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Indentation responses of pressurized ellipsoidal and cylindrical elastic shells: Insights
from shallow-shell theory
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Pressurized elastic shells are ubiquitous in nature and technology, from the outer walls of yeast and bacterial
cells to artificial pressure vessels. Indentation measurements simultaneously probe the internal pressure and
elastic properties of thin shells and serve as a useful tool for strength testing and for inferring internal biological
functions of living cells. We study the effects of geometry and pressure-induced stress on the indentation stiffness
of ellipsoidal and cylindrical elastic shells using shallow-shell theory. We show that the linear indentation
response reduces to a single integral with two dimensionless parameters that encode the asphericity and internal
pressure. This integral can be numerically evaluated in all regimes and is used to generate compact analytical
expressions for the indentation stiffness in various regimes of technological and biological importance. Our
results provide theoretical support for previous scaling and numerical results describing the stiffness of ellipsoids,
reveal a new pressure scale that dictates the large-pressure response, and give new insights to the linear
indentation response of pressurized cylinders.
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I. INTRODUCTION

Thin curved shells are ubiquitous structures in nature and
technology. Their curvature inextricably links bending and
stretching deformations, making them stiffer than flat plates of
the same thickness and material—a phenomenon termed geo-
metric rigidity [1]. The ability of closed shells to maintain a
pressure difference between their interior and the environment
also impacts their load-bearing properties, as is apparent from
our everyday experience with balloons. The interplay of elas-
ticity, geometry, and pressure is crucial to our understanding
of mechanical structures across a wide range of length scales,
from viral capsids [2] to reactor pressure vessels [3].

Indentation—gauging the deformation of a structure in re-
sponse to a localized force—is a simple yet powerful tool for
evaluating the mechanical properties of myriad structures [4],
including shells. Connecting shell indentation response to ma-
terial properties and shape provides fundamental insight into
geometric rigidity [5–8], and is also of practical importance
in evaluating the material properties of artificial [9,10] and bi-
ological [2,11–13] shell-like structures. Although the general
relation between indentation force and deflection is nonlin-
ear and depends strongly on shell geometry, at small forces
a linear regime can be identified in which the indentation
force is proportional to the inward displacement. The constant
of proportionality quantifies the indentation stiffness of the
shell, a metric which can be compared across geometries
and size scales. While theoretical analysis of the indentation
stiffness of an unpressurized spherical shell dates back to the
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1940s [14], few analytical results are available for other cases
of interest. For cylinders, the indentation stiffness is known in
the unpressurized case [15,16], and in the high-pressure limit
ignoring bending rigidity [11,13]. An analytical expression
for the indentation stiffness of internally-pressurized spherical
shells was derived in Ref. [6], and was subsequently general-
ized to external pressures [17].

For ellipsoids, a major advance was achieved in back-
to-back experimental [7] and theoretical [8] works reported
in 2012. Reference [7] proposed a form for the indentation
stiffness of pressurized ellipsoids by analogy with known
results for spheres, which was tested against experiments.
Reference [8] used a perturbative analysis to obtain analyt-
ical results for the stiffness of nearly spherical ellipsoidal
shells, and combined this analysis with simulation results
and physical scaling arguments to propose analytical forms
for general ellipsoidal shells in the unpressurized and high-
pressure limits. However, the relative contributions of the two
geometric invariants describing a curved surface—the mean
and Gaussian curvatures—was not rigorously established in
these results. In addition, the focus on the tractable zero- and
high-pressure limits leaves a gap in our theoretical under-
standing of the indentation stiffness of ellipsoids and cylinders
at intermediate internal pressures.

Here we present a comprehensive theoretical analysis of
the linear indentation stiffness of thin elastic ellipsoidal shells
under both internal and external pressures. Our main result is
an expression for the indentation stiffness as an integral over
a single variable, which includes the elastic moduli, curva-
ture radii, and pressure as parameters. The integral provides
closed analytical forms in several limits, which agree with
known results. More generally, it can be numerically evaluated
for arbitrary curvatures and pressures, providing a theoretical
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evaluation of the indentation stiffness in all regimes. Concep-
tually, we provide a unifying framework which encompasses
the local geometric rigidity of ellipsoids of arbitrary curvature
including the spherical and cylindrical limits (up to important
corrections at zero pressure in the cylinder limit, which we
describe). Besides providing analytical support to forms that
were previously proposed using heuristic and scaling argu-
ments [7,8], we also find a new pressure scale which controls
the response of thin shells under high internal pressure, and
obtain new expressions for the indentation stiffness of pres-
surized cylinders.

Our approach uses shallow-shell theory, which expresses
the stress and displacement fields of a shallow section of
the shell using Cartesian coordinates in a plane tangent to
the indenting point. Shallow-shell theory is widely used in
elastic analyses of thin shells [18] and provides an accurate
description when the characteristic length scale of the deflec-
tion is small compared to the curvature radii. As we will show,
geometric rigidity ensures that point indentations induce such
localized deflections at all pressures for noncylindrical thin
shells, and at nonzero internal pressures for cylindrical shells.
For the zero-pressure limit of cylindrical shells, the contribu-
tion of long-wavelength deflections becomes important, and
the shallow-shell theory breaks down; different techniques are
needed to understand the indentation stiffness of unpressur-
ized cylinders, as has been done in Ref. [15]. Nevertheless,
we show that as internal pressure rises, shallow-shell theory
becomes valid again and provides useful new results above a
threshold pressure which we derive.

II. METHODS

In the current section, we will derive equations of equi-
librium that characterize the local deformation of a given
spheroidal shell, using the shallow-shell theory. We follow
the presentation by Koiter and van der Heijden [19]. Further
analysis of the equations of equilibrium will be included in
Sec. III.

We start by mathematically describing an ellipsoidal shell
and the deformation imposed on it, and then address the spe-
cial case of spheroids which are ellipsoids of revolution. The
shells that we are interested in are thin, i.e., their thickness t
is much less than the other dimensions, so that they can be
effectively treated as a two-dimensional surface. Besides en-
compassing a large class of artificial shells, thin-shell models
have also been validated against experimental measurements
for biological structures such as bacterial cell walls [20,21]
and microtubules [16].

A. Description of deformations of a thin shell

Let O be one of the vertices of an ellipsoid where an
external point load is exerted. (See Fig. 1.) We parametrize
the ellipsoid using a right-hand Cartesian coordinate system
whose xy plane is the ellipsoid’s tangent plane centered at O;
the direction of the x axis is chosen such that it coincides
with the projection of the curve, corresponding to one of
the two principal radii of curvature at O, onto the tangent
plane. Accordingly, the y axis will be automatically in-line
with the projection associated with the other principal radius

FIG. 1. A local coordinate representation of an ellipsoidal shell
in the vicinity of the tangent point O. The two principal radii of
curvature at O are Rx = a2

c and Ry = b2

c . For a spheroidal shell,
b = c = Ry is the radius of the circular cross section at O. Illustration
depicts a prolate spheroid for which Rx > Ry; an oblate spheroid
would correspond to Rx < Ry. The deformation at an arbitrary point
P is described by a displacement vector, which is decomposed into a
nonorthonormal basis {êi}3

i=1.

of curvature, and the z axis points toward the center of the
ellipsoid. Figure 1 illustrates such a coordinate system. A local
coordinate representation of the ellipsoid can thus be written
as

Z (x, y) = c − c

√
1 −

( x

a

)2
−

(y

b

)2
.

For a shallow region of the ellipsoidal surface close to
the origin such that | ∂Z

∂x (x, y)|, | ∂Z
∂y (x, y)| � 1, the expression

above reduces to

Z ≈ x2

2Rx
+ y2

2Ry
,

where Rx := a2

c and Ry := b2

c are the two principal radii of
curvature; it should be noted that in order for the shallow-shell
assumption to hold, the approximated expression for Z is only
valid in a sufficiently small neighborhood of O.

Points on the ellipsoid will get displaced under a defor-
mation. The deformation can hence be described by a vector
displacement field u(x, y) on the surface of the ellipsoid. Let
P = (x0, y0, Z (x0, y0)) be an arbitrary point on the surface. We
decompose the displacement vector at P, u(x0, y0) ≡ uP, as
follows:

u(x0, y0) =
3∑

i=1

ui(x0, y0) êi(x0, y0)

≡ ui(x0, y0) êi(x0, y0) ≡ uP,i êP,i,

where êP,3 is the inward unit normal vector at P; êP,1

and êP,2 are unit vectors within the ellipsoid’s tangent
plane at P chosen such that their projections onto the
plane Oxy coincide with x̂ and ŷ, respectively. (See
Fig. 1.) The Einstein summation convention was used.
It should be pointed out that {êP,i}3

i=1 is generally not
an orthonormal basis. The advantage of choosing such
a basis is as follows: The prescribed deformation maps
the point P to P̃ = (x0 + uP · x̂, y0 + uP · ŷ, Z (x0, y0) + uP ·
ẑ) ≡ (x + u · x̂, y + u · ŷ, Z + u · ẑ)P, which can be further
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approximated as(
x + u1 − ∂Z

∂x
u3, y + u2 − ∂Z

∂y
u3, Z + u3

)
P

under the assumptions that the shell is shallow (or, equiva-
lently, P is rather close to O), and |u1|, |u2| � |u3| for all
points on the shell.

