation

Nbox ∼ l−d f , (6)

where Nbox is the number of occupied boxes with the
linear size l .

These two exponents correspond to two distinct features,
i.e., the fractal dimension d f defined by Eq. (6) describes the
self-similarity of each crumpled paper ball structure while the
mass fractal dimension DM represents the similarity among
crumpled paper balls with different size L. However, the self-
similar structure of each crumpled paper ball suggests the self-
similarity among those of different sizes, and Eq. (6) could be
extended as

Nbox ∼ M

h2σ

(
l

h

)−d f

, (7)

where h is the paper thickness and σ is the area density of the
sheet. This leads to d f = DM if R is identified as the box size
l that corresponds to Nbox = 1, i.e.,

1 ∼ M

h2σ

(R

h

)−d f

. (8)

The structure factor S(q) is the Fourier transform of the
density correlation function g(r),

S(q) =
∫∫∫

e−iq·rg(r)dr, (9)

025005-2



FOLD ANALYSIS OF CRUMPLED SHEETS USING … PHYSICAL REVIEW E 104, 025005 (2021)

FIG. 1. CT images of crumpled paper (a), cellophane sheet (b), and aluminium foil (c). The upper images are reconstructed 3D structures
and the lower images are their cross sections.

where the density correlation is defined by

g(r) =
∫∫∫ 〈

ρ(r′ + r)ρ(r′)
〉
dr′ (10)

in terms of the density distribution ρ(r). Here, 〈· · · 〉 means the
ensemble average. If the structures of the crumpled paper ball
are self-similar with the fractal dimension d f , then the density
correlation should be of the scaling form,

g(r) ∼ rd f −3, (11)

then the structure factor is expected to be of the scaling form

S(q) ∼ q−d f . (12)

b. Cross section of a crumpled sheet: A 3D CT image
consists of hundreds of two-dimensional slices of the density

distribution in the cross sections. We analyze the structure of
the cross section which contains the center of mass of the
crumpled sheet. Suppose that we take the center of mass of the
crumpled sheet as the origin of the coordinate and consider
the cross section by the z = 0 plane. Let σcs(r⊥) denote the
2D density distribution on the cross section as a function of a
position r⊥ = (x, y) on the z = 0 plane,

σcs(r⊥) =
∫ h/2

−h/2
ρ(r⊥, z)dz. (13)

The density correlation on the cross section gcs(r⊥) is
defined by

gcs(r⊥) =
∫∫

〈σcs(r′
⊥ + r⊥)σcs(r′

⊥)〉dr′
⊥, (14)

FIG. 2. A line on a crumpled paper of the size L = 200 mm. (a) Schematic illustration of a line drawn on a paper with the ink that contains
tungsten, (b) an example of three-dimensional image of a crumpled paper with the line, and (c) the extracted 3D image of the line.
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and the structure factor of the cross section Scs(q⊥) is given
by the 2D Fourier transform

Scs(q⊥) =
∫∫

e−iq⊥·r⊥gcs(r⊥)dr⊥, (15)

where q⊥ is the wave vector within the cross-section plane. If
we assume the same form as Eq. (11) for gcs as

gcs(r⊥) ∼ r
d f −3
⊥ , (16)

then the structure factor would behaves as

Scs(q⊥) ∼ q
−(d f −1)
⊥ , (17)

which simply shows that the fractal dimension for the cross
section is d f − 1.

c. Straight line drawn on a crumpled paper: The CT tech-
nique allows us to study the structure of a line drawn on a
crumpled paper. A straight line on a flat paper is deformed into
a random structure as the paper is crumpled. The configuration
of the crumpled line can be represented by the function

rline(s); 0 � s � L, (18)

where s is the distance along the line from one of the end. The
root-mean-square (rms) distance Rline(s) from one of the end
points is defined by

Rline(s) ≡
√

〈[rline(s) − rline(0)]2〉. (19)

If this shows the power-law behavior with the Hurst
exponent H ,

Rline(s) ∼ sH , (20)

then the scaling argument based on the self-similarity assump-
tion leads to the scaling law

gline(r) ∼ r−3+1/H (21)

for the correlation of the line in 3D space, and the scaling law

Sline(q) ∼ q−1/H (22)

for the 3D structure factor of the line.
The size of the crumpled line Rline is expected to scale with

the size of the paper L as

Rline ∼ Lαline . (23)

