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Residual stress field is a self-equilibrium state of stress in the bulk solid material with the inhomogeneous
field of the inelastic deformations. The high level of tensile residual stress often leads to dynamic fracture
resulting in the instantaneous and catastrophic destruction of the materials because the cracks are fed with
the strain energy initially stored in the bulk materials due to the residual stress. The dissipation of the strain
energy with crack growth results in the release and the redistribution of the residual stress. In this paper, we
propose an effective mathematical model and a numerical analysis method for dynamic fracture in residual
stress field. We formulate the dynamic behavior of solid continuum with residual stress field in the context of
particle discretization scheme finite element method. This formulation enables the appropriate evaluation of
(i) release and redistribution of residual stress due to dynamic propagation of the cracks and (ii) the effect of the
elastic wave on crack propagation, which are the most substantial problems on dynamic fracture in residual stress
field. We perform the experiments and the simulations of dynamic fracture process in chemically tempered glass
sheets with residual stress field to validate the proposed numerical analysis method. The simulation results show
remarkable agreement with the experiments of the catastrophic failure of the glass sheets with residual stress
field in all aspects of crack behavior. These results indicate that the proposed model and method can rigorously
evaluate the release and the autonomous redistribution of the residual stress in the dynamic fracture process.
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I. INTRODUCTION

Residual stress field is a self-equilibrated state of stress
induced by the inhomogeneous distribution of the inelastic
deformations, temperature and moisture gradients or local
volume changes due to phase transition. Since the compres-
sive residual stress has the ability to prevent crack initiation
and growth, the intentional introduction of the surface com-
pressive residual stress by surface machining or finishing
process (e.g., quenching, cold working, and shot-peening) has
been utilized for a significant increase in the apparent tensile
strength of the bulk materials. While compressive residual
stress significantly improves the material resistance, tensile
residual stress produces high stress concentration at crack tips
and promotes failure. Hence, the unintentional accumulation
of the tensile residual stress usually results in undesired ge-
ometrical distortion and unexpected reduction of the strength
of the bulk materials.

In contrast to the fracture phenomena usually treated in
the basic fracture mechanics theory, cracks in tensile resid-
ual stress fields have the possibility for the dynamic growth
without any persistent external loading. This is because cracks
are fed with the strain energy initially stored in the bulk
materials due to the residual stress. Therefore, the high level
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of tensile residual stress promotes the significant acceleration
of the crack propagation resulting in the instantaneous and
catastrophic destruction of the bulk materials.

The most typical examples of the catastrophic failure due
to residual stress field are observed in tempered glass. Since
glass is an amorphous solid exhibiting perfect linear elasticity
and brittle fracture at normal temperature, the tempered glass
is a suitable material for investigating the dynamic fracture
in residual stress field. The tempered glass improves the re-
sistance to the surface flaws and to the external loads by
introducing the compressive residual stress [1,2] at the surface
of the glass through the chemical [3–5] or thermal treatment
[6,7]. However, because of the self-equilibrium constraint
on the stress field, any compressive residual stress must be
accompanied by the tensile residual stress and thereby the
smooth residual stress profile is introduced within the thick-
ness of the tempered glass sheet; see Fig. 1. Thus, if a flaw
manages to reach the tensile stress region through the com-
pressive surface layer, it becomes a trigger of the catastrophic
failure and shatters the tempered glass sheet into small diced
fragments [8–11].

The dynamic crack propagation in tempered glass sheets
has attracted much attention over this half century from the
perspectives of product safety and scientific interest. The
majorities of these early works are experiment-based investi-
gations using the high-speed photography or the high-speed
color photoelastic picture to capture the dynamic fracture
process in residual stress field [12–15]. However, the release
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FIG. 1. The residual stress profile within the thickness of the
chemically tempered glass sheet.

and the redistribution of the residual stress field due to the
dynamic fracture is still hardly observable because the sys-
tems and devices for the full-field measurement of the stress
field (e.g., digital image correlation (DIC) [16–18], high-
speed digital photoelasticity [13,15,19–21]) are limited on the
evaluation of the outer-surface residual stress field (DIC) or
the residual stress intensity averaged over the thickness of the
specimen (photoelasticity). Moreover, the crack propagation,
the change in residual stress field, and the elastic wave are
complicatedly entangled with each other in dynamic fracture
process. This complicated entanglement also brings substan-
tial theoretical complexity. This is why numerical approaches
are required for the assessment of the dynamic fracture in
residual stress field.

Although many experimental investigations and analytical
studies for building phenomenological models can be found,
there exist only a few numerical and computational studies for
the fracture process in tempered glass (e.g., a quasistatic frac-
ture model for describing a single crack evolution in tempered
glass sheets [22] and a quasistatic finite-element model for es-
timating the remaining strain energy in fragments [23,24]). In
spite of these efforts for numerical evaluation of the fracture in
residual stress field, the achievement of the previous works is
only confined to the evaluation of the quasistatic propagation
of a single crack. In these two decades, many fracture analysis
methods such as eXtended finite-element method [25–27],
FEM with cohesive zone model [28,29], phase field method
[30,31], and peridynamics [32,33] have been proposed. These
enhanced numerical analysis methods have been successfully
applied to a wide variety of fracture phenomena. Neverthe-
less, the numerical analysis of multiple crack propagation in
residual stress field is still highly challenging. This is mainly
because of the difficulty in capturing the change in the residual
stress field due to dynamic fracture.

The purpose of this paper is to propose an effective math-
ematical model and a numerical analysis method for dynamic
fracture in the residual stress field. We formulate the dy-
namic behavior of solid continuum with residual stress field
in the context of particle discretization scheme finite element
method (PDS-FEM) developed by the authors [34–37]. This
formulation enables the appropriate evaluation of (i) release
and redistribution of the residual stress due to dynamic prop-
agation of the cracks and (ii) the effect of the elastic wave on
crack propagation, which are the most substantial problems in
dynamic fracture in the residual stress field. For evaluating the
validity of the proposed mathematical model and numerical
analysis method, we performed experiments and numerical

analyses of the self-driven dynamic fracture process in chem-
ically tempered glass sheets with different residual stress
profiles in the thickness direction. The overview of this study
is given in Hirobe et al. [38].

II. FORMULATION OF PARTICLE DISCRETIZATION
SCHEME FINITE ELEMENT METHOD

A. Problem setting

Consider a problem for the infinitesimal deformation of
the homogeneous isotropic linearly elastic body �. When
the displacement boundary condition ūi(x) is imposed on the
boundary of � (denoted as ∂�), the boundary value problem
for the displacement ui(x) is⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σi j, j (x) + bi(x) = 0 x ∈ �

σi j (x) = ci jklεkl (x) x ∈ �

εi j (x) = 1
2 (ui, j (x) + u j,i(x)) x ∈ �

ui(x) = ūi(x) x on ∂�

, (1)

where σi j is a stress tensor, εkl is a strain tensor, ci jkl is
an elasticity tensor, ui is a displacement vector, and bi is a
body force vector. The summation convention is employed for
subscripts throughout this paper.

This boundary value problem for the displacement ui is
equivalent to the variational problem in which the following
functional J of the displacement field ui(x) should be made
stationary:

J[ui(x)] =
∫

�

(
1

2
εi jci jklεkl − biui

)
dV. (2)

Here the first term of the integrant in Eq. (2) is the strain en-
ergy density. Introducing the displacement-strain relationship
εi j = 1

2 (ui, j + u j,i ) to the functional in Eq. (2), only the dis-
placement vector ui is explicitly included in the functional J.
Thus, the displacement vector ui which satisfies the stationary
condition δJ = 0 and the prescribed displacement boundary
condition ui(x) = ūi(x) for x on ∂� is the solution of the
boundary value problem (1).