Once the deformation is mathematically characterized, the
strain tensor uαβ (x, y) (α, β ∈ {1, 2}) can be obtained by com-
puting the change of metric, as [19]

uαβ = 1

2

(
∂αuβ + ∂βuα − 2u3

Rαβ

+ ∂αu3∂βu3

)
,

where we have adopted the notations ∂1 ≡ ∂
∂x and ∂2 ≡ ∂

∂y ,
and [

1

Rαβ

]
:=

( 1
Rx

0
0 1

Ry

)
.

It should be pointed out that the derivation of the strain
tensor assumes that the displacements are rapidly varying
functions (on the scale of the shell’s curvature radii) in the
two principal directions, which is another key assumption
of shallow-shell theory [18]. Mathematically, this means that
| 1

ui
∂αui| � 1

min{Rx,Ry} ; for example, for wavelike deformations

taking the form ui = ui,0eiq·r, this criterion becomes 2π
λα

=:

qα � 1
min{Rx,Ry} , i.e., the deformation wavelength is much

smaller than the principal radii of curvature. As we will see
in Sec. III A, this assumption is well justified in the study of
thin curved shells for a wide range of geometric parameters.

For a two-dimensional isotropic elastic material, the stress
tensor σαβ (x, y) is related to the strain tensor via the strain-
stress relation [22]

σαβ = Et

1 + υ

(
uαβ + υ

1 − 2υ
uγ γ δαβ

)
,

where E and υ denote the material’s Young’s modulus and
Poisson’s ratio, respectively; δαβ is the Kronecker delta, and,
as aforementioned, t stands for the thickness of the material;
recall that for thin shells, t � min{Rx, Ry}. These two tensor
fields incorporate all the information about the deformation
and will be used below to derive the elastic energy of the
deformed shell.

B. Elastic energy of the deformed shell

It is known from differential geometry that a closed shell
cannot bend alone without stretching. If we further consider
the closed shell to be pressurized, i.e., the shell is subjected
to a pressure p, then the total elastic energy associated with
the deformation will have three components, namely bending
energy, stretching energy, and pressure energy (the work done
by the pressure on the shell).

In general, the stretching energy can be written as

Es[uαβ ] = 1

2

∫
S

dA uαβ σαβ.

The bending energy is related to the change of local curvatures
and hence only depends on u3 [18]:

Eb[u3]

= 1

2
κ

∫
S

dA {(�u3)2 + 2(1 − υ )[(∂12u3)2 − ∂11u3∂22u3]},

where κ = Et3

12(1−υ2 ) is the bending stiffness, and � ≡ ∂11 +
∂22 is the two-dimensional Laplacian operator. The pressure
energy is simply given by

W [u3] = −
∫

S
dA pu3;

the negative sign indicates our sign convention for the pressure
on the shell that p > 0 (p < 0) corresponds to an internal (ex-
ternal) pressure. If an extra external point load with magnitude
F is acting at the point O, then we can take into account
the corresponding work done by simply replacing p with
p′ = p − Fδ2(x).

The integration region S is a portion of the ellipsoidal
surface in the vicinity of O outside of which the lo-
cal deformation vanishes. Under the assumption that the
shell is shallow, the area element dA gets simplified: dA =√

1 + ( ∂Z
∂x )

2 + ( ∂Z
∂y )

2
dx dy ≈ dx dy. Summing the bending,

stretching and pressure energies, we obtain the total-energy
functional

Etot[uαβ, u3] ≈
∫

S′
dx dy

{
1

2
uαβ σαβ + 1

2
κ (�u3)2

+ κ (1 − υ )[(∂12u3)2 − ∂11u3∂22u3] − p′u3

}
,

(2.1)

where S′ is the projected region of S onto the plane Oxy.

C. Equations of equilibrium

According to the variational principle, minimizing the
total-energy functional gives a system of equations of equi-
librium (EOEs)

κ�2u3 + �V χ − N2(χ, u3) = p − Fδ2(x)

1

Y
�2χ − �V u3 + 1

2
N2(u3, u3) = 0, (2.2)

where the Vlasov operator in the shallow-shell theory is given
by �V ≡ 1

Ry
∂11 + 1

Rx
∂22; χ (x, y) is the Airy stress function

that encodes stress information in the following way:

∂11χ = σ22, ∂22χ = σ11, and ∂12χ = −σ12;

Y := Et , and N2(·, ·) denotes a second-order nonlinear oper-
ator: For arbitrary twice-differentiable functions f (x, y) and
g(x, y),

N2( f , g) := ∂11 f ∂22g + ∂22 f ∂11g − 2∂12 f ∂12g.

The next step is to linearize the nonlinear EOEs around the
relaxed state of the shell in response to the uniform pressure.
Like the total-energy functional, a general deformation of
pressurized elastic shells is a combination of two deformation
states, a membrane state and a bending state. The mem-
brane state describes the in-plane stresses that arise when the
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shell expands or contracts in response to the uniform internal
or external pressure, with little change in local curvatures.
The bending state describes the indentation responses due to
the external point load, which lead to localized transverse
deformations with a significant bending energy component.
To compute the linear indentation stiffness, we linearize the
nonlinear EOEs around the membrane state, and solve the
linearized equations for the bending state.

The membrane state of generalized ellipsoids is unwieldy
and leads to distinct responses at all points on the ellipsoid.
We therefore focus on the simpler case of spheroidal shells,
which match most natural and artificial designs. A spheroid
is an ellipsoid of revolution, which has circular cross sections
along one of its principal axes. We take Ox to be that axis, and
b = c = Ry is thus the radius of the circular cross section at O,
which corresponds to the equator of the spheroid. (See Fig. 1.)
The indentation stiffness we compute applies to all points on
the equator, which are geometrically identical.

The Airy stress function corresponding to the membrane
state for points on a spheroid’s equator (the boundary of the
spheroid’s largest circular cross section) is known as [23]

χ0(x, y) = 1

4
pRy

[
y2 +

(
2 − Ry

Rx

)
x2

]
. (2.3)

We can thus write an ansatz that corresponds to spheroidal
shells as

u3(x, y) = u3,0 + u3,1(x, y) χ (x, y) = χ0 + χ1(x, y),

where the subscripts 0 and 1 denote the membrane and the
bending states, respectively. Note that we took the normal
displacement field in the membrane state, u3,0, as a constant,
which is only valid for points on the spheroid’s equator. Sub-
stituting this ansatz into Eq. (2.2) and discarding the terms
quadratic in u3,1 and χ1 that are assumed to be small, we
finally obtain the linearized EOEs for spheroidal shells,

κ�2u3,1 + �V χ1 − 1

2
pRy�u3,1 − 1

2
pRy

(
1 − Ry

Rx

)
∂22u3,1 = −Fδ2(x)

1

Y
�2χ1 − �V u3,1 = 0. (2.4)

Although we have related the elastic moduli κ and Y to mi-
croscopic constants of uniform materials, they may also be
regarded as effective moduli that penalize changes in metric
and curvature of more complex quasi-two-dimensional struc-
tures such as biological shells.

The physical quantity that we seek by solving this set of
differential equations is the indentation stiffness. Recall that a
point load with the magnitude F is acting at O, an arbitrary
point on a spheroid’s equator that serves as the origin in our
setup, and u3,1(x, y) describes the out-of-plane deformation
due to the point load. The indentation stiffness is then dictated
by the Hooke’s law:

k = − F

u3,1(x = 0)
,

where the fact that the indentation stiffness is a local property
has allowed us to set x = 0.

III. RESULTS AND DISCUSSION

A. The stiffness integral

We have derived the EOEs that characterize the local de-
formation around O, Eq. (2.4), which is a system of coupled
linear partial differential equations (PDEs). Fourier transform
can be applied to solve linear PDEs; the resulting solutions
always take the form of an integral. The integral often cannot
be solved analytically. However, in our case, the local na-
ture of the probe and the measurement leads to a simplified
Fourier integral. Recall that the physical quantity that we are
after is the local indentation stiffness which only requires the
knowledge of the normal displacement at the origin due to the
point load, u3,1(x = 0). This local nature avoids the need to
solve Eq. (2.4) over the entire domain, and enables analytical
evaluation of the integral solution in our system, at least in
certain limits.

