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Anomalous elasticity and plastic screening in amorphous solids
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Amorphous solids appear to react elastically to small external strains, but in contrast to ideal elastic media,
plastic responses abound immediately at any value of the strain. Such plastic responses are quasilocalized in
nature, with the “cheapest” one being a quadrupolar source. The existence of such plastic responses results
in screened elasticity in which strains and stresses can either quantitatively or qualitatively differ from the
unscreened theory, depending on the specific screening mechanism. Here we offer a theory of such screening
effects by plastic quadrupoles, dipoles, and monopoles, explain their natural appearance, and point out the
analogy to electrostatic screening by electric charges and dipoles. For low density of quadrupoles the effect
is to normalize the elastic moduli without a qualitative change compared to pure elasticity theory; for higher
density of quadrupoles the screening effects result in qualitative changes. Predictions for the spatial dependence
of displacement fields caused by local sources of strains are provided and compared to numerical simulations.
We find that anomalous elasticity is richer than electrostatics in having a screening mode that does not appear in
the electrostatic analog.

DOI: 10.1103/PhysRevE.104.024904

I. INTRODUCTION

Solid matter differs from liquids in its ability to support
stress, and the linear theory of elasticity is the framework that
attempts to quantify the response of matter to small defor-
mations [1]. In isotropic and homogeneous solids, the shear
and bulk moduli, for example, relate the stress response to
the external strain. In perfect elastic materials one can also
consider nonlinear responses, quantified in terms of nonlinear
moduli which relate large deformations to higher order stress
responses.

In amorphous solids the situation is less straightforward.
Experimentally one observes that stresses increase linearly
with strains at small deformations, providing an impression
that such solids comply with linear and nonlinear elasticity
theory as well as their crystalline counterparts. In fact, re-
search in the last few decades indicates that this is not the
case. First, it was shown that amorphous solids suffer from
plastic responses [2,3], and in the thermodynamic limit these
appear for any infinitesimal deformation [4,5]. Second, the
nature of these plastic responses, being quasilocalized, results
in the destruction of nonlinear elasticity; the higher order
elastic moduli have sample-to-sample fluctuations which are
not converging with the increase of the system size; quite on
the contrary, these can even diverge [5–8]. Under external
shear strain the accumulation of plastic responses can lead to
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mechanical failure of amorphous solids through shear banding
and the appearance of cracks [9,10].

Having these anomalies in mind, the aim of this paper is
to provide a theory of what we term “anomalous elasticity,”
which in the context of amorphous solids takes into explicit
account the existence of prevalent plastic responses. In par-
ticular we will argue that the existence of such responses
lead to interesting screening phenomena that appear not to
have been studied in the context of amorphous solids mechan-
ics. The concept of screening is common to any student of
electrostatics [11]. Indeed, the well-known Debye-Hückel ap-
proach provided a theoretical explanation for departures from
ideality in solutions of electrolytes and plasmas. This theory
considered the existence of mobile charges (or monopoles)
in solutions, leading to screening effects resulting from the
electrostatic interactions between ions and their surrounding
clouds. An equally important subject is dielectrics, in which
an external electric field induces electric dipoles which in turn
interact to screen the inducing field. In the case of electrostat-
ics further multipole expansion was deemed unnecessary in
normal statistical physics. We note that these two screening
mechanisms are different, the first caused by existing charges
and results with qualitatively stronger screening effects com-
pared to the dielectric example, in which only renormalization
of the dielectric constants is being observed [11]. One way
to effectively distinguish between the types of screening is to
measure the spatial decay of the responding field to a local
charge. In this paper we examine an analogous approach, con-
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FIG. 1. Displacement field induced by the inflation of one disk at
the center of the box by 1%. The displacement vectors are normalized
by the maximal one and plotted with the color code shown on the
right. These are two different configurations prepared with identical
protocols; see Appendix A for details

sidering the responding displacement field of an amorphous
solids to a local elastic charge, which is being realized below
by a local isotropic inclusion.