B. Particle discretization scheme

For the numerical evaluation of the functional J in Eq. (2),
PDS-FEM applies the particle discretization scheme to the
field variables. The analysis domain � ∈ R3 is discretized in
different ways by a pair of conjugate geometries correspond-
ing to a set of nodes {xα| α ∈ N, 1 � α � N} as follows:

�̂ =
N∑

α=1

�α, (3)

�̂ =
M∑

β=1


β, (4)

where {�α| α ∈ N, 1 � α � N} is a set of the Voronoi tes-
sellations, whereas {
β | β ∈ N, 1 � β � M} is a set of the
Delaunay tessellations, and �̂ is the discretized analysis do-
main. The Delaunay tessellation becomes a set of triangles in
the two-dimensional case and becomes a set of tetrahedrons in
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FIG. 2. The Voronoi and the Delaunay tessellations in the two-dimensional case, (a) seed points, (b) Voronoi tessellations, and (c) Delaunay
tessellations.

the three-dimensional case; see, for instance, Fig. 2 in the two-
dimensional setting. The definition of Voronoi tessellations
employed in PDS-FEM is slightly different from the original
definition of the Voronoi tessellation. The Voronoi edges are
connecting the gravity centers of the Delaunay edges, areas
(and volumes for three-dimensional case).

The field variables are discretized on the spatially dis-
cretized analysis domain �̂ by using the following character-
istic functions on the Voronoi tessellations and the Delaunay
tessellations.

φα (x) =
{

1 (x ∈ �α )

0 (x /∈ �α )
, (5)

ψβ (x) =
{

1 (x ∈ 
β )

0 (x /∈ 
β )
. (6)

These discontinuous and nonoverlapping characteristic
functions enable the easy treatment of the discontinuous field
due to fracture. The displacement field is discretized on the
Voronoi tessellations as

ui(x) =
N∑

α=1

uα
i φα (x), (7)

where uα
i is the nodal displacement vector of the αth node.

The body force bi(x) is likewise discretized on the Voronoi
tessellations as

bi(x) =
N∑

α=1

bα
i φ

α (x), (8)

where bα
i is the nodal body force vector of the αth node.

The physical quantities related to the spatial derivatives
of the displacement field are discretized on the Delaunay
tessellations as

εi j (x) =
M∑

β=1

ε
β
i jψ

β (x), (9)

σi j (x) =
M∑

β=1

σ
β
i jψ

β (x), (10)

where ε
β
i j and σ

β
i j , respectively, denotes the element strain

tensor and the element stress tensor for the βth element. When
the elasticity tensor ci jkl is a function of the position x, ci jkl (x)

is discretized as

ci jkl (x) =
M∑

β=1

cβ

i jklψ
β (x). (11)

According to these discretizations, the displacement field is
expressed as the translational motion of the rigid body par-
ticles defined by the Voronoi tessellations. Thus, PDS gives
a particle description to the displacement field while strain
and stress fields are averaged and evaluated over the Delau-
nay tessellations (which is a conjugate set of the Voronoi
tessellations).

Consider a tetrahedron 
β (composed of �α , �γ , �ζ ,
and �ξ ) shown in Fig. 3. In the framework of PDS, the
displacement-strain matrix Bβα

i for this tetrahedral element

FIG. 3. A Delaunay tetrahedron 
β composed of �α , �γ ,
�ζ , and �ξ .
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β is given as

Bβα
i = 1


β

∫

β

φα
,i ψβdV

= 1


β

∫
∂
β

nα
i dS

= 1


β

∫
∂�α∩
β

nα
i dS

= 1


β

(∫
∂�αγ ∩
β

nαγ
i dS +

∫
∂�αζ ∩
β

nαζ
i dS

+
∫

∂�αξ ∩
β

nαξ
i dS

)
, (12)

where ∂�αγ is the boundary of the αth Voronoi tessellation
adjacent to the γ th Voronoi tessellation, and nαγ

i is the out-
ward unit normal vector of the αth Voronoi tessellation on
∂�αγ (likewise for ∂�αζ , ∂�αξ , nαζ

i , and nαξ
i ). By using this

displacement-strain matrix Bβα
i , the discretized displacement-

strain relationship is expressed as

ε
β
i j =

N∑
α=1

1

2

(
Bβα

j uα
i + Bβα

i uα
j

)
. (13)

In spite of the discontinuous characteristic functions used for
the discretization of the displacement field ui(x), the compo-
nents of Bβα

i are identical to those of the displacement-strain
matrix for the conventional FEM of tetrahedral elements with
linear interpolation functions.

C. PDS-FEM

Applying the particle discretization scheme for the func-
tional J in Eq. (2), PDS-FEM can be formulated. The
discretized functional Ĵ is

Ĵ
(
uα

i , ε
β
i j

) =
M∑

β=1

1

2
ε

β
i jci jklε

β

kl

β −

N∑
α=1

bα
i uα

i �α

=
N∑

α=1

N∑
γ=1

1

2
Kαγ

ik uα
i uγ

k −
N∑

α=1

bα
i uα

i �α, (14)

where 
β is used for the volume of the βth Delauanay
tessellation, �α is used for the volume of the αth Voronoi
tessellation, and Kαγ

ik is the stiffness matrix defined as

Kαγ

ik =
M∑

β=1

Bβα
j cβ

i jkl B
βγ

l 
β. (15)

Because of the identity of the displacement-strain matrix Bβα
i

used in PDS-FEM and the conventional FEM, the stiffness
matrix expressed as Eq. (15) is also identical to that of the
conventional FEM of tetrahedral elements with linear interpo-
lation functions.

Since the stiffness matrix Kαγ

ik is a positive definite matrix,
the variational problem for the functional in Eq. (2) results
in the minimization problem for the quadratic function in
Eq. (14). Therefore, the approximate solution for the boundary
value problem (1) is a set of the nodal displacement {uα

i }
corresponding to the stationary point of the quadric surface.

This approximate solution is given by solving the following
simultaneous equations for {uα

i } obtained from the stationary
condition ∂ Ĵ/∂uα

i for the discretized functional Ĵ:

N∑
γ=1

Kαγ

ik uγ

k − bα
i �

α = 0. (16)

Thus, PDS-FEM leads to the same simultaneous equations
as the conventional FEM of tetrahedral elements with linear
interpolation functions. In spite of the usage of the discontin-
uous displacement field (i.e., translational motion of the rigid
body particles) in PDS-FEM, the approximate solution for the
boundary value problem (1) obtained by PDS-FEM is iden-
tical to that obtained by the conventional FEM of tetrahedral
elements with linear interpolation functions [34]. In this sense,
PDS-FEM provides the rigorous description for the particle
model with the perfect correspondence to the deformable solid
continuum.

This particle description of the displacement field in a
deformable solid continuum provides us a simple and rigorous
simulation of the fracture surfaces. In PDS-FEM, the fracture
is expressed as the loss of the interaction between two adjacent
Voronoi particles. This loss of the interaction corresponds to
the removal of the surface integral in Eq. (12) on the fractured
Voronoi boundary. For instance, when the boundary between
the αth Voronoi particle �α and the γ th Voronoi particle
�γ is fractured, the surface integral of the unit normal vec-
tor becomes zero on ∂�αγ in the Delaunay tetrahedron 
β

related to ∂�αγ :
∫

∂�αγ ∩
β

nαγ
i dS = 0 ∀α, β, γ s.t. ∂�αγ in 
β is fractured.

(17)

III. HAMILTONIAN FORMULATION OF PDS-FEM FOR
THE DYNAMIC BEHAVIOR OF THE DEFORMABLE

SOLID CONTINUUM

In this section, we extend PDS-FEM to the problem for
the dynamic behavior of the solid continuum through the
Hamiltonian formulation. PDS-FEM expresses the solid con-
tinuum as a set of rigid body particles defined by the Voronoi
tessellations {�α}. This particle expression enables the defi-
nition of the Hamiltonian for the deformable solid continuum
as follows.