Our convention for Fourier transform is the following: For
any Fourier-transformable function of two variables f (x, y) ≡
f (x),

f (x) =
∫

d2q

(2π )2
f̂ (q)eiq·x,

where

f̂ (q) ≡ F { f (x)}(q) =
∫

d2x f (x)e−iq·x.

Performing Fourier transform of Eq. (2.4) and combining the
resulting two algebraic equations gives

F = F {Fδ2(x)}(q) = −k̃(q) · û3,1(q),

where

k̃(q) := κq4 + Y

q4

(
qx

2

Ry
+ qy

2

Rx

)2

+ 1

2
pRyq2 + 1

2
pRy

(
1 − Ry

Rx

)
qy

2. (3.1)

The indentation stiffness can thus be written as

k = − F

u3,1(x = 0)
=

[∫
d2q

(2π )2

1

k̃

]−1

=: I−1. (3.2)

Equations (3.1) and (3.2) underpin all our forthcoming
results: the problem of computing the indentation stiffness
has been reduced to evaluating a real-valued integral I , which
we term the stiffness integral, over the two-dimensional wave-
vector space. However, we have yet to specify the integration
limits in Eq. (3.2). As with any physical theory, the integration
must strictly be carried out over some range of wave vectors
q for which the Fourier-transformed stiffness [Eq. (3.1)] is
valid. The large-wave-vector, or UV, cutoff is dictated by the
smallest wavelength for which shallow-shell theory is valid,
which is of order the shell thickness t . We will see that the
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integrand falls to zero for wave vectors much smaller than
1/t , so the upper limit of the integration can be safely taken to
q = |q| → ∞ (i.e., the theory is UV convergent).

The treatment of the small-wavelength, or IR, cutoff re-
quires more care. The deflection-strain relations used in
shallow-shell theory are accurate only for deflections which
vary over length scales that are small compared to the radii of
curvature, i.e., Eq. (3.1) is strictly valid only for |qx| � 1/Rx

and |qy| � 1/Ry. Nonetheless, the physics of deflection of thin
curved shells allows us to take the small-wave-vector limit
to q = 0 in the stiffness integral without sacrificing accu-
racy for a wide range of geometries, provided the shells are
thin. To understand why, consider the Fourier contributions
to the stiffness integral when p = 0. From Eq. (3.1), we find
that 1/k̃(q) has a roughly even contribution over a region
in Fourier space within the bounds |qx| � 1/�b,y and |qy| �
1/�b,x, where �b,x = 4

√
κRx

2

Y and �b,y = 4

√
κRy

2

Y are two elastic
length scales arising from the balance between bending and
stretching. For thin shells, �b,x ∼ √

Rxt and �b,y ∼ √
Ryt scale

with the geometric mean of the curvature radii and the thick-
ness, and are therefore small compared to the curvature radii
themselves yet large compared to the shell thickness which
serves as the UV cutoff scale for the theory. This separation
of length scales—a consequence of the interplay of geometry
and elasticity—is responsible for the success of shallow-shell
theory for understanding the indentation of thin shells, as has
previously been recognized for spherical shells [17,24].

For a broad range of thin-shell spheroidal geometries
satisfying

√
Ryt � Rx � R2

y/t , the stiffness integral at zero
pressure is dominated by modes with wave vectors in the
range 1/Rx � |qx| � 1/�b,y and 1/Ry � |qy| � 1/�b,x. As a
result, including the erroneous but finite contributions to the
integral for wave vectors near the origin (|qx| � 1/Rx, |qy| �

1/Ry) introduces an insignificant error to the indentation stiff-
ness and the lower limit of integration can be taken to q → 0
for these shells. However, the required separation of scales
breaks down when Rx → 0 (extremely narrow oblate shells)
or Rx → ∞ (cylinders) and the stiffness integral becomes
invalid at zero pressure in these limits. At finite internal and
external pressures, the convergence of the stiffness integral
depends on additional physical considerations. We will ad-
dress these considerations separately in the remainder of this
subsection (where we impose the more stringent lower limit
Rx � Ry/2 on the curvature along the x direction), as well as
in Secs. III D (which discusses the behavior of the stiffness
integral under external pressure) and III G (which revisits
the integral for internally-pressurized cylinders). In the latter
subsection, we show that the indentation of cylindrical shells
with a finite internal pressure is successfully captured by
shallow-shell theory even though the criterion Rx � R2

y/t is
violated. Through these investigations, we will identify ranges
of pressure values for which the stiffness integral, Eq. (3.2)
with lower and upper limits q = 0 and q = ∞ respectively,
accurately captures the indentation stiffness for all spheroidal
shell geometries with Rx � Ry/2 up to and including the
cylinder limit of Rx → ∞.

Next, we nondimensionalize the stiffness integral using
appropriate physical scales. Of the two elastic length scales

in the problem, we choose the scale �b,y = 4

√
κRy

2

Y associ-
ated with the equatorial radius to rescale lengths. For the
pressure scale, we choose psc = 4

√
κY

Ry
2 , the absolute value

of the buckling pressure of a spherical shell with the same
equatorial radius [25]. Also, observing that parts of k̃ de-
pend on q = √

qx
2 + qy

2, we rewrite the stiffness integral
in polar coordinates. Accordingly, after some algebra, we
obtain

I (β, ηs,y ) = 1

8π2

�b,y
2

κ

∫ 2π

0
dθ

∫ +∞

0

dx

[x + ηs,y(1 + β sin2 θ )]2 + [(1 − β sin2 θ )2 − η2
s,y(1 + β sin2 θ )2]

. (3.3)

Thereinto, ηs,y := p
psc

= pRy
2

4
√

κY
is the scaled pressure, and our

sign convention for the background pressure p carries over:
a positive (negative) ηs,y corresponds to an internal (exter-
nal) pressure. The geometry of the spheroid is captured in
the parameter β := 1 − Ry/Rx which characterizes the as-
phericity of a given spheroidal shell; specifically, spheroids
with β > 0 are prolate, whereas β < 0 corresponds to oblate
spheroids. (See Fig. 1.) Moreover, for a prolate spheroid,√

β =
√

1 − b2

a2 = ε is in fact the eccentricity of its elliptical
cross sections.

A few geometries are of special interest. For spherical
shells, β = ε = 0 (Rx = Ry), i.e., both cross sections at O
are circular. At the other extreme, infinitely long, circular
cylindrical shells have β = ε = 1 (Rx → ∞), i.e., the ellip-
tical cross section at O becomes an unbound rectangle with
width Ry. The oblate spheroid β = −1 does not appear to
have a special geometry, but is important for stability reasons

due to the form of the membrane prestresses. When β < −1,
Ry < 2Rx, and according to Eq. (2.3), the in-plane stress along
y-direction in the membrane state, σ 0

22 = ∂11χ0 is negative,
i.e., compressive, for internally pressurized shells. As a result,
oblate shells with β � −1 may even buckle under an internal
pressure [26]. Correspondingly, the positivity of the Fourier-
transformed stiffness, Eq. (3.1), cannot be guaranteed at all
wave vectors even for positive pressures, and the correspond-
ing analysis of the stiffness integral will be hence somewhat
different. In the rest of the paper, we will restrict our focus to
shells with −1 < β � 1.

The indentation stiffness due to some general load func-
tion (that specifies the spatial distribution of external forces),
instead of a point load, can be calculated as the spatial con-
volution of k and the load function since k can be thought of
as a Green’s function. Such a convolution integral might be
carried out numerically, as long as the load function is itself
confined to the shallow region of interest.
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B. Zero-pressure stiffness

As a direct check, we can first calculate the indentation
stiffness at zero pressure with the stiffness integral. Setting
ηs,y = 0 reduces Eq. (3.3) to

I (β, ηs,y = 0) = 1

8π2

�b,y
2

κ

∫ 2π

0
dθ

×
∫ +∞

0

dx

x2 + (1 − β sin2 θ )2

= 1

8

�b,y
2

κ

1√
1 − β

= 1

8

√
RxRy

κY
. (3.4)

Taking the inverse then gives the zero-pressure stiffness

kp=0 = 8
√

κY
√

K .

This agrees with the conjecture in Ref. [8], analytically show-
ing that the zero-pressure stiffness is indeed governed by a
shell’s local Gaussian curvature K := 1

RxRy
= 1−β

Ry
2 .