We argue here that in analogy to electrostatics, the screen-
ing charges are induced and are plastic in nature. We will
study systems in mechanical equilibria in which a source of
strain is added, and the main question will be what is the re-
sulting screened displacement field [12,13]. As is well known,
in classical theory of elasticity, induced displacement field de-
cay at long distances like 1/rD−1 where r is the distance from
the source and D is the space dimension [14]. We will see that
in amorphous solids the functional shape of the displacement
field depends intimately on the density of quadrupolar plastic
responses. When their density is low, only renormalization of
the elastic moduli is observed, in analogy to dielectrics [15].
Increasing their density, quadrupoles cooperate to form effec-
tive dipoles, where qualitatively new screening effects will
be predicted and measured, with no immediate electrostatic
analog. Finally at extremely high densities of plastic de-
formation monopoles form, and similar screening effects to
Debye-Hückel are expected to exist. In fact, such a situa-

tion is tantamount to melting the amorphous solids, bringing
us beyond strict anomalous elasticity and therefore beyond
the scope of the present paper. This sequence of screening
phenomena is analogous to the melting of two-dimensional
crystals. At low temperatures only dipole pairs (quadrupoles)
renormalize the elastic moduli, then at a critical tempera-
ture quadrupoles unbind to form the hexatic phase, in which
dipoles are the screening objects [16]. Finally at the melting
temperatures monopoles unbind from the dipoles and the solid
structure collapses. The difference from the crystalline analog
is that the screening objects are not structural, but mechanical,
allowing us to formulate an intermediate “hexatic” phase in an
isotropic and homogeneous medium.

To illustrate the emerging theory we will consider the re-
sponse to a local stress increase in an amorphous solid made
from a binary mixture of disks which are contained in a
circular box; see Appendix A for details of interactions and
protocol of preparation. Once brought to mechanical equilib-
rium at a target pressure, a disk is chosen closest to the center
of the box. We then inflate this disk by a small percentage
of 1%, and examine the displacement field that is induced by
this inflation. In a normal elastic material in radial geometry
we expect the displacement field to decay like 1/r. Typical
displacement fields obtained form pressure P = 4.5 (for units
see Appendix A) and inflation of 1% are shown in Fig. 1.
Clearly, the displacement field does not appear to decay as
expected in normal elastic materials. Examining the radial
dependence of the angle-averaged displacement, we find the
results reported in Fig. 2. Indeed, we see that the displace-
ment field can even increase when r increases, in a striking
contradiction with the normal elasticity expectation. We will
see below that the theory developed in this paper explains
fully and quantitatively this observed behavior and other novel
results. Indeed, the continuous lines in Fig. 2 represent the
analytic theory that is developed in the present paper.

The structure of this paper is as follows: In Sec. II we
remind the reader of the standard theory of the spatial de-
pendence of displacement fields induced by a local elastic
charge. Section III will discuss screening by a dilute set of
quadrupolar responses. We will see that dilute plastic re-
sponses can only renormalize the elastic moduli. Section IV
deals with the situation of higher densities of quadrupoles
that aggregate to effective dipoles. This section will lead to
the theory of anomalous elasticity that can explain the results
shown in Figs. 1 and 2. The effects of monopoles are of less
immediate interest for us, being related to melting. In Sec. V
we demonstrate that the response that results in the observed
screening is indeed plastic and not nonaffine elastic. The last
section VI will offer a summary of the paper and indications
for the road ahead.

II. DISPLACEMENT FIELDS INDUCED BY LOCAL
ISOTROPIC CHARGES IN PURELY ELASTIC MATTER

The general strategy throughout the rest of this paper is
to construct a field theory for the elastic and plastic displace-
ments, i.e., to identify an effective total energy that describes
how they interact [10]. Minimizing this energy will provide
constraints that we will show to be sufficient to account for
the physical effects identified above.
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FIG. 2. Angle-averaged displacement field computed from the
data presented in Fig. 1. Together with the data we present in
continuous lines the theoretical predictions that are developed
for the angle-averaged displacement in this paper. The parame-
ters used in Eq. (45) to fit the data are the following: (a) rin =
5, κ = 0.0382, d0 = 0.0368, rout = 97.18; (b) rin = 2.1, κ =
0.0372, d0 = 0.0847, rout = 98.37.