Let mα be the mass of the αth Voronoi particle and let u̇α
i

be the velocity for the translational motion of the mother point
of the αth Voronoi particle, xα . Then the total kinetic energy
of the whole discretized body �̂, denoted as T , is given as the
sum of the kinetic energy of each Voronoi particle:

T (u̇α
i ) =

N∑
α=1

1

2
mα u̇α

i u̇α
i . (18)

In three-dimensional case, since the αth Voronoi particle is
composed of the set of a quarter region of a Delaunay tes-
sellation (see the quarter region of a Delaunay tessellation
in Fig. 3), the volume of the αth Voronoi particle V�α is
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expressed as

V�α =
∑

β

�α ∩ 
β �= ∅

V
β /4. (19)

Then mα is given as mα = ρV�α , where ρ is the mass density.
The potential energy is stored by the deformation of the

solid continuum due to the displacement of the Voronoi par-
ticles. Then, the total potential energy stored in �̂, denoted
as V , is given as the sum of the strain energy accumulated
in each Delaunay tetrahedron due to the relative displacement
between the Voronoi particles:

V (uα
i ) =

N∑
α=1

N∑
γ=1

1

2
Kαγ

i j uα
i uγ

j , (20)

where Kαγ
i j is the stiffness matrix defined in Eq. (15). Note that

a body force bi is ignored hereafter for the sake of simplicity.
In general, the Lagrangian L for a system of particles is de-

fined as L = T − V , where T is the total kinetic energy of the
system and V is the total potential energy of the system. Here,
given a Lagrangian L in terms of the generalized coordinates
qα and the generalized velocities q̇α , the Hamiltonian H is
derived from the Legendre transformation of the Lagrangian
L. Then H = ∑

α pα · q̇α − L, where pα is the generalized
momentum.

When the coordinate system for the set of the Voronoi
particles are fixed, the generalized coordinates qα

i and the
generalized velocities q̇α

i correspond to the displacement of
the Voronoi particles and the velocity of the Voronoi particles,
respectively:

qα
i = uα

i , (21)

q̇α
i = u̇α

i . (22)

Then, the Lagrangian L for the set of the Voronoi particles is

L = T (q̇α
i ) − V (qα

i )

=
N∑

α=1

1

2
mα q̇α

i q̇α
i +

N∑
α=1

N∑
γ=1

1

2
Kαγ

i j qα
i qγ

j (23)

and the generalized momentum pα
i is

pα
i = ∂L

∂ q̇α
i

= mα q̇α
i . (24)

Therefore, the Hamiltonian H for the motion of the set of the
Voronoi particles is given as

H = T (pα
i ) + V (qα

i )

=
N∑

α=1

1

2mα
pα

i pα
i +

N∑
α=1

N∑
γ=1

1

2
Kαγ

i j qα
i qγ

j . (25)

Regarding this Hamiltonian H , the time evolution of
this system of the Voronoi particles is uniquely defined by
Hamiltonian equations as

q̇α
i = ∂H

∂ pα
i

= pα
i

mα
= u̇α

i , (26)

ṗα
i = − ∂H

∂qα
i

= −
N∑

γ=1

Kαγ

i j qγ

j = −
N∑

γ=1

Kαγ

i j uγ

j . (27)

IV. INTRODUCTION OF RESIDUAL STRESS FIELD INTO
PDS-FEM FORMULATION

The residual stress is released and redistributed during the
dynamic fracture process. Therefore, the appropriate evalu-
ation of the change in the residual stress field is essential
for the prediction of the crack path in bulk materials with
residual stress field. Introduction of the residual stress field
into the Hamiltonian formulation of PDS-FEM enables us the
appropriate treatment of the release of the residual stress and
the autonomous redistribution of the residual stress.

A. Particle discretization of residual stress field

The residual stress field is the resultant of the elastic
strain field for keeping a self-equilibrium state of stress in
the bulk material with the permanent and inhomogeneous
inelastic deformations [39,40]. For a bulk solid material with
the permanent and inhomogeneous inelastic deformations, let
the permanent inelastic strain be ε

p
i j and the elastic strain

be εe
i j . Then, the total strain εt

i j which represents the to-
tal deformation from the initial (deformation-free) state is
defined as

εt
i j = εe

i j + ε
p
i j . (28)

Since the elastic strain εe
i j is the only source of the residual

stress in the bulk solid material, the residual stress σi j is
given as

σi j = ci jklε
e
kl = ci jkl

(
εt

kl − ε
p
kl

)
. (29)

Here all the strains which does not contribute to the gener-
ation of the elastic stress (i.e., residual stress) in the linear
elastic material are referred to as the permanent inelastic
strain ε

p
kl .

Consider a problem for the homogeneous isotropic lin-
early elastic body � with the prescribed distribution of the
permanent inelastic strain ε

p
i j in �. The deformation of � is

governed by the following boundary value problem for the
total displacement ut

i (x):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σi j, j (x) = 0 x ∈ �

σi j (x) = ci jkl
[
εt

kl (x) − ε
p
kl (x)

]
x ∈ �

εt
i j (x) = 1

2

[
ut

i, j (x) + ut
j,i(x)

]
x ∈ �

ut
i (x) = ūt

i (x) x on ∂�

, (30)

where ut
i is the displacement vector corresponding to the total

strain εt
i j . This boundary value problem for the total displace-

ment ut
i is equivalent to the following variational problem

where the functional J of the total displacement field ut
i (x)

has to be made stationary:

J =
∫

�

1

2
εe

i jci jklε
e
kldV

=
∫

�

1

2

(
εt

i j − ε
p
i j

)
ci jkl

(
εt

kl − ε
p
kl

)
dV. (31)

Thus, the total displacement vector ut
i which satisfies the

stationary condition δJ = 0 and the prescribed displacement
boundary condition ut

i (x) = ūt
i (x) for x on ∂� is the solution

of the boundary value problem (30).
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Then, we apply the particle discretization proposed
in PDS-FEM for the functional J. The discretized
functional Ĵ is

Ĵ =
M∑

β=1

1

2

(
ε

tβ
i j − ε

pβ
i j

)
ci jkl

(
ε

tβ
kl − ε

pβ
kl

)

β

=
M∑

β=1

(
1

2
ε

tβ
i j ci jklε

tβ
kl − ε

pβ
i j ci jklε

tβ
kl + 1

2
ε

pβ
i j ci jklε

pβ
kl

)

β.

(32)

The approximate solution of the boundary value problem
(30) is a set of the nodal displacement {utα

i } which satis-
fies the stationary condition for Ĵ. Introducing the discretized
displacement-strain relationship [Eq. (13)] with respect to
the total strain tensor in the βth element ε

tβ
i j , the discretized

functional Ĵ is expressed in terms of utα
i . Then, the stationary

condition ∂ Ĵ/∂utα
i for the discretized functional Ĵ gives the

following simultaneous equations for {utα
i }:

N∑
γ=1

Kαγ

ik utγ
k = f α

i , (33)

where

f α
i =

M∑
β=1

Bβα
j cβ

i jklε
pβ
kl 
β. (34)

Since the right-hand side of Eq. (34) consists of the spatial
derivative operator Bβα

j and the permanent inelastic strain

ε
pβ
kl , f α

i can be interpreted as a nodal force due to the
spatial distribution of the permanent inelastic strain. Thus,
Eq. (33) clearly states that the source of the residual stress
is the spatial distribution of the permanent inelastic strain ε

pβ
kl .

When � is in self-equilibrium state without external applied
loadings, the resultant force of the whole domain is zero
(i.e.,

∑N
α=1 f α

i = 0).

B. Dynamic behavior of the solid continuum with
residual stress field

According to the particle discretization of the residual
stress field, the Hamiltonian for the dynamic behavior of the
solid continuum with the residual stress field can be defined
in the same procedure proposed in Sec. III.

Here the generalized coordinates qα
i , the generalized veloc-

ities q̇α
i , and the generalized momentum pα

i are

qα
i = utα

i , (35)

q̇α
i = u̇tα

i , (36)

pα
i = mα q̇α

i = mα u̇tα
i . (37)

The total potential energy stored in the system of the Voronoi
particles with the residual stress field, denoted as V (qα

i ), is
identical to the strain energy shown in Eq. (32). Since the third
term in the parentheses of the right-hand side of Eq. (32) is not
related to qα

i (= utα
i ), the Hamiltonian H for the motion of the

system of the Voronoi particles with the residual stress field is
given as

H = T (pα
i ) + V (qα

i )

=
N∑

α=1

1

2mα
pα

i pα
i +

N∑
α=1

N∑
γ=1

1

2
Kαγ

i j qα
i qγ

j −
N∑

α=1

f α
i qα

i .