Equation (3.4) holds for almost all spheroidal shells, except
close to the limit of infinitely long, circular cylindrical shells
(β → 1). For instance, unpressurized cylinders have a finite
linear indentation stiffness [15], whereas our shallow-shell
result predicts zero stiffness. The reason is that for such shells
with low Gaussian curvature, the indentation responses at
zero pressure are dominated by long-wavelength components
much larger than the curvature radius Ry, and the shallow-shell
approximations thus break down. Nevertheless, as we will
see in Sec. III G 1, shallow-shell theory becomes valid as the
internal pressure rises because of the appearance of a new
deformation length scale, so our approach remains useful up
to β = 1 for internally pressurized shells.

The fact that the zero-pressure stiffness of a double-curved
shell depends on its local Gaussian curvature, in hindsight, is
quite sensible; in fact, we might have guessed this dependence
in the first place, without explicitly carrying out the integra-
tion. The reason is as follows. The physics should not depend
on the choice of coordinates. In light of this, the zero-pressure
stiffness can only depend on those quantities, constructed
from the curvature tensor, that are invariant under rotation.
For a two-dimensional surface, there are two such candidates,
namely the Gaussian curvature and the mean curvature. From
Eq. (3.1), we can infer that the stiffness simply cannot depend
on the mean curvature: Setting either Rx or Ry to infinity,
the stiffness would vanish, while the mean curvature remains
finite; in other words, it is, ironically, the inevitable failure of
shallow-shell theory, when being applied to long cylindrical
shells, that actually guarantees the Gaussian-curvature depen-
dence.

C. Numerical evaluation of the stiffness integral

Having preliminarily verified the validity of the stiff-
ness integral, we evaluate the indentation stiffness for four

0 5 10 15 20
ηs,y

0

20

40

60

k
� b

,y
2
/κ

β = −0.8
β = −0.4
β = 0
β = 0.4
β = 0.8

−1 0 1

β

0

1

|η c
|

FIG. 2. Indentation stiffness of five different shell geometries
subject to both internal and external pressures. Symbols denote
data obtained from numerically evaluating the stiffness integral
[Eq. (3.3)], and the dashed curves represent values associated with
the analytical expression for the asymptotic indentation stiffness
[Eq. (3.10)]. Solid line shows the known analytical stiffness for
spherical shells, Eq. (3.8). Inset shows the magnitude of external
pressures at which the indentation stiffness vanishes for each shell
(symbols), compared to the prediction from the local instability cri-
terion, Eq. (3.5a) (solid line).

shell geometries in the range of interest −1 < β � 1 via
numerical evaluation of the stiffness integral, Eq. (3.3). Re-
sults are shown in Fig. 2. As expected from Eq. (3.4), we
observe that close to zero pressure, shells with lower values of
β are stiffer since their local Gaussian curvature is higher at
the indentation point. However, at higher pressures, the trend
is reversed, and oblate shells become softer than prolate shells
at the same pressure. At negative (i.e., external) pressures, the
indentation response softens, and the stiffness vanishes at a
critical pressure value which falls with increasing asphericity
for β > 0, but is constant at ηs,y = −1 for β < 0 (inset to
Fig. 2). Below the critical pressure (i.e., at pressures more
negative than the critical pressure), the indentation stiffness
remains nil since the stiffness integral no longer converges;
in fact, the indentation stiffness below the critical pressure,
the concept itself becomes physically unmeaning because the
shell is already buckled. In the remainder of this section,
we reveal the physical mechanisms underlying these features
through an analysis of the stiffness integral. We also take a
detailed look at the behavior of the indentation stiffness at
pressures close to the critical value, and at high pressures. We
wrap up the section by studying the stiffness of pressurized
cylinders (β = 1).

D. Loss of stiffness and buckling instability

From Fig. 2, we notice that for all the chosen asphericities,
there exists a critical external (i.e., negative) pressure at which
the indentation stiffness vanishes. This softening indicates a
divergence of the stiffness integral, which occurs when k̃ → 0
for some value(s) of the wave vector q [Eq. (3.1)] herald-
ing the existence of an unstable mode at that wave vector.
The instability in the shell shape due to the divergent mode
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is a local manifestation of the buckling instability exhibited
by curved shells under a uniform external pressure [22]. In
practice, a minuscule indentation force applied when the shell
is close to the buckling instability would generate a large,
sudden inversion in the shell near the indentation point. The
description of this postbuckled shape with large deflections
goes beyond the reach of shallow-shell theory, involving sud-
den, often catastrophic changes in the enclosed shell volume;
however, the approach to the buckling threshold itself can be
captured using linear stability analysis. The relation between
indentation response and buckling has been employed experi-
mentally as a nondestructive means to determine the buckling
threshold of thin shells [27–29].

The local critical pressure at the equator of the spheroid is
the threshold ηc at which the stiffness integral first becomes
unbounded, i.e.,

lim
ηs,y→η+

c

I (β, ηs,y ) = +∞.

This threshold is obtained by finding the global minima of
k̃(q) in wave-vector space and identifying the pressure at
which they hit zero, which gives:

ηc =
{− 1−β

1+β
, for 0 � β < 1,

−1, for − 1 < β < 0,
(3.5a)

or

pc := ηc psc =
⎧⎨
⎩

− 4
√

κY
2RxRy−Ry

2 , for 0 � β < 1,

− 4
√

κY
Ry

2 , for − 1 < β < 0,
(3.5b)

in real units. More compactly, we can write pc, in terms of the
equatorial Gaussian curvature K and the asphericity β, as

pc = −4
√

κY K

1 + |β| , (3.5c)

for all |β| < 1.
We used the word “local” to emphasize the fact that the

critical pressure we have identified only characterizes the
loss of stability at the equator of the spheroidal shell. Other
regions of the shell have different local curvatures, and might
experience loss of stability at different values of the external
pressure. The global buckling pressure of the spheroidal shell
corresponds to the smallest magnitude of external pressure
at which a local instability arises somewhere on the shell.
Noting that regions of highest Gaussian curvature are locally
the stiffest, and from symmetry considerations, we expect
Eq. (3.5c) to be the global buckling pressure for prolate shells
(β > 0) for which the Gaussian curvature is lowest for points
along the equator. For oblate shells, by contrast, the Gaussian
curvature is lowest at the two poles [(±a, c, c) in Fig. 1],
where the local geometry is spherical with radius Rp = b2

a =
1−β√

K
, and the corresponding buckling pressure is

pc,p = −4
√

κY

R2
p

= − 4
√

κY K

(1 − β )2
. (3.5d)

As expected, |pc,p| < |pc| for oblate shells with β < 0. The
expressions (3.5c) for 0 � β < 1 and (3.5d) for −1 < β < 0
reproduce known results for the global buckling pressures of
ellipsoidal shells [30].

Moving forward, we only consider pressures above the
local buckling pressure at the indentation point (i.e., p > pc)
when evaluating the indentation stiffness. Note that for oblate
shells, this range includes external pressures for which the
poles of the spheroid are past their buckling threshold. How-
ever, our local-stiffness results are still useful for shells which
match the elasticity and geometry of Fig. 1 locally in the
vicinity of the equator but deviate from it further away (e.g.,
an oblate spheroid reinforced at the poles to prevent buckling).
When ηs,y > ηc, the integrand in Eq. (3.3) is guaranteed to be
positive definite, and the integration over the radial coordinate
can be carried out to leave behind a single integral:

I (β, ηs,y ) = 1

8π2

�b,y
2

κ

∫ 2π

0
dθ

i π
2 + tanh−1

[
ηs,y(1+β sin2 θ )√

η2
s,y(1+β sin2 θ )2−(1−β sin2 θ )2

]
√

η2
s,y

(
1 + β sin2 θ

)2 − (
1 − β sin2 θ

)2
. (3.6)

E. Analytical results for spherical shells

In this section, we will recover and review some results for
the indentation stiffness of spherical shells in the literature.

Setting β = 0 (or, equivalently, Rx = Ry) in Eqs. (3.5), we
first recover the critical pressure of spherical shells [25],

pc,sph := pc(Rx = Ry) = −4
√

κY

Ry
2 , (3.7a)

or, in the scaled units,

ηc,sph := ηc(β = 0) = −1. (3.7b)

(Recall that in our convention, ηs,y < 0 corresponds to an
external pressure.)

The stiffness integral [Eq. (3.6)] also gets greatly simplified
because the angular dependence vanishes when β = 0:

I (β = 0, ηs,y) = 1

4π

�b,y
2

κ

i π
2 + tanh−1

( ηs,y√
η2

s,y−1

)
√

η2
s,y − 1

.