If the size of the line Rline should be of the same order with
the size of the crumpled ball R, and also with rms of the end-
to-end distance of the line Rline(L) of Eq. (20), then the Hurst
exponent should be related to the mass fractal dimension as

H = αline = α = 2/DM . (24)

IV. EXPERIMENTAL RESULTS

We analyze the 3D structures of the crumpled sheet balls,
the cross sections of the balls, and the lines drawn on
the paper.

a. Three-dimensional structure of crumpled sheets:
Figure 3(a) shows the averaged density distribution of crum-
pled paper as a function of the distance from the center of
mass r. Each line represents the average distribution over the
direction and around 10 samples, and the arrows show the
average values of the radii of gyration for the corresponding
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FIG. 3. Density distributions (a) and radii of gyration (b) for
crumpled paper sheets of the size L = 50, 100, 200, and 300 mm.
(a) Each curve represents average over around 10 samples and the
arrows show the average values of the radii of gyration. The density
distributions are normalized so that the total mass should be propor-
tional to L2. (b) The gray circles and the black circles represent the
radius of gyration for each sample and average values over them,
respectively.

sizes of the paper. One can see that the averaged density
distribution inside the ball is roughly uniform, but it is a
slightly decreasing function of r for the crumpled balls of the
smaller sheets L = 50 and 100 mm, almost constant in the
range of r � 12 mm for that of L = 200 mm, and slightly
increasing in r � 16 mm for that of L = 300 mm. It is not
clear how this tendency extends to larger sheets. In Fig. 3(b),
the radii of gyration Rg are plotted against the paper size L in
the logarithmic scale. The data range is less than one decade
and not enough to give a precise value of the exponent, but the
plots are consistent with the power-law behavior

Rg ∼ Lα (25)

with the exponent α ≈ 0.74. This gives DM = 2/α ≈ 2.7
from Eq. (5).

We estimate the fractal dimensions d f by the box count-
ing method; the number of occupied boxes Nbox are plotted
against the linear size lbox of the box divided by Rg in the
logarithmic scale in Figs. 4(a) for paper and 4(b) for cello-
phane and aluminium foil. Each data point is an average of
about 10 samples. The data for different size L or different
materials are shifted vertically by multiplying by the factor
2 to avoid overlapping of the plots. The estimated d f for the
crumpled paper is 2.7 from Fig. 4(a). This is consistent with
DM estimated by Rg, and suggests the self-similarity in the
3D structure of the crumpled paper ball as we have discussed.
The fractal dimensions d f for both the cellophane sheet and
aluminium foil are estimated as 2.8 from Fig. 4(b).

The structure factors S(q) for the reconstructed 3D struc-
tures from the CT data are plotted in the logarithmic scale
for the paper of sizes L = 50–300 mm in Fig. 4(c), and for the
paper sheets, the cellophane sheets, and the aluminium foils of
the size L = 200 mm in Fig. 4(d). Each data point represents
averaged value of about 10 samples. These structure factors
S(q) show the power-law behavior

S(q) ∼ q−β. (26)

The apparent value of the exponent β for the crumpled pa-
per in Fig. 4(c) increases with the paper size L and the
fitted value for the largest paper size L = 300 mm is β ≈
2.5. The exponents β for the cellophane sheets and the
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FIG. 4. The box counting data and the averaged structure factors
S(q) for the 3D structures of crumpled paper, cellophane, and alu-
minium foil. The box size lbox and the wave number q are scaled by
the radii of gyration of each structure. Nbox for different size L (a) and
different materials (b) are shifted by the factor 2 to avoid overlapping.

aluminium foils are estimated from the plots for L = 200 mm
in Fig. 4(d) as β ≈ 2.6. These values of β estimated by S(q)
are slightly smaller than those of d f estimated by the box
counting method although they should coincide as