(38)

Based on this Hamiltonian, the time evolution of the sys-
tem of the Voronoi particles with the residual stress field is
given by the following Hamiltonian equations:

q̇α
i = ∂H

∂ pα
i

= pα
i

mα
= u̇tα

i , (39)

ṗα
i = − ∂H

∂qα
i

= −
N∑

γ=1

Kαγ
i j qγ

j + f α
i = −

N∑
γ=1

Kαγ
i j utγ

j + f α
i ,

(40)

where f α
i is the nodal force given by Eq. (34). In these

Hamiltonian equations, the effect of the permanent inelastic
strain ε

pβ
kl is introduced as the nodal force f α

i to the time
evolution of the momentum. When the system of the Voronoi
particles is in the static equilibrium state, the right-hand side
of Eq. (40) becomes zero from Eq. (33).

C. Fracture criterion and the change in the field due to fracture

From the view point of the energy balance, the Griffith en-
ergy criterion states that a crack propagates when the released
potential energy by crack growth is greater than or equal to the
surface energy for creating the new crack surfaces [41]. This
criterion poses the following specified condition for the crack
growth: new cracks are created when G � 2� is satisfied,
where G is the energy release rate for the crack growth and
� is the surface energy.

In PDS-FEM, the minimum unit for the expression of
the fracture surfaces is the boundary between two adjacent
Voronoi particles. Therefore, focusing on the boundary be-
tween two adjacent Voronoi particles ∂�αγ , the energy release
rate G is given as G = �U/S, where �U is the released po-
tential energy of the total system due to fracture of ∂�αγ and
S is the area of ∂�αγ . Then we can set the following fracture
criterion in the framework of PDS-FEM: When �U/S � 2�

is satisfied, the boundary between the two adjacent Voronoi
particles ∂�αγ is fractured.

Since PDS-FEM expresses the fracture as a change in
the components of the displacement-strain matrix related to
the fractured Voronoi boundary, the only source of �U is the
change in the elastic strain energy of the Delaunay regions
including the fracture surfaces. As shown in Fig. 4, when
the Voronoi particle boundary ∂�αγ is included in the κth
Delaunay region 
κ and the λth Delaunay region 
λ, the
released potential energy of the total system due to the fracture
of ∂�αγ is

�U =
∑

β=κ,λ

(
1

2
ε

eβ
i j ci jklε

eβ
kl 
β − 1

2
ε

eβ∗
i j ci jklε

eβ∗
kl 
β

)
, (41)

where the superscript ∗ represents the variables and the matri-
ces in fractured Delaunay regions and 
β is the volume (area
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FIG. 4. Delaunay triangles 
κ and 
λ including a fractured
Voronoi boundary ∂�αγ .

for the two-dimensional problem) of the βth Delaunay region.
Figure 4 and Eq. (41) show the two-dimensional case for the
sake of simplicity. The derivation of ε

eβ∗
i j should be referred to

Appendix A.
When the boundary between the two adjacent Voronoi par-

ticles ∂�αγ is fractured, the displacement-strain matrix Bβα
j

and the stiffness matrix Kαγ

ik related to ∂�αγ are modified by
Eq. (17). In the dynamic problems, this modification of the
matrices is embedded in the Hamiltonian equation (40) ob-
taining the time evolution of the momentum of each Voronoi
particle. In particular, the nodal force f α

i becomes

f α
i =

M∑
β=1

Bβα∗
j cβ

i jklε
pβ∗
kl 
β

∀α, β, γ s.t. ∂�αγ in 
β is fractured. (42)

The derivation of ε
pβ∗
kl is in Appendix A.

Thus, the only source of the change in the Hamiltonian by
the fracture (i.e., the energy dissipation due to fracture) is the
loss of the potential energy in the elements with newly created
crack surfaces.

When the initial cracks are introduced into the self-
equilibrated residual stress field, the static equilibrium state
Eq. (33) is broken by the modification of the force vector f α

i
shown in Eq. (42) and by the modification of the components
of the stiffness matrix Kαγ

ik due to Eq. (17). In this unbalanced
state, the right-hand side of Eq. (40) is no longer equal to
zero and the system of Voronoi particles starts to exhibit the
dynamic behavior. This is how the release and the autonomous
redistribution of the residual stress in the fracture process can
be rigorously evaluated in the proposed model and numerical
analysis method.

TABLE I. CT, CS, and DOL for chemically tempered glass
sheets used in the experiment.

CT (MPa) CS (MPa) DOL (μm)

case I 52.0 836 39.0
case II 75.0 806 55.0
case III 112 752 80.0

V. DYNAMIC FRACTURE EXPERIMENT OF
CHEMICALLY TEMPERED GLASS SHEETS

To obtain the reference experiment data set for evaluating
the validity of the proposed mathematical model and numeri-
cal analysis method, we performed fracture experiment of the
chemically tempered glass sheets.

A. Experimental procedure

The in-plane residual stress distribution of the chemically
tempered glass sheet is volumetric and uniform (i.e., σxx =
σyy = const, σxy = 0 when the thickness direction is set to be
the z direction) and the out-plane residual stress is zero (i.e.,
σzz = 0). The residual stress profile in the thickness direction
is characterized by the compressive residual stress at the outer
surface, referred to as compressive stress (CS), the tensile
residual stress at the midplane in the thickness direction,
referred to as central tension (CT), and the depth of the com-
pression layer, referred to as Depth of layer (DOL); see Fig. 1.
Since the crack propagation is driven by the tensile residual
stress, the fracture process of the chemically tempered glass
sheet strongly depends on CT and DOL.

In the experiment, we used three types of chemically tem-
pered glass sheets with different residual stress profiles. The
chemical tempering process performed in this study is as
follows. We firstly prepared the thin rectangular float glass
sheets with the size of lx × ly × lz = 50 × 2.0 × 0.70 mm.
Then, we chemically strengthened these float glass sheets
by exchanging Na+ for K+. The ion exchange process was
performed by immersing the glass in 100 % KNO3 salt bath
at 450 ◦C. Since invading K+ is larger in size than Na+,
this ion exchange leads to the high surface compression and
balancing interior tension depending on the diffusion length
of K+ and the glass thickness. Here, we used the chemically
tempered glass sheets with the immersing time of 2 h, 4 h, and
9 h. The compressive layer becomes deeper (i.e., DOL has
larger value) as the immersing time becomes longer. These
three types of chemically tempered glass sheets are respec-
tively named as case I, case II, and case III. The values of
CT, CS, and DOL for each chemically tempered glass sheet
are shown in Table I. The values of CT were derived from
the approximate calculation using the measured values of
DOL and CS.

Each of these three types of chemically tempered glass
sheets was set on the bottom of the trajectory of the free fall
pendulum so that the sheet face was vertical to the ground
and the long side was parallel to the ground; see schematic
view of the experimental system in Fig. 5. The fracture was
initiated from the short side of the chemically tempered glass
sheet by the collision of the impactor of the pendulum. The
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FIG. 5. The schematic view of the experimental system.

impactor was the square pyramidal indenter with 100◦ face
angle and the approximate impact energy was 44 mJ. The
energy of the impactor was same for all the experiments.
The collision of the impactor has no significant influence
on the dynamic fracture process of the chemically tempered
glass sheets because this collision does not cause catastrophic
failure of the annealed glass sheets. The fracture process was
recorded from the perpendicular direction to the sheet face
by the high-speed video camera (SHIMADZU HPV X2) with
the recording speed of 5 000 000 fps. The width of the field
of view of the high-speed video camera was about 8–10 mm
from the impact surface.