Taking the inverse and rewriting the resulting expression in
terms of real physical quantities, we obtain the established
result of the indentation stiffness of pressurized spherical
shells [6,17],

ksph(p) = 8
√

κY

Ry

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
1−η2

s,y

1− 2
π

arcsin ηs,y
, for |ηs,y| < 1,

π

√
η2

s,y−1

ln
(

ηs,y+
√

η2
s,y−1

ηs,y−
√

η2
s,y−1

) , for ηs,y � 1.
(3.8)
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In practice, two limits of the indentation stiffness are
of particular interest: the asymptotic behavior in the large-
pressure limit ηs,y � 1 and the critical behavior as the
buckling pressure is approached (the limit ηs,y → η+

c,sph). For
the large-pressure limit, it can be shown that

ksph ∼ 4π
√

κY

Ry

ηs,y

ln 2ηs,y
. (3.9)

By expanding ksph around pc,sph, one can demonstrate that
the indentation stiffness of spherical shells near the critical

pressure scales as
√

pc,sph−p
pc,sph

=
√

1 − ηs,y

ηc
.

In the next section, after briefly explaining why the two
limits are interesting, we will derive similar expressions for
spheroidal shells.

F. Analytical expressions for indentation stiffness of
spheroidal shells at low and high pressures

While the stiffness integral can be numerically integrated
to obtain the indentation stiffness at any pressure and geom-
etry within our prescribed limits, the analytical behavior of
the stiffness at large pressures (ηs,y � 1) and close to the
buckling instability (ηs,y → η+

c ) is of special interest. The
large-pressure regime is relevant to the mechanics of bio-
logical cells, which are often investigated with indentation
assays [2,11–13], using shell elasticity as a minimal model
of the expected response. The crowded internal environment
of living cells leads to very high turgor pressures; some
typical values that have been reported are 30 kPa for the bac-
terium Escherichia coli (which corresponds to ηs,y ≈ 15) [13],
2 MPa (ηs,y ∼ 103) for Bacillus subtilis [31] and 2 MPa

(ηs,y ≈ 10) for Saccharomyces cerevisiae yeast cells [12].
Analytical expressions for the asymptotic behavior of the in-
dentation stiffness at large rescaled pressures will be useful to
infer elastic properties, which themselves are sensitive to bi-
ological processes, by performing indentation measurements.
Second, shell buckling can be interpreted as a first-order phase
transition with pressure as the order parameter [32], which
ought to leave a signature in the indentation response. Study-
ing the limit ηs,y → η+

c will provide us with insights regarding
the essence of the nonanalyticity of the indentation stiffness
near the critical pressure.

1. The large-pressure regime

We are interested in finding a parameter in the modified
stiffness integral, Eq. (3.6), which becomes small at large
pressures to enable an exact evaluation of the leading stiffness
behavior. From the form of the integrand, the appropriate
parameter is identified as

y(β, ηs,y, θ ) := 1

ηs,y

1 − β sin2 θ

1 + β sin2 θ
.

In the range of interest of the asphericity, −1 < β � 1, the
parameter y is small for all 0 � θ < 2π provided the pressure
satisfies

ηs,y = pRy
2

4
√

κY
�

{
1, for 0 � β � 1,
1−β

1+β
, for − 1 < β < 0.

(*)

We use the small parameter to rewrite and analytically
evaluate the modified stiffness integral [Eq. (3.6)] in the large-
pressure limit:

I = 1

8π2

�b,y
2

κ

∫ 2π

0

dθ

ηs,y
(
1 + β sin2 θ

) i π
2 + tanh−1

(
1√
1−y2

)
√

1 − y2

y�1≈ 1

8π2

�b,y
2

κ

1

ηs,y

[
ln 2ηs,y

∫ 2π

0

dθ

1 + β sin2 θ
+

∫ 2π

0

dθ

1 + β sin2 θ
ln

(
1 + β sin2 θ

1 − β sin2 θ

)]

≈ 1

4π

�b,y
2

κ

1

ηs,y

1√
1 + β

[
ln 4ηs,y + ln

(
1 + 1

β

)
− 2 tanh−1

(√
1 − β

1 + β

)]
. (3.10)

The inverse of Eq. (3.10) provides an analytical expression
for the indentation stiffness of spheroidal shells at large pres-
sures. We note that in our choice of length and pressure units,
Eq. (3.10) holds for both prolate and oblate spheroidal shells,
but the criterion for “large pressure” differs in these two cases,
as defined in Eq. (∗).

To simplify and shed light on the final expression, we in-
troduce a novel radius parameter R := Ry

√
1 + β with which

we can rewrite Eq. (3.10) as

I = 1

4π

R√
κY

1

ηR
[ln 4ηR − ln(1 +

√
1 − β2)], (3.11a)

= 1

4π

R√
κY

1

ηR
[ln 4ηR − ln(1 + R

√
K )], (3.11b)

where ηR := pR2

4
√

κY
= ηs,y(1 + β ) is the corresponding scaled

pressure, and K again denotes the local Gaussian curvature of
the given shell. Besides its mathematical convenience, R can
be related to the second stress invariant, i.e., the determinant
of the prestress tensor σ 0

αβ :

R = Ry

√
1 + β = Ry

√
2 − Ry

Rx
= 2

p

√
σ 0

11σ
0
22, (3.12)

where σ 0
11 = ∂22χ0 and σ 0

22 = ∂11χ0 are the prestresses along
the principal directions in the membrane state. Equation (3.12)
shows that R is the radius of curvature for which the internal
pressure p would balance a membrane tension of magni-
tude equal to the square root of the second stress invariant
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FIG. 3. Comparison of predicted indentation stiffness (dashed
lines) to finite-element simulation data from Ref. [8] (symbols). Data

are scaled using the length scale �R = 4
√

κR2

Y and pressure scale

4
√

κY /R2, for which we predict convergence of the stiffness curves
at large rescaled pressures ηR = pR2/4

√
κY . A similar convergence

was depicted in Fig. 3 of Ref. [8] using different scales. Yellow solid
line corresponds to the zero-pressure stiffness of long cylindrical
shells, calculated with formulas in Ref. [15], since shallow-shell
theory does not apply to cylinders below a threshold pressure (see
discussion in Sec. III G). The top inset compares the rescaled pres-
sure ηR to the alternative variable τ introduced in Ref. [8]. (See text
for details.) The bottom inset is a linear-log plot showing how the
product of the inverse scaled stiffness and the scaled pressure varies
as the pressure increases; thereinto, the black solid line corresponds
to the result for spherical shells.

according to Laplace’s law [33]. We term the associated
curvature, R−1, the distensile curvature. Just as the lo-
cal Gaussian curvature dictates the zero-pressure indentation
stiffness of curved shells [Eq. (3.4)], the distensile curvature
dominates the indentation response at large internal pressures
although a residual dependence on the Gaussian curvature
remains in the stiffness integral [(3.11b)].

From Eq. (3.11a) we can see that under the rescaling (with
the novel radius parameter), spherical shells are the stiffest
in the large-pressure regime since when β = 0, the geomet-
ric contribution, ln(1 +

√
1 − β2), reaches its maximum ln 2

and hence minimizes the stiffness integral. (This feature is
depicted in the bottom inset of Fig. 3.) At still higher pres-
sures such that the geometric contribution becomes negligible,
Eq. (3.11a) reduces to

I
ηR�1≈ 1

4π

R√
κY

ln 4ηR

ηR
. (3.13)

In practice, the expression

I
ηR�1≈ 1

4π

R√
κY

ln 2ηR

ηR
(3.14)

is more accurate for most shell geometries, since ln(1 +√
1 − β2) is closer to ln 2 than to zero for |β| < 0.91. By com-

parison to Eq. (3.9), we see that the corresponding stiffness
is identical to the high-pressure response of a spherical shell
with radius R and rescaled pressure ηR.

Equations (3.11) and (3.14) provide a concise interpreta-
tion of the indentation stiffness of spheroidal shells at large
pressures. When the material parameters κ and Y are fixed,
the stiffness in the large-pressure limit depends on three quan-
tities: the pressure p, the determinant of the stress tensor at
the point of indentation, and the local Gaussian curvature
K . The first two quantities define a curvature radius R and
a dimensionless pressure ηR which both originate from the
membrane prestress; (3.11b) explicitly separates the prestress
and geometry contributions to the indentation stiffness. The
large-pressure indentation of the shell approaches that of
a sphere with the prestress-derived curvature and pressure
scales [Eq. (3.14)] when the weak dependence on K is ig-
nored. On using these new scales, a duality connecting prolate
to oblate shells at high pressures is revealed: Equation (3.11a)
is invariant under the replacement β → −β, so a shell with
geometric parameters {Ry = ρ, β = β0} and internal pressure
p has the same high-pressure response as a shell with param-
eters {Ry = ρ

√
(1 + β0)/(1 − β0), β = −β0} and the same

pressure, for which the parameters R and ηR are identical.
The criterion for high pressure, Eq. (∗), also reduces to the
symmetric form

ηR � 1 + |β| ∼ 1.

a. Comparison with established results. In previous
works [7,8], it was hypothesized that the high-pressure inden-
tation response of ellipsoidal shells is dictated by the mean
curvature radius RM = 2/(R−1

x + R−1
y ) and a dimensionless

pressure scale τ set by the mean membrane prestress at the
indentation point, σM = (σ 0

11 + σ 0
22)/2, via

τ = σMRM

2
√

κY
.