β = d f (27)

from Eq. (12) if the self-similarity holds.
b. Cross-section structure of crumpled sheets: The structure

of the cross section of the crumpled sheet is examined in the
same way. Figure 5 shows the box counting data and the 2D
structure factor for the cross section of the crumpled sheets.
The horizontal axes are scaled by the 2D radius of gyration
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ture factors S2d (q) for the cross sections of crumpled paper sheets,
cellophane sheets, and aluminium foils. The box size lbox and the
wave number q are scaled by the radii of gyration of each structure.
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FIG. 6. The structure of a line drawn on a paper. (a) An example
of a three-dimensional configuration of a line on a crumpled paper
of the size L = 50 mm. (b) Radius of gyration vs the paper size L.
(c) Averaged root-mean-square displacement at the position s from
one of the ends along the line. The arrows indicate the Rline,g for
each size of the paper. (d) Averaged structure factors S(q). The wave
number q is scaled by Rg,line for each size of the paper.

The fractal dimensions d f ,cs for the cross sections are esti-
mated by the box counting method, and we obtain d f ,cs ≈ 1.8
for the paper of the size L = 50–300 mm, and d f ,cs ≈ 1.8 for
cellophane and aluminium of the size L = 200 mm. The 2D
structure factor also shows the power-law behavior

S2d (q⊥) ∼ q−βcs (28)

with the exponent βcs ≈ 1.5 for the paper and βcs ≈ 1.6 for
the cellophane and the aluminium. Since the self-similarity
leads to the relation

βcs = d f ,cs = d f − 1 (29)

from Eq. (17), the obtained values for βcs are consistent with
the corresponding exponents for the 3D structure.

c. Structure of a line on a crumpled paper: Figure 6(a)
shows a configuration of a line one a crumpled paper. The radii
of gyration Rg,line for the lines are plotted as a function of the
paper size L in Fig. 6(b) along with Rg for the whole structure
as have been plotted in Fig. 3(b); the values of Rg,line are
somewhat smaller than those of Rg, but the plot is consistent
with the power-law behavior with the same exponents as it
should be, i.e.,

Rg,line ∼ Lαline . (30)

with αline ≈ 0.74. In Fig. 6(c), rms distance Rline(s) defined by
Eq. (19) is plotted as a function of s in the logarithmic scale
to estimate the Hurst exponent H . The plot shows roughly the
power-law behavior

Rline(s) ∼ sH (31)

with H ≈ 0.9 for the range Rline(s) � Rg,line, beyond which it
saturates and seems to follow the power law with a smaller
exponent H ≈ 0.5, but the range is too small to determine its
behavior with confidence. Finally, Fig. 6(d) shows that the 3D
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TABLE II. Obtained exponents for the crumpled paper, cellophane, and aluminium foils.

3D structure Cross section Line

α β df βcs df ,cs αline H βline

Paper (L = 50–300 mm) 0.74 2.5 2.7 1.5 1.8 0.74 0.9 1.1
Cellophane (L = 200 mm) − 2.6 2.8 1.6 1.8 − − −
Aluminium foil (L = 200 mm) − 2.6 2.8 1.6 1.8 − − −

structure factor for the line Sline(q) behaves as

Sline(q) ∼ q−βline with βline ≈ 1.1. (32)

The results by Eqs. (31) and (32) are consistent with the
relation (22) but not with the relation (24).

V. DISCUSSIONS

We have estimated several exponents which describe the
scaling behaviors of the structure of crumpled sheets; The
results are tabulated in Table II. Considering the range of
the data points and the data fluctuations, error bars for each
exponent would be around ±0.1.

As is described in Sec. II, the paper and cellophane samples
are scanned 7 days after they are crumpled. This is to avoid
the structural relaxation immediately after crumpling and to
obtain steady values of measurement. One might wonder if
the 7-day waiting time is enough to obtain steady values,
especially when logarithmically slow relaxation has been ob-
served up to 3 weeks in similar systems of crumpled thin
sheets [16,27,28]. In these works, the slow relaxation is ob-
served in the compaction height under a constant force [27],
the diameter of crumpled ball after the folding force is with-
drawn [16], and the stress under a constant compression [28].
We have checked if a similar slow relaxation shows any signif-
icant effect on the quantities we measure in the present work,
but it turns out that the relaxation effects are virtually invisible
in the scaling exponents of the structure beyond one hour after
crumpling (see the supplemental material).