B. Results of dynamic fracture experiment

Figure 6 shows the crack patterns of the chemically tem-
pered glass sheets with different residual stress profile. Here
we show two samples for each case. Supplemental Videos 1–3
[42] show the crack propagation process recorded by the high-
speed camera for case I-1, II-1, and III-1, respectively. The
black triangle appearing from the right edge is the impactor
which collides with the chemically tempered glass sheet to
start the fracture process. These figures and videos show the
crack patterns projected on the xy plane. As seen in Fig. 6,

the crack patterns change depending on the residual stress
profile. In case I, the only one crack smoothly proceeds until
it reaches the edge of the glass sheet. As CT increases, the
crack starts branching. In case II, the initially growing crack
branches once to three and only the main crack extends long.
The other two cracks grow from the center toward the edge of
the glass sheet soon after branching. In both case I and II, the
cracks do not fully propagate through the entire length of the
specimen and they terminate when they reach to the edge of
the glass sheet. In case III, the fracture patterns are completely
different from those in case I and II. The cracks in case III
repeatedly branch and continue to propagate until the glass
sheet is completely fractured. This catastrophic failure of the
glass sheet is only observed in case III, i.e., under the high
tensile residual stress field. Based on these experiments, we
can confirm that the residual stress profile has strong influence
on the fracture pattern. In addition to these features of crack
patterns depending on the residual stress profile, an interesting
crack morphology is observed in these experiments. As seen
in all cases (noticeable in case III), the cracks form the fanlike
shape when they approach the edge of the glass sheet. How-
ever, merely from the experimental observation, it is difficult
to infer how this fanlike shape is formed.

Figure 7 shows the crack velocity of the chemically tem-
pered glass sheets in the experiments. The crack velocity was
measured by using the JPEG images of the crack propagation
process. We took the snapshots for the crack propagation at
the constant time step �tv = 200 ns and recorded the pixel
position at the tip of the main crack. The propagating distance
in �tv was derived by the linear interpolation between the
positions at t and t + �tv . For case I, the crack velocity
transitions about between 1500 and 2000 m/s. However, for
case II and III, the crack velocity almost reaches or exceeds
2000 m/s. At this point, the cracks branch and the crack

FIG. 6. Crack patterns of the chemically tempered glass sheets in the experiments. The width of the field of view of the experiments is
about 8–10 mm from the impact surface. The snapshots are at the time when the cracks stop or reach at the end of the field of view.

025001-8



MATHEMATICAL MODEL AND NUMERICAL ANALYSIS … PHYSICAL REVIEW E 104, 025001 (2021)

FIG. 7. Crack velocity versus the distance from the impact surface with the branching points in the experiments. The value of critical
velocity ccr = 2090 m/s given by Yoffe’s model [43] is indicated by the red continuous lines in the graphs and the positions of the branching
points are indicated by the blue triangles in the graphs. The crack velocity and the branching points were measured on the main crack in the
field of view. The yellow (light gray) lines and the blue circles on the images of the crack patterns placed below each graph respectively show
the main crack and the crack branching points used for the measurement.

velocity rapidly decreases near or below 2000 m/s. Therefore,
it can be estimated that the critical velocity ccr at which crack
branches is about 2000 m/s for the chemically tempered glass
sheets used in the experiments.

VI. NUMERICAL ANALYSIS OF DYNAMIC FRACTURE IN
CHEMICALLY TEMPERED GLASS SHEETS

We performed the numerical analysis simulating the dy-
namic fracture experiments of chemically tempered glass
sheets presented in the previous section.

A. Residual stress profile used in numerical analysis

We firstly determine the inelastic strain distributions which
generates the residual stress profile of the three types of chem-
ically tempered glass sheets used in experiments. We derived
the distribution of K+ in the glass sheet after immersing in
KNO3 salt bath from the following equation [44]:

cz = c0 + (ceq − c0)

[
erfc

z

2
√

Dt
− exp

(
M

D
z + M2

D
t

)

× erfc

(
z

2
√

Mt
+ M

D

√
Dt

)]
, (43)

where cz is the concentration of K+, c0 = 3.966 mol% is the
initial concentration of K+, ceq = 13.57 mol% is the equilib-
rium concentration of K+ at the outer surface, D = 6.71 ×
10−14 m2/s is the diffusion coefficient, M = 1.20 × 10−8 m/s
is the mass transfer coefficient, t is the ion exchange duration,
and z is the distance from the outer surface in the thickness
direction. The in-plane distribution of K+ was uniform. Here
we neglected the effect of the ion exchange on the side of
the glass sheet. We prepared the finite-element model with
the unstructured tetrahedral mesh of the uniform element
size. The number of nodes was 48 580 232 and the number
of elements was 304 643 588. The dimensions of the model
were lx × ly × lz = 30 × 2.0 × 0.35 mm, where lz was the
half of the thickness of the tempered glass sheet used in
the experiments [see Fig. 8(a) for the axis direction]. Since
the ion exchange process is performed at the temperature
well below the glass annealing point, the distribution of the
inelastic strain is given as ε

p
i j = A(cz − c0) δi j in terms of cz

where A = 0.001055 is the linear network dilation coefficient
and δi j is the Kronecker delta.

We statically solved the simultaneous equations (33) with
the prescribed distribution of the inelastic strain ε

p
i j and the

following prescribed displacement boundary conditions: uz

is constrained at z = lz plane, ux is constrained on y = 0
at z = lz plane, and uy is constrained on x = 0 at z = lz
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FIG. 8. Geometry of the analysis model and residual stress profiles of each analysis model. (a) The geometry of the analysis model with
the initial crack. The initial crack is indicated by the red (dark gray) area. (b) The in-plane residual stress profiles (i.e., σxx or σyy) in the
z direction for each analysis model. The horizontal axis expresses the distance from the midplane (i.e., z = lz/2 plane) in the z direction. The
in-plane residual stress profile is symmetrical with respect to the midplane in the z direction.

plane. Then, using the derived total displacement utα
i , the

residual stress of each element is given as σ
β
i j = cβ

i jkl (ε
tβ
kl −

ε
pβ
kl ); see Eqs. (30).

To adjust the residual stress profiles used in the numerical
analyses to those of the chemically tempered glass sheets used
in the experiments with respect to CT and DOL, we set the
parameter t , D, and A for each case as shown in Table II.
According to these parameter tunings, we obtained the resid-
ual stress profile for the numerical analyses; see the values of
CT, CS, and DOL in Table II and the profile in Fig. 8. Since
the crack propagation is mainly driven by the tensile residual
stress, the mismatch of CS between the experiments and the
numerical analyses does not have a significant influence on
the crack pattern [8].

TABLE II. Parameters and CT, CS, and DOL for each
analysis model.

t D A CT CS DOL
(s) ×10−14 (m2/s) (MPa) (MPa) (μm)

case I 12 240 1.342 0.0015297 52.8 1220 40.0
case II 7 200 6.710 0.0014242 74.0 1020 55.0
case III 18 360 6.710 0.0012449 112 909.0 82.0

Then, we formed the finite-element model plane-
symmetrically with respect to the z = 0.35 mm plane so that
the thickness of the analysis model becomes the same as the
chemically tempered glass sheets used in the experiments.
Considering the symmetry, the distribution of utα

i and ε
pβ
i j are

assigned to the nodes or the elements of the symmetrically
formed mesh. This mapping makes the self-equilibrated initial
state of the dynamic fracture analysis with tetrahedral mesh
satisfying Eq. (33).

B. Dynamic fracture analysis

We used the plane-symmetric finite-element model with
the unstructured tetrahedral mesh of the uniform element size
formed in the previous subsection for the fracture analysis.
The dimensions of the model were lx × ly × lz = 30 × 2.0 ×
0.70 mm [see Fig. 8(a) for the axis direction]. The number
of nodes was 96 049 195 and the number of elements was
609 287 176. The average nodal distance was 9.36 μm. Here
the model dimension lx was different from that of the samples
used in the experiments to reduce the computational costs:
30 mm in the numerical analyses and 50 mm in the experi-
ments. The difference of lx affects the time-of-arrival of the
elastic wave reflected by the boundary (x = lx plane) at the
crack tip. However, the cracks pass through the visual field
in the experiment (about 8–10 mm from the x = 0 plane)
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TABLE III. Parameters for the dynamic fracture analysis.