Our asymptotic form for the inverse of the indentation
stiffness, Eq. (3.14), parallels the high-pressure indentation
stiffness proposed in Ref. [8] which used RM and τ in place
of R and ηR respectively. However, the origins of our radius
and pressure scales are somewhat different as they utilize the
determinant, rather than the trace, of the membrane stress
[Eq. (3.12)].

Despite these differences, our proposed length and pres-
sure scales are as successful as the previously hypothesized
scales in quantifying the high-pressure indentation response.
In Fig. 3, we compare our predictions for the indentation
stiffness (curves) to the results of finite-element simulations
(symbols) reported in Fig. 3 of Ref. [8]. On using the new
length and pressure scales, the data for ηR � 1 collapse onto
the proposed asymptotic form, Eq. (3.14) (solid line). We
also compare our numerically evaluated indentation stiffness,
Eq. (3.6) (dashed curves), to the finite-element data, and find
quantitative agreement for almost all geometries and pres-
sures. The disagreement between the stiffness integral and the
measured indentation stiffness at low pressures for cylindrical
shells (β = 1) is expected; see Sec. III G for an explanation
and a more accurate prediction (dotted line). Our prediction
also deviates from the finite-element simulation results for
the highest simulated pressure of the oblate spheroidal ge-
ometry β = −0.778; we hypothesize that second-order shape
changes in response to the internal pressure might be re-
sponsible for this discrepancy. Apart from these data points,
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our theoretical predictions lie within 5% of the finite-element
measurements, which validates our approach over a wide
range of geometries and pressures. The duality connecting
prolate to oblate shells on using the scales R and ηR is also
visible in Fig. 3, since the data for β = 0.75 and β = −0.778
nearly overlap.

We were unable to neatly separate the contributions from
the mean and the Gaussian curvatures in our evaluation of the
high-pressure stiffness integral. Therefore, we cannot directly
evaluate the relative merits of using our proposed scales R
and ηR over the previously-proposed scales RM and τ from
Ref. [8]. However, some insight as to why both scales perform
well in explaining the high-pressure indentation stiffness can
be obtained by comparing them as a function of geometry. By
expressing RM and τ in terms of Ry and β, we find the ratio

ηR

τ
= (1 + β )(2 − β )

2 + β
.

As the inset of Fig. 3 illustrates, the ratio is of order one for
most values of the asphericity. Similarly, the ratio R/RM eval-
uates to a number of order one for |β| < 1. Therefore, using
the two sets of physical scales is expected to provide similar
results. The discrepancy between the two approaches becomes
significant only for oblate shells with β approaching −1. In
this limit, an advantage of the scales introduced here is that
the instability expected for large internal pressures at β = −1
(see Sec. III D) is reflected in the pressure-induced curvature
taking on imaginary values when σ 0

22 becomes negative in
Eq. (3.12). By contrast, the mean curvature and mean prestress
both remain positive and vary smoothly as β falls below
−1, and the approximations using the mean scales incorrectly
predict a finite indentation response at large pressures.

2. The critical behavior on approaching the buckling pressure

We now analyze the functional approach of the indentation
stiffness to zero as the critical pressure is approached from
above (ηs,y → η+

c ). (Recall that in our convention, external
pressures correspond to ηs,y < 0, and the critical pressure ηc

for the local instability is negative.) Defining the fractional

distance from the critical pressure as

ε := ηc − ηs,y

ηc
=

{
1 + 1+β

1−β
ηs,y, for 0 � β < 1,

1 + ηs,y, for − 1 < β < 0,

we would like to study the limit ε → 0+ of the stiffness
integral. As before, we first rewrite the stiffness integral
[Eq. (3.6)] in a simplified form

I = 1

2π2

�b,y
2

κ

∫ π
2

0
dθ

×
⎧⎨
⎩

1
1−β cos2 θ

π
2 +arcsin y√

1−y2
, for 0 � β < 1,

1
1−β sin2 θ

π
2 +arcsin y′√

1−y′2 , for − 1 < β < 0,

where

y(β, ε, θ ) := 1 + β cos2 θ

1 + β

1 − β

1 − β cos2 θ
(1 − ε),

and

y′(β, ε, θ ) := 1 + β sin2 θ

1 − β sin2 θ
(1 − ε).

Notice that the limits

lim
ε → 0+
θ → 0+

y = 1 and lim
ε → 0+
θ → 0+

y′ = 1

give rise to divergence of the integrals. In other words, in the
limit ε → 0+, the definite integrals are dominated by their
values in the vicinity of θ = 0. Accordingly, we can approxi-
mate them by replacing the integrands with the corresponding
second-order Taylor polynomials around (ε, θ ) = (0, 0):

I ≈ 1

2
√

2π

�b,y
2

κ

∫ π
2

0
dθ

×

⎧⎪⎨
⎪⎩

1
1−β(1−θ2 )

1√
ε+ 2βθ2

1−β2

, for 0 � β < 1,

1

(1−βθ2 )
√

ε−2βθ2
, for − 1 < β < 0.

These integrals can be analytically evaluated:

I ≈ 1

4π

�b,y
2

κ

1√|βηc|
sinh−1

[√
2

4
π2

1
|β| + 1 + f (β )

1√
ε

]
≈ 1

4π

�b,y
2

κ

1√|βηc|
ln

[√
8

4
π2

1
|β| + 1 + f (β )

1√
ε

]
, (3.15)

where

f (β ) :=
{(

1 − 4
π2

)
β, for 0 � β < 1,

0, for − 1 < β < 0.

Figure 4 shows that the analytical result, Eq. (3.15) (dashed
lines) successfully reproduces the results due to numerical
integration of the stiffness integral (symbols) close to the
critical pressure for four different shells.

Equation (3.15), the main result in this section, implies
that for general spheroidal shells, their indentation stiffness
falls off as the inverse of the logarithm of the distance ε from
the critical point, i.e., k ∝ − 1

ln
√

ε
. This slow approach of the

stiffness to zero, due to the logarithmic divergence of the
stiffness integral for nonspherical shells, is evident in the inset
to Fig. 4. By contrast, the approach to zero is more drastic for
spherical shells: On taking the limit |β| → 0 of Eq. (3.15),
one obtains

lim
|β|→0

1√|βηc|
sinh−1

(√
2

4
π2

1
|β| + 1

1√
ε

)
= π√

2ε
,

which implies that near the critical pressure, the indenta-
tion stiffness of spherical shells ksph ∝ √

ε, as was expected
from the exact results reported in Sec. III E. Spherical shells
are much softer at all pressures near the critical pressure
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FIG. 4. Critical behavior of the indentation stiffness as ηc is
approached, for five spheroidal geometries. Symbols denote data
obtained from numerical integration of the stiffness integral. Solid
and dashed lines correspond to analytical expressions Eqs. (3.8)
and (3.15), respectively. Inset shows the same data on linear-log
scales to reveal the slow approach to zero stiffness as ηs,y → η+

c for
nonspherical shells.

compared to spheroidal shells, since ksph/k ∝ √
ε ln

√
ε

ε→0→ =
0. The contrasting characters of the softening as the critical
pressure is approached reflects the fact that spherical shells
harbor a massive degeneracy of divergent Fourier components
of the stiffness integral as ηs,y → η+

c (a circle with radius
q = 1/�b,y in the wave-vector plane), whereas nonspherical
shells exhibit divergent Fourier modes only at the two values,
qpro

± = (0,±√
1 − β/�b,y) and qob

± = (±1/�b,y, 0) for prolate
and oblate shells, respectively.

The results in this subsection do not apply to cylindrical
shells because the limit β → 1− fails to exist (limβ→1− ηc =
0). A different approach will be used to study cylindrical
shells below.

G. Indentation responses of cylindrical shells

The case of extremely long prolate ellipsoids, for which
Rx → ∞ or β → 1, requires special treatment. As we argued
in Sec. II, shallow-shell theory accurately describes the strains
associated with transverse deflections only if the deflections
vary over length scales that are small compared to the local
radii of curvature Rx and Ry. When Rx → ∞, the character-
istic wavelength of deflections along the y direction, which is
controlled by �b,x, eventually becomes larger than the cylinder
circumference 2πRy. Shallow-shell theory builds the response
to point indentation and to external pressure out of modes that
do not change the metric or curvature of the shell, erroneously
predicting zero indentation stiffness for unpressurized cylin-
ders (Sec. III B) as well as buckling at an infinitesimal external
pressure (ηc → 0, Sec. III D).