As we have discussed in Sec. III, the exponents in Table II
are related to the two basic exponents: the mass fractal dimen-
sion DM and the fractal dimension d f . The former represents
the scaling behavior among the crumpled balls of the different
sheet sizes while the latter describes the self-similarity of the
structure of each crumpled sheet. For the paper sheet of the
size L = 50–300 mm, the mass fractal dimension estimated
from α by Eq. (5) is DM ≈ 2.7. The fractal dimension for
the internal structure d f are estimated from the box counting
and the structure factor. The structure factor tends to give
smaller values for the fractal dimension as has been found
also in Ref. [25], but overall data suggest that the fractal
dimension is in the range 2.5 � d f � 2.8. These estimates are
consistent with

DM = d f (33)

within the accuracy of our estimate, suggesting that the self-
similarity in the structure of each crumpled ball gives rise to
the similarity among the balls with different sizes. For the
cellophane and the aluminium with the size L = 200 mm, the
estimated fractal dimension for the structure 2.6 � d f � 2.8,

which are slightly larger than that for the paper. We do not
have data to estimate DM for the cellophane and the alu-
minium.

These values for DM and d f are somewhat larger than the
values obtained for DM in previous works: 2.51 [9] and ∼2.1–
2.5 [13] for paper, and 2.5 [7,8] and 2.3 [5] for aluminium foil.
In these estimates, the external diameter is used for the size of
the ball R while in the present work the radius of gyration
Rg calculated from the density distribution is used. This may
lead to some difference in estimating DM especially when the
data range is not large enough although they should give the
same exponent in the limit of the infinite data range. Note
that the fractal dimensions obtained in the present work for
cellophane and aluminium foil are for the internal structure of
each crumpled ball.

The unique piece of information that the micro-CT can
provide is the structure of a line drawn of the crumpled paper
sheets. The estimated value of the Hurst exponent H ≈ 0.9
for the short length scale suggests that the line configuration
is quite ballistic for the length scale up to Rg, but it eventually
approaches the random walk for the longer scale. The value
of the Hurst exponent H ≈ 0.9 is consistent with the rela-
tion (22) to the exponent for the structure factor βline ≈ 1.1
but not with the relation (24) to αline ≈ 0.74 or the mass
fractal dimension DM ≈ 2.7. In other words, for the line on
a crumpled paper, the self-similarity of each line structure
in the short length scale is not consistent with the overall
scaling on changing the size L in contrast to the case of the
whole structure of a crumpled paper, in which case DM = d f ,
thus the self-similarity of the internal structure is consistent
with the global scaling. The existence of these two regimes
for the line structure may come from the layered structure
of crumpled sheets. The whole structure of crumpled sheets
consists of random folding of a wrinkled sheet, and typical
scale of random folding is of order of Rg while wrinkling gives
shorter length scale with H ≈ 0.9.

Before concluding, let us discuss some of the previous
works using CT technique. Lin et al. [24,25] examined the
structure of crumpled aluminium foils by CT. The aluminium
foils of different radius R0 = 3–10 mm are crumpled into the
ball with the same final radius R = 1.5 mm, i.e., different
compaction ratios. They estimate the fractal dimension by
the box counting and the correlation dimension as a function
of the compaction ratio R/R0 [25]. Their estimates of the
dimensions coincide fairly well with our estimates for the
aluminium foil by the box counting and the Fourier transform.
They also measured the correlation for the tangent vector and
observed the layered structure [24].

Cambou and Menon [23] also used CT to examine the
internal structure of crumpled aluminium foils. They obtained
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the mass distribution, the distribution of the normal vector
and the curvature radii, and found that they are distributed
quite uniformly. They also found the layered structure, but
again their orientation is distributed uniformly. These uniform
distributions might appear to contradict the fractal structure
that has been found in the present work as well as earlier
studies [13,18,19,25]. They are, however, not contradicting
because what they studied are averaged distributions of the
quantities. Spatial inhomogeneity of fractal structure varies
from a sample to another and thus does not likely show in
the averaged distribution.

In the present work, we did not examine the scaling re-
lation with the applied force, Eq. (2). Its exponent δ should
represent how the crumpling energy increases as a paper sheet
is crumpled into a smaller ball, thus should come from the
self-similarity of the internal structure, although we do not
know yet how it is related with other exponents.
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