Mass density ρ 2500 kg/m3

Young’s modulus E 74.0 GPa
Poisson’s ratio ν 0.22
Surface energy � 4.0625 J/m2

Time increment �t 0.5 ns

faster than the arrival of the reflected elastic wave even if
lx = 30 mm, therefore the short lx in the numerical analyses
does not affect the crack patterns in the visual field.

At t = 0.0 s, the particle velocity of all the Voronoi parti-
cles are set to zero, and all the Voronoi boundaries in the area
of initial crack are fractured; see the shape of the initial crack
in Fig. 8(a). The equilibrium state of the internal force f α

i is
broken by this initial fracture and then the dynamic fracture
process starts. Here the critical length of the initial crack acr

to start the fracture in the numerical analysis depends on the
intensity of the tensile residual stress. Within our parametric
study for 0.2 mm � a � 1.0 mm, acr = 0.4 mm in the case
I and acr = 0.3 mm in the case II and III. The crack did not
propagate when a < acr. As long as acr � a � 1.0 mm, the
general pattern of the cracks did not change even though the
detailed crack paths were a little different. Therefore, we set
the length of the initial crack as 0.5 mm for all cases in the
numerical analyses so as to be sufficiently long against acr.

The time evolution of the dynamic behavior of the chem-
ically tempered glass sheet given by Hamiltonian equations
[Eqs. (39) and (40)] is solved by symplectic integrator (SI)
[45] with the time increment �t ; see Appendix B. The
time increment �t for SI is set to become much less than
the maximum limit of the time increment determined by
Courant-Friedrichs-Lewy condition. The parameters used in
the dynamic fracture analysis are shown in Table III. The
traction-free boundary condition has been applied to all the
nodes at the surface of the analysis model. At each time step,

all the Voronoi boundaries adjacent to the already fractured
boundaries were examined whether they satisfy the fracture
criterion. The fracture analysis is performed until the fracture
process is completely terminated. The computing resource is
a dual CPU processor sever with Intel Xeon Gold 6140. The
typical computation time for 100 steps is about 1077 s and
the computation time is linear to the number of nodes of the
finite-element model.

C. Results of numerical analysis and discussion

The fracture patterns reproduced by the numerical anal-
yses with the different residual stress profiles are presented
in Fig. 9(a). These figures show the crack patterns projected
on the xy plane. The fracture patterns obtained from the
numerical analyses perfectly coincide with the experimental
observations on every sample with different residual stress
profiles; the crack does not bifurcate for case I, the crack
branches only once to two or three cracks for case II, and the
cracks repetitively branch and form complicated crack pattern
for case III (the quantitative comparison of the fracture pat-
terns for case III between the experiments and the numerical
analysis is shown in Fig. 14).

Figure 9(b) shows the snapshot from the case I projected
on the xz plane. The crack front proceeds in the tensile region
and delays in the compressive region. This delay is due to the
time lag between the crack penetration and the release of the
compressive residual stress. The shape of the crack front in
Fig. 9(b) coincides with that called “Wallner lines” generally
observed in fracture of tempered glass sheets [46].

In addition to these features of crack patterns depending on
the residual stress profile, the crack patterns of the numerical
analyses projected on the xy plane also show the fanlike shape
of the cracks near the edge of the glass sheet [Fig. 9(a)].
Figure 10 shows the crack surface in case I from a different
angle and a magnified view of a part of the fanlike shape of
the crack. According to this figure, the crack surface is folded

FIG. 9. Crack patterns of the chemically tempered glass sheets in the numerical analyses. (a) The crack patterns in the numerical analyses.
These snapshots trim off the area of x > 10 mm. (b) The snapshot of the crack propagation in xz plane for case I at t = 1.5 μs. The crack does
not fully propagate to the compressive layer near the crack tip. (c) The view angle for (a) and (b).
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FIG. 10. Crack surface in case I from a different angle and a
magnified view of a part of the fanlike shape of the crack.

when it approaches the edge of the glass sheet. This fold of the
crack surface forms the fanlike shape of the cracks observed
in experiments.

We measured the crack velocity of the models in numerical
analyses (Fig. 11). The crack velocity was measured by using
the JPEG snapshot images of the crack propagation process
in the same manner as the experiments. Here, the time step
�tv is 100 ns. As seen in the experiments (Fig. 7), the crack
velocity transitions about between 1500 m/s and 2000 m/s.
When the crack velocity almost reaches or exceeds 2000 m/s,
the cracks branch and the crack velocity rapidly decreases

near or below 2000 m/s. The experiments and the numerical
analyses show perfect agreement in all these characteristics of
the crack velocity.

The estimated critical velocity ccr = 2000 m/s in the ex-
periments and the numerical analyses is about 57.4% of the
shear wave speed cs and 63.0% of the Rayleigh wave speed
cR, where cs = 3483 m/s and cR = 3178 m/s for the glass
material used in the experiments. Theoretically, for a single
crack propagating in solid continuum, Yoffe’s model [43]
predicts ccr ≈ 0.6 cs and Eshelby [47] argues ccr ≈ 0.5 cR.
Also, Sharon and Fineberg [48,49] shows ccr ≈ 0.4 cR from
the experiment using the normal float glass. These theories
and experiments assume the crack propagating in a normal
direction to the uniaxial tensile field. On the other hand, Tang
et al. [50] analyze a Yoffe’s crack moving at constant speed
under the effect of T stress (i.e., the stress acting parallel to
the crack). They state that the increase in T stress results in
the decrease in ccr/cs. However, Raffie et al. [51], Zhan et al.
[52], and the experiment by, e.g., Ravi-Chandar and Knauss
[53] show that ccr does not depend on the stress parallel to the
crack. Thus, the explanation for the critical velocity for crack
branching in complicated stress field is still a matter of debate.

The residual stress fields of the chemically tempered glass
sheets are the equal biaxial tension and the inflow of the
energy into the system due to external applied loadings does
not exist. This field condition is completely different from
the Yoffe’s assumption [43]; however, within our study, the
critical velocity of the experiments and the numerical analyses
is most consistent with the Yoffe’s model [43], ccr ≈ 0.6 cs.

Figure 12(a)–12(c) show the time history of the resid-
ual stress field at the midplane in the thickness direction;
the midplane in the thickness direction has the maximum
tensile residual stress. The maximum stress of the contour
bands is changed in each analysis model. The elastic wave
generated by the fracture propagates antecedent to the crack
tips. Also, the stress concentrates at the crack tips and it
is only released around the cracks. Contrary to stress field
generated by applied external loadings, residual stress field
is generated by the distributed internal force due to the spatial

FIG. 11. Crack velocity versus the distance from the impact surface with the branching points in the numerical analyses. The value of
critical velocity ccr = 2090 m/s given by Yoffe’s model [43] is indicated by the red continuous lines in the graphs and the positions of the
branching points are indicated by the blue triangles in the graphs. The crack velocity and the branching points were measured on the main
crack in the area of x < 10 mm. The yellow (light gray) lines and the blue circles on the images of the crack patterns placed below each graph
respectively show the main crack and the crack branching points used for the measurement.
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FIG. 12. Snapshots of the contours of the maximum principal stress at the midplane in the thickness direction. The elastic wave generated
by the fracture can be observed antecedent to the crack tips in all cases. The stress concentrates at the crack tips. The concentric residual stress
distributions are observed in each fragment. (a) Case I. (b) Case II. (c) Case III.

gradient of the inelastic strain [Eq. (34)]. Since this internal
force keeps acting on every local area even after fracture, the
residual stress remains in each isolated fragment. The remain-
ing residual stress in the isolated fragments forms a concentric
distribution: higher at the center of the fragment and lower at
the periphery of the fragment. This remaining internal force
causes repeated branching resulting in catastrophic failure as
seen in case III.