The true deformation mode responsible both for the inden-
tation stiffness and the finite buckling pressure of an infinitely
long cylindrical shell is the isometric change in shape of the
circular cross section to an ellipse, which is also responsible
for the buckling of inextensible rings [18]. This mode extends

over the entire shell circumference and cannot be captured by
shallow-shell theory. Unlike the characteristic deflections of
doubly curved shell segments which involve both stretching
and bending, the elliptical mode costs no stretching energy
as it does not change the circumference; it only involves
bending energy because of the change in curvature away from
the initial circular shape. When the bending energy of the
elliptical shape change is evaluated using basis functions that
extend over the entire circumference, the mechanics of the
cylindrical shell can be accurately described. For instance, the
buckling pressure for long cylindrical shells evaluated using
elliptical modes is pc,cyl = − 3κ

Ry
3 [18]. Using similar methods,

the indentation stiffness of zero-pressure cylindrical shells
was derived in Ref. [15] to be

kcyl,0 ≈ 1.37
Et

5
2

R
3
2

. (3.16)

In principle, the same non-shallow-shell techniques could be
used to evaluate the indentation stiffness of cylinders at finite
internal pressure. However, we find that the balance between
pressure and elasticity gives rise to a characteristic defor-
mation wavelength that quickly becomes small compared to
the curvature radius as the internal pressure is increased, and
the validity of shallow-shell results becomes re-established.
To derive this new characteristic length, we notice that it
is bending and not stretching which primarily dictates the
deformation energy of cylinders because of the existence
of the isometric deformation modes, as is evident from the
expressions for the buckling pressure and the zero-pressure
indentation stiffness. Accordingly, the characteristic extent
of deformations of pressurized cylinders is obtained by bal-
ancing the bending and tension terms in the total-energy
functional, which leads to the result

�p =
√

κ

pRy
.

When the pressure becomes appreciable, this length scale
falls far below the curvature radius Ry and our shallow-shell
analysis, in particular the stiffness integral Eq. (3.6), can be
used to derive the indentation of cylindrical shells. In Fig. 3,
the numerically integrated indentation stiffness (black dashed
line) is seen to agree with the results of finite-element simula-
tions (from Ref. [8]) for pressures above ηR = 2ηs,y = 0.1. At
lower pressures, the stiffness crosses over to the zero-pressure
result from Ref. [15] (yellow line).

In the remainder of this subsection, we develop analyti-
cal approximations for the indentation stiffness of cylinders
which cover a wide range of pressures. To do so, we ex-
ploit the separation between the two pressure scales ηs,y and
|pc,cyl| for thin shells, which allows us to evaluate the stiff-
ness integral in “low-pressure” (ηs,y � 1) and “high-pressure”
(ηs,y � 1) regimes while satisfying the condition �p � Ry for
shallow-shell theory to be valid.

1. Validity of shallow-shell theory in the low-pressure
limit ηs,y � 1

First, we will show that the shallow-shell theory is still
valid for a range of pressures satisfying ηs,y � 1 for long
cylindrical shells, provided that the shells are thin. The re-
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quirement �p � Ry amounts to p � κ

Ry
3 , a pressure scale

related to the buckling pressure pc,cyl. To relate the two pres-
sure scales psc (which underlies the dimensionless pressure
ηs,y) and κ

Ry
3 , we write:

ηs,y = pRy
2

4
√

κY
≡ 1

4

pRy
3

κ

1√
γy

, (3.17)

where the dimensionless Föppl-von Kármán number is

γy ≡ Y Ry
2

κ
� 10

(Ry

t

)2

.

For typical thin elastic shells, 0.001 � t
Ry

� 0.05 [18], so
there exists a wide range of pressures which simultaneously
satisfy p � κ

Ry
3 (that is, �p � Ry, and the shallow-shell theory

holds) and ηs,y � 1 (the low-pressure limit for the stiffness
integral). The wide range manifests the fact that due to a finite
Gaussian curvature, a spherical shell is able to withstand more
external forces than a long cylindrical shell of the same radius,
i.e., the magnitude of the spherical shell’s buckling pressure is
larger.

2. Analytical expressions for the indentation stiffness in
the limit ηs,y � 1

We start our analysis of the stiffness integral [Eq. (3.6)] by
setting β = 1:

I (β = 1, ηs,y ) = 1

2π2

�b,y
2

κ

∫ π
2

0

dθ

sin2 θ

arccos[y(ηs,y, θ )]√
1 − y2(ηs,y, θ )

,

where

y(ηs,y, θ ) := ηs,y
1 + cos2 θ

sin2 θ
= ηs,y(2 cot2 θ + 1).

Making the substitution u = cot θ , we can further reduce the
stiffness integral:

I (β = 1, ηs,y ) = 1

2π2

�b,y
2

κ

1√
2ηs,y

×
∫ +∞

0
du

arccos(u2 + ηs,y)√
1 − (u2 + ηs,y)2

.

Note that ηs,y now couples with the integration variable u in
an additive manner. Hence, for ηs,y � 1, we can write the
stiffness integral as a power series of ηs,y:

I = 1

8π2

�b,y
2

κ
2
√

2
∞∑

n=0

1

n!

{∫ +∞

0
du (Du2 )n

[
arccos (u2)√

1 − u4

]}
(ηs,y)n− 1

2 , (3.18)

where the differential operator Du2 ≡ d
d (u2 ) = 1

2u
d

du . Truncating the series after the first four terms and numerically evaluating
the coefficients gives the sought approximate expression for the indentation of cylindrical shells with pressures in the range
κ/R3

y � p � 4
√

κY /R2
y :

I ≈ 1

8π2

�b,y
2

κ

(
11.6√
ηs,y

− 2.66
√

ηs,y + 1.83η
3
2
s,y − 0.998η

5
2
s,y

)
. (3.19)

3. Analytical expressions for the indentation stiffness of highly
pressurized cylindrical Shells

At high pressures, the results of III F 1 can be applied
directly. For the cylindrical geometry (β = 1), the novel ra-
dius parameter becomes R = Ry

√
1 + β = √

2Ry, and the
Gaussian curvature is K = 0. Substituting these forms into
Eq. (3.11a) and then taking the inverse of the resulting expres-
sion, we obtain the indentation stiffness of long cylindrical
shells in the large-pressure limit ηs,y � 1,

kcyl ≈ 4π
√

κY

Ry

√
2

ηs,y

ln 8ηs,y
. (3.20)

Figure 5 compares the numerically evaluated stiffness for
pressurized cylindrical shells [from inverting Eq. (3.6) to the
low-pressure (Eq. (3.19)] and high-pressure [Eq. (3.20)] ap-
proximations. We find that the analytical expressions recreate
the indentation stiffness of long, thin cylindrical shells over
almost all relevant pressures. To illustrate the separation of the
scales psc and |pc,cyl|, we also show the pressure using the al-
ternate scaling pR3

y/κ (upper horizontal axes), using the E. coli
cell wall parameters to connect the two scales. Since the re-
sulting Föppl-von Kármán number is very large, the criterion
�p � Ry for the validity of our shallow-shell results is satisfied

down to ηs,y ∼ 10−2. The inset verifies the predicted poly-
nomial scaling of the indentation stiffness at low pressures
from Eq. (3.19), and shows that the zero-pressure stiffness
kcyl,0 from Ref. [15], Eq. (3.16), is approached at ηs,y ≈ 0.005
(pR3

y/κ ≈ 10). Although shallow-shell theory breaks down at
this low pressure, we expect that the true indentation behavior
would cross over from our low-pressure expression to kcyl,0

around this pressure value.

4. Stiffness switching

The high-pressure stiffness expression for cylinders,
Eq. (3.20), is very similar to that of a sphere with the same
elastic properties, radius, and internal pressure [Eq. (3.9)].
To compare the relative indentation stiffness of cylinders and
spheres, we compute the ratio of the two expressions:

kcyl

ksph
≈

√
2

ln 2ηs,y

ln 8ηs,y
.