The morphology of the shattered sheets of the tempered
glass has been investigated to estimate the magnitude of the
residual stress from the size of the fragments [7,8,54–56].
Also, Nielsen [23] presents the model for the estimation of
the remaining strain energy in the fragments from the shape
of the fragments and the initial residual stress field. However,
these investigations are based on the simple models and the
relationship between the size and/or shape of the fragments
is still a matter of debate. Our approach rigorously evaluates
the release and redistribution of the residual stress during
fracture and therefore will make it possible to reveal the
relationship between the shape of the fragments, the initial
residual stress field, and the remaining strain energy in the
fragments.

The videos for the crack propagation processes and the
change in the maximum principal stress of the residual stress
at the midplane in the thickness direction in the numerical
analyses are shown in Supplemental Videos 4–6 [42] respec-
tively corresponding to cases I, II, and III. The upper videos
show the crack propagation and the lower videos show the
contour of the maximum principal stress of the residual stress.
These videos trim off the area of x > 10 mm. The real time
durations for Supplemental Videos 4–6 are 7.5 μs, 5.0 μs, and
6.0 μs, respectively. The time magnifications of these videos
are the same.

The agreement in the features of the crack patterns
and the crack propagation process between the experiments

and the numerical analyses indicates that the release and the
autonomous redistribution process of the residual stress field
due to dynamic fracture are properly modeled and precisely
evaluated by the numerical analysis method proposed in this
paper. This is the most significant achievement of this re-
search.

In addition to the results described above, we performed
the study of convergence of the fracture patterns according to
the element size of the tetrahedral mesh as shown in Fig. 13.
Here, we studied on the unstructured mesh with different
average nodal distance davg = 18.7, 13.5, 9.36 μm. For case
I, the crack does not bifurcate on every mesh. For case II and
III, the number of crack branching on the coarse mesh with
davg = 18.7 µm is different from other two meshes. On the
meshes with davg = 13.5 μm and davg = 9.36 μm, the num-
ber of crack branching and the basic features of the fracture
patterns are almost coincident with each other (the quantita-
tive comparison of fracture pattern for case III is shown in
Fig. 14). Therefore, it is concluded that the fracture patterns
do not converge on the mesh with davg = 18.7 μm and they
converge when davg of a mesh is smaller than davg = 13.5 μm.
In this paper, the comparison between the experiments and the
numerical analysis is performed on the results using the mesh
with davg = 9.36 μm; these results of the numerical analyses
sufficiently converged.

We also measured the size of the fragments generated in
case III for the quantitative comparison of the complicated
fracture patterns. By using the figures of the fracture pattern
projected on the xz plan, we measured area of the fragments
(i.e., area of the white region in Fig. 6 and Fig. 13) completely
included in the field of view. Figure 14 shows the scatter plot
for the area of the fragments in case III. Here, we plotted
the two results of the experiments and the three results of
the numerical analyses with the different element size of the
tetrahedral mesh shown in Fig. 13. In the experiments, the

025001-13



SAYAKO HIROBE et al. PHYSICAL REVIEW E 104, 025001 (2021)

FIG. 13. Convergence of the fracture patterns according to the element size of the tetrahedral mesh. davg is the average nodal distance of
the meshes.

distribution of area of the fragments is significantly differ-
ent between the samples. This is because the cracks show
dynamic instability under the high tensile residual stress. In
the numerical analyses, the variation of area and the mean
area converge when davg � 13.5 μm as described in the pre-

FIG. 14. Scatter plot for the area of the fragments generated by
the fracture of case III in the experiments and the numerical analyses.
The bars show the mean area of each result. Experiments 1 and 2
are corresponding to case III-1 and case III-2 in the experiments
respectively and the lengths written in the horizontal axis label
mean the average nodal distance davg of the tetrahedral mesh in the
numerical analyses.

vious paragraph. Comparing among the experiments and the
numerical analyses, the results of the numerical analyses show
the smaller variation of area than the experimental results
while the mean area of the numerical analyses is close to
Experiment 2.

Before closing the discussion, relatively minor problems
should be mentioned. In the numerical analyses, the surface
energy � is 1.3 times larger than that of the chemically
tempered glass sheets. In addition, though precise comparison
may not be advisable because of the large variation of the
experimental results of case III due to the crack instability, the
number of cracks and the number of branching of the cracks
appeared in the numerical analyses of case III [Fig. 9(a)]
seem to be slightly larger than the experimental results of
case III (Fig. 6). Also, the variation of area of the fragments
in the numerical analyses of case III is smaller than that of
the experimental results of case III; see Fig. 14. These mis-
matches could be mainly because of the energy dissipation
modeling. In the numerical analysis, the energy dissipation
results from the formation of the crack surfaces. Other sources
of the energy dissipation such as attenuation, sound and/or
heat have not been considered. Introduction of the effect of
these energy dissipations in the model could reduce these
discrepancies between numerical analysis results and exper-
imental results. However, incorporating the dissipation model
and modifying the parameters are required only when we
have to customize the proposed numerical analysis method
to the practical applications for the dynamic fracture of the
tempered glass sheets. The agreements in the general features
between the results from the numerical analyses and those
from experiments shown in this paper can ensure the validity
of the proposed method as a tool for the analysis of dynamic
fracture in the residual stress field.

VII. CONCLUSION

This paper proposes the mathematical model and the
numerical analysis method for the dynamic fracture in resid-
ual stress field. We formulate the Hamiltonian for the dynamic
behavior of the solid continuum with residual stress field by
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applying the particle discretization to the field variables in
the context of PDS-FEM. Introducing the appropriate treat-
ment of the fracture in residual stress field, this Hamiltonian
formulation provides the rigorous evaluation of release and
redistribution of the residual stress due to dynamic crack
propagation. Our model suggests that the distributed internal
force due to the inhomogeneous inelastic deformation plays a
significant role in the dynamic fracture in residual stress field.
This force keeps acting on every local area even in isolated
fragments, and thereby causes the catastrophic fragmentation
particularly observed in residual stress field.

To the best of the authors’ knowledge, numerical simu-
lation of dynamic fracture in residual stress field does not
exist before our current attempt. According to our numerical
analyses by using PDS-FEM, we suggest that (i) introduc-
tion of the self-equilibrated state to the continuum, (ii) the
evaluation method for the residual stress in the partially frac-
tured medium, and (iii) the dynamic fracture analysis with
explicit time integration scheme are the most important points
in the numerical analysis of the dynamic fracture in resid-
ual stress field. If these points can be properly addressed
and implemented, it would be possible to simulate the dy-
namic fracture in residual stress field by using other numerical
simulation methods.

The proposed numerical analysis method is validated by
applying to the typical examples of the dynamic fracture in the
residual stress field. The numerical analyses presented in this
paper were performed on the dynamic fracture of chemically
tempered glass sheets with different residual stress profiles.
The results of the numerical analyses perfectly reproduce the
crack patterns varying from single crack to catastrophic failure
depending on the residual stress profile. Also, the experiments
and the numerical analyses show remarkable agreement in the
crack velocity and the critical velocity for the crack branching.
These results imply that the proposed mathematical model
and numerical analysis method capture the mechanism for
dynamic fracture behavior of the solid continuum with resid-
ual stress field. Since our numerical analysis method properly
models the release and the redistribution of the residual stress
field due to dynamic fracture, it can rigorously evaluate the
remaining residual stress in each fragment. This achievement
will be able to settle the discussion for the relationship be-
tween the initial residual stress field and the size and/or shape
of the fragments. We believe that this analysis method can
be a prominent candidate for the prediction of the fracture
processes in various materials with residual stress field.
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FIG. 15. The vertices and the nodal displacement vectors of the
tetrahedral element 
β .

APPENDIX A: EXPLICIT FORM OF ε
eβ∗
i j AND ε

pβ∗
i j

When the distribution of the permanent inelastic strain ε
pβ
i j

is prescribed for all the element and no fracture exists in any
element, the nodal displacement vector upα

i corresponding to
ε

pβ
i j can be formally expressed as

ε
pβ
i j =

N∑
α=1

1

2

(
Bβα

j upα
i + Bβα

i upα
j

)
. (A1)

Likewise, when the βth element has fracture surfaces in it,

ε
pβ∗
i j =

N∑
α=1

1

2

(
Bβα∗

j upα
i + Bβα∗

i upα
j

)
. (A2)

Note that the nodal displacement vector upα
i does not

change before and after the fracture. For the rigorous evalu-
ation of ε

pβ∗
i j (the permanent inelastic strain in the elements

with fracture surfaces), upα
i corresponding to ε

pβ
i j (the pre-

scribed inelastic strain in the elements without fracture
surface) should be identified. However, the element-wise
equations (A1) for each component of the prescribed ε

pβ
i j

are a degenerate set of the equations, and thus, upα
i is left

with the ambiguity in the rigid body translation and the rigid
body rotation of the element. To overcome this problem, we
consider the element-wise upα

i without rigid body displace-
ment in each element. Since the rigid body displacement of
an element does not contribute to the strain in an element,
the element-wise nodal displacement vector upα

i without rigid
body displacement in each element can be safely used as
the permanent displacement vector corresponding to the pre-
scribed ε

pβ
i j .

Let xη
i , xγ

i , xζ
i , and xξ

i be the position vectors of the vertices
of the βth tetrahedral element (i.e., the mother points of the
Voronoi particles composing the βth element) and let uη

i , uγ
i ,

uζ
i , uξ

i be the displacement vectors of the Voronoi particles
composing 
β , see Fig. 15. The constraint condition corre-
sponding to zero rigid body translation is

uη
i = 0 (A3)
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and the constraint conditions corresponding to zero rigid body
rotation are

uγ
i = a

(
xγ

i − xη
i

)
, (A4)

uζ
i = b

(
xγ

i − xη
i

) + c
(
xζ

i − xη
i

)
, (A5)

where, a, b, and c are the constant scalar quantities.
Introducing the constraint conditions Eqs. (A3)–(A5) to the

displacement-strain relationship (A1) for 
β without fracture

surfaces, the components of ε
pβ
i j can be written as

ε
pβ
11 = aBβγ

1

(
xγ

1 − xη

1

) + bBβζ

1

(
xγ

1 − xη

1

) + cBβζ

1

(
xζ

1 − xη

1

) + Bβξ

1 uξ
1

ε
pβ
22 = aBβγ

2

(
xγ

2 − xη

2

) + bBβζ

2

(
xγ

2 − xη

2

) + cBβζ

2

(
xζ

2 − xη

2

) + Bβξ

2 uξ
2

ε
pβ
33 = aBβγ

3

(
xγ

3 − xη

3

) + bBβζ

3

(
xγ

3 − xη

3

) + cBβζ

3

(
xζ

3 − xη

3

) + Bβξ

3 uξ
3

2ε
pβ
12 = a

{
Bβγ

2

(
xγ

1 − xη

1

) + Bβγ

1

(
xγ

2 − xη

2

)} + b
{
Bβζ

2

(
xγ

1 − xη

1

) + Bβζ

1

(
xγ

2 − xη

2

)}
+c

{
Bβζ

2

(
xζ

1 − xη

1

) + Bβζ

1

(
xζ

2 − xη

2

)} + Bβξ

2 uξ
1 + Bβξ

1 uξ
2

2ε
pβ
23 = a

{
Bβγ

3

(
xγ

2 − xη

2

) + Bβγ

2

(
xγ

3 − xη

3

)} + b
{
Bβζ

3

(
xγ

2 − xη

2

) + Bβζ

2

(
xγ

3 − xη

3

)}
+c

{
Bβζ

3

(
xζ

2 − xη

2

) + Bβζ

2

(
xζ

3 − xη

3

)} + Bβξ

3 uξ
2 + Bβξ

2 uξ
3

2ε
pβ
31 = a

{
Bβγ

3

(
xγ

1 − xη

1

) + Bβγ

1

(
xγ

3 − xη

3

)} + b
{
Bβζ

3

(
xγ

1 − xη

1

) + Bβζ

1

(
xγ

3 − xη

3

)}
+c

{
Bβζ

3

(
xζ

1 − xη

1

) + Bβζ

1

(
xζ

3 − xη

3

)} + Bβξ

3 uξ
1 + Bβξ

1 uξ
3. (A6)

Equation (A6) can be rearranged in the matrix form as

εpβ = Aupβ, (A7)

where εpβ = [ε pβ
11 , ε

pβ
22 , ε

pβ
33 , ε

pβ
12 , ε

pβ
23 , ε

pβ
31 ]T and upβ =

[a, b, c, uξ
1, uξ

2, uξ
3]T . The matrix A consists of Bβγ

i , Bβζ
i ,

Bβξ
i , xη

i , xγ
i , and xζ

i . Since the inverse matrix of A always
exists for the nondegenerate tetrahedrons, six unknown
quantities related to upα

i (i.e., a, b, c, uξ
1, uξ

2, and uξ
3) can

be determined. Therefore, using the constraint conditions
(A3)–(A5), the element-wise nodal displacement vector upα

i

without rigid body displacement for 
β (i.e., uη
i , uγ

i , uζ
i , and

uξ
i ) can be determined. Substitution of this upα

i to Eq. (A2)
gives the explicit form of the ε

pβ∗
i j .

From Eq. (28), the elastic strain ε
eβ∗
i j in Eq. (41) is given as

ε
eβ∗
i j = ε

tβ∗
i j − ε

pβ∗
i j , (A8)

where

ε
tβ∗
i j =

N∑
α=1

1

2

(
Bβα∗

j utα
i + Bβα∗

i utα
j

)
. (A9)

Therefore, the elastic strain ε
eβ∗
i j in the fractured element


β can be written in terms of the displacement-strain
matrix as

ε
eβ∗
i j =

N∑
α=1

1

2

{
Bβα∗

j

(
utα

i − upα
i

) + Bβα∗
i

(
utα

j − upα
j

)}
. (A10)

When the distribution of the permanent inelastic strain
ε

pβ
i j is prescribed, the displacement utα

i can be obtained
through the symplectic integration of the Hamiltonian equa-
tions in each time step; see Sec. IV. Since we already have
the explicit form of upα

i , the explicit form of the elastic

strain ε
eβ∗
i j in the fractured element 
β also can be obtained

through Eq. (A10).

APPENDIX B: SYMPLECTIC INTEGRATOR

For the accurate numerical integration of Hamiltonian
equations [Eq. (26) and Eq. (27)], we employ the SI [45].
The SI is an energy conserving numerical integration scheme
for Hamiltonian systems. Here we show the algorithm for
the nth-order bilateral SI. uα

i (t ) is the displacement of the
αth Voronoi particle at time t and pα

i (t ) is the momentum of
the αth Voronoi particle at time t . When uα

i (t ) and pα
i (t ) are

expressed as (uα(0)
i , pα(0)

i ),
(
uα(0)

i , pα(0)
i

) = (
uα

i (t ), pα
i (t )

)
, (B1)

uα(k)
i = uα(k−1)

i + �t c(k) ∂H

∂ pα
i

∣∣∣∣
pα(k−1)

i

, (B2)

pα(k)
i = pα(k−1)

i − �t d (k) ∂H

∂uα
i

∣∣∣∣
uα(k)

i

(B3)

for k = 1 · · · n,

pα(h)
i = pα(h−1)

i − �t c(h−n) ∂H

∂uα
i

∣∣∣∣
uα(h−1)

i

, (B4)

uα(h)
i = uα(h−1)

i + �t d (h−n) ∂H

∂ pα
i

∣∣∣∣
pα(h)

i

(B5)

for h = n + 1 · · · 2n,

(uα
i (t + 2�t ), pα

i (t + 2�t )) = (
uα(2n)

i , pα(2n)
i

)
, (B6)

where c(k) and d (k) are the symplectic coefficients, and �t is
the time increment.

The numerical analyses presented in this paper use the
fourth-order bilateral symplectic algorithm. In this case, the
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symplectic coefficients are

c(1) = 0

c(2) = c(4) = 1/(2 − 21/3)

c(3) = 1/(1 − 22/3)

d (1) = d (4) = (2 + 21/3 + 2−1/3)/6

d (2) = d (3) = (1 − 21/3 − 21/3)/6 . (B7)
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