Notice that the ratio is equal to unity when ηs,y = 22
√

2+1 ≈
14.2, beyond which long cylindrical shells become locally
stiffer than spherical shells with the same scaled pressure. By
contrast, the sphere was stiffer at zero pressure [Eq. (3.4)].
We term this phenomenon stiffness switching between long
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FIG. 5. Scaled indentation stiffness as a function of pressure for
an infinitely long, thin circular cylindrical shell. Results of numerical
integration (symbols) are compared to the two approximate expres-
sions derived for low pressures (dotted curve) and high pressures
(dashed curve). The lower axis reports the rescaled pressure ηs,y =
p/psc, whereas the upper axis (orange) uses the alternate pressure
scale κ/Ry

3 computed using the parameters κ = 1.76 × 10−19 J and
Ry = 0.5 μm representative of the E. coli cell wall [13]. The re-
sulting Föppl-von Kármán number is γy = 1.71 × 105. Shallow-shell

theory is valid as long as pRy
3

κ
� 10. The zero-pressure stiffness

kcyl,0 [Eq. (3.16)], calculated using different methods in Ref. [15],
is marked by a star in the main panel and a solid line in the inset.
Inset shows the low-pressure behavior on logarithmic scales, where
the square-root dependence of indentation stiffness on pressure is
apparent.

cylindrical and spherical shells. In general, stiffness switch-
ing tends to occur between any pair of spheroidal shells
with different asphericities on applying an internal pressure.
The reason is as follows. Equation (3.4) implies that at low
internal pressure, the indentation stiffness is dominated by
the Gaussian curvature K = 1

RxRy
= 1−β

Ry
2 . On the other hand,

R becomes the dominant radius parameter in the large-
pressure limit, as one can rewrite the asymptotic indentation
stiffness [the inverse of Eq. (3.13)] in a more illuminating
form,

k
ηR�1≈ 4π

√
κY

R
ηR

ln 4ηR
= π pR

ln 4ηR
= π pRy

√
1 + β

ln 4ηR
,

whence the dominance of R becomes more manifest. Stiffness
switching is hence due to the fact that K and R have oppo-
site β dependencies: For a fixed Ry,

√
K is proportional to√

1 − β, while R to
√

1 + β. The phenomenon highlights the
contrasting contributions of geometry and internal pressure to
the indentation stiffness of spheroidal shells.

IV. DISCUSSION

We have analyzed the linear indentation response of thin
spheroidal and cylindrical shells under pressure, as a manifes-

TABLE I. Summary of analytical results for indentation stiffnesses.

Condition Parameter ranges Equation

Doubly curved
shells at zero
pressure

p = 0,
√

Ryt � Rx � R2
y/t (3.4) or (A1)a

Spheroids at high
internal pressure

ηR � 1 + |β|, −1 < β � 1 (3.11) or (A2)

Spheroids under
external pressure
close to local
instability

1 − p
pc

� 1, −1 < β < 1 (3.15) or (A5)

Cylinders at low
internal pressure

κ

R3
y

� p � 4
√

κY
R2

y
, β = 1 (3.19) or (A4)

Cylinders at high
internal pressure

p � 4
√

κY
R2

y
, β = 1 (3.20) or (A3)

aPreviously conjectured in Ref. [8].

tation of geometric rigidity with practical applications. While
our analysis is enabled by the simplifying assumptions of
shallow-shell theory, we have identified parameter regimes
for which these assumptions are valid, which turn out to
encompass nearly all shell geometries and pressures which
allow stable prestressed states. In addition to integral expres-
sions for the inverse of the stiffness which can be numerically
evaluated [Eqs. (3.3) and (3.6)], we have derived analytical
expressions in various limits which rigorously validate prior
results and provide easy-to-evaluate expressions for the in-
dentation response as a function of geometric parameters,
elastic properties, and pressure. Table I provides a summary
of these results including references to the relevant expres-
sions. For practical purposes, expressions written in terms of
dimensionful, measurable quantities are more straightforward
to utilize; in light of this, we also provide the relevant dimen-
sionful expressions in Appendix. We have also validated a
subset of our results against data from finite-element simu-
lations of indentation assays which were reported in Ref. [8]
(Fig. 3).

Besides predictions of the indentation stiffness, our results
provide insights into the nature of geometric rigidity and
the influence of internal and external pressure. We revealed
a connection between the loss of stiffness and the buck-
ling instability of thin shells subjected to external pressure
(Sec. III D), and showed that the behavior of the stiffness as
the critical buckling pressure is approached differs qualita-
tively for spherical and general spheroidal shells (Sec. III F 2
and Fig. 4). At large internal pressures, we proposed a new
length scale—the distensile curvature radius, R [Eq. (3.12)]—
which captures the contribution of membrane prestresses to
the indentation stiffness in a manner akin to how the Gaussian
curvature radius 1/

√
K captured the geometric contribution.

The contrasting behaviors of the distensile and Gaussian cur-
vatures as the asphericity is varied makes cylindrical shells
weaker than spherical shells of the same radius at low pres-
sures, yet stronger at high pressures—a phenomenon we
termed stiffness switching. The loss of rigidity of oblate
shells with β � −1 at positive internal pressures is also
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captured by the distensile curvature taking on imaginary
values.

Our result also provides new insights about the indentation
stiffness of long, thin cylindrical shells. Cylinder indentation
was previously studied in the zero-pressure limit [15] and the
membrane limit which incorporated the effects of pressure-
related stresses while ignoring elastic stiffness [13,34]. We
connect these disparate regimes by exploiting a separation of
pressure scales which arises for thin cylinders, which allowed
us to calculate the indentation stiffness of cylindrical shells
over a wide range of pressures (Sec. III G and Fig. 5).

Our analysis points to several promising directions for
future studies. While we focused on pressurized spheroidal
shells, our approach could be used to find the indentation
stiffness of any thin curved shell for which the in-plane
stresses in the vicinity of the indentation point are known,
as long as shallow-shell theory is applicable. For instance,
the indentation stiffness of general ellipsoids could be nu-
merically evaluated, even away from high-symmetry points.
The approach could be extended to include the effects of
a fluid or solid continuum in the shell interior, as well as
material anisotropy in the shell, all of which are particularly
relevant to biological structures. It would also be interesting
to analyze the indentation behavior beyond the linear regime,
which would require extending the Pogorelov scaling for the
energetics of large inversions of spherical shells [35–37] to
anisotropic geometries. Understanding the large-inversion be-
havior would also provide insight into the postbuckling shapes
of general spheroids; in this regard, the case β � −1 will
be particularly interesting since this type of shells has two
buckling states for negative and positive pressures. Finally, it
would be interesting to extend our technique to basis functions
beyond the Fourier modes we use in our analysis, which
would allow us to tackle nonshallow shells and to consider
the effects of edge constraints (e.g., indentation of clamped
spherical caps).
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APPENDIX: CATALOG OF DIMENSIONFUL ANALYTICAL
RESULTS FOR INDENTATION STIFFNESSES

First, as a supplement to Eq. (3.4), the zero-pressure stiff-
ness of a double-curved shell can also be written in terms of
the shell material’s Young’s modulus (denoted by E ), Pois-
son’s ratio (υ), and the shell thickness (t), as

kp=0 = 8

√
κY

RxRy
= 4Et2√

3(1 − υ2)

1√
RxRy

. (A1)

When computing the indentation stiffness of a pressurized
spheroidal shell (p �= 0), we believe that it is generally easier
to first scale the pressure and then use the resulting nondimen-
sionalized pressure to perform the calculations. Therefore,
the following expressions are given in terms of the scaled
pressure

ηs,y = pRy
2

4
√

κY
=

√
3(1 − υ2)

2

(Ry

t

)2 p

E

and β = 1 − Ry

Rx
, the asphericity of the given shell, which is

another combination of parameters that commonly shows up
in the relevant indentation expressions.

The high-pressure stiffness of spheroidal shells with −1 <

β � 1 can be recast as

kasy ≈ π pRy

√
1 + β

[
ln

(
4ηs,y

1 + β

1 +
√

1 − β2

)]−1

. (A2)

Setting β = 1 in Eq. (A2), we obtain the dimensionful asymp-
totic stiffness of a long cylindrical shell,

kasy, cyl ≈
√

2π pRy

ln 8ηs,y
. (A3)

For the long cylindrical shell, when the internal pressure is
relatively low, its indentation stiffness becomes

kcyl ≈ 2π2 pRy
(
11.6

√
ηs,y − 2.66η

3
2
s,y + 1.83η

5
2
s,y − 0.998η

7
2
s,y

)−1
. (A4)

Finally, for spheroidal shells with −1 < β < 1, near the critical external pressure, their stiffnesses are dictated by

k ≈ π |p|Ry

√∣∣∣∣ β

ηs,y

∣∣∣∣ 1

√
1 − ε sinh−1

[√
2

4
π2

1
|β| + 1 + f (β )

1√
ε

] , (p, ηs,y < 0), (A5)

where

ε =
{

1 − 1+β

1−β
|ηs,y|, for 0 � β < 1,

1 − |ηs,y|, for − 1 < β < 0,
and f (β ) =

{(
1 − 4

π2

)
β, for 0 � β < 1,

0, for − 1 < β < 0.
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