To start, we recall in this section how such a formalism
accounts for the response of a purely elastic system to local
charges.

A. Minimizing the total energy

When the system is purely elastic the energy F can be
represented as a sum of two contributions, an internal energy
U and the work done by traction forces t on the boundary,
denoted W . U is an integral over the stress times the strain.
The strain and stress tensors are denoted uαβ , σαβ and the
displacement field by dα . The energy density will be denoted
as L, and in two dimensions the total energy F is

F =
∫

L d2x −
∮

tβdβ dl,

L = 1

2
Aαβγ δuαβuγ δ = 1

2
σαβuαβ, (1)

where A is the usual elastic tensor. The strain is related with
the displacement field via

uαβ = 1
2 (∂αdβ + ∂βdα ). (2)

Next we minimize the total energy with respect to d

δd F = δd

∫
Ld2x −

∮
tβδ dβ dl

=
∫

d2xσαβδuαβ −
∮

tβδ dβ dl. (3)

FIG. 3. Graphic representation of the solution of Eq. (9) for rin =
0.01 and rout = 1, with dr (rin ) = 0.1 and dr (rout ) = 0.

We note that

δuαβ = 1
2 (∂αδ dβ + ∂βδ dα ). (4)

Substituting in Eq. (3) and integrating by parts we get

δd F =
∫

d2xσαβ∂αδ dβ −
∮

tβδ dβ dl

=
∮

(σαβ nα − tβ )dβ d	 −
∫

d2x∂ασαβδ dβ, (5)

hence

∂ασαβ = 0, σ αβ nβ |∂ = tα. (6)

Upon substituting the expression for the stress tensor in terms
of strain, and then using the relation of strain and displace-
ment, we find the equation for the displacement field in the
form


d + λ∇(∇ · d) = 0, λ ≡ 1 + ν

1 − ν
, (7)

where ν is the two-dimensional Poisson ratio.

B. Isotropic inclusion

In preparation of the more interesting solutions in the
sections ahead, we consider here an annulus of radii rin and
rout with an imposed displacement d(rin) = d0r̂ and d(rout) =
0. The polar symmetry of the problem implies that d(r) =
dr (r)r̂, in which case the equilibrium equation reduces to


d = 0. (8)

The solution to this differential equation is

dr (r) = d0
r2 − r2

out

r2
in − r2

out

rin

r
. (9)

Macroscopic behavior is obtained in the double limit rin �
r � rout, in which the solution decays as 1/r, as expected in
standard elasticity theory. The graphic representation of this
solution is exhibited in Fig. 3, showing that the solution goes
like 1/r as is expected in standard elasticity theory.

III. THE EFFECT OF DILUTE QUADRUPOLES

In this section we consider the effect of dilute quadrupoles.
The final result will be elasticity theory with renormalized
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elastic moduli. This is already an emergent theory, since the
moduli are determined self-consistently by the response of the
system.

A. Background: Elastic potential

Equation (6) means that the stress field is divergence free.
A divergence-free field can always be represented in terms of
an elastic (Airy’s) potential [17]:

σαβ = εαμεβν∂μνχ, (10)

with ε the antisymmetric tensor. The compatibility condition
on the strain tensor, which reflects the interdependence of its
components, is

εαμεβν∂μνuαβ = 0. (11)

Upon combining the stress representation with the compati-
bility condition we find



χ = 0. (12)

This is the well-known biharmonic equation that was treated
extensively in the literature; cf. [18].

B. Background: Elastic charges

Sources of stress can be incorporated into the theory by
adding them to the biharmonic equation



χ (x) = ρ(x). (13)

Generally speaking, the source function ρ(x) depends on how
the source is introduced. But in the far-field approximation
we can consider the sources as singular for the biharmonic
equation. Singular sources can be represented by a multipole
expansion according to

ρ(x) = m δ(x) + bα∂αδ(x) + qαβ∂αβδ(x) + · · · . (14)

The monopole and dipole charges m and b describe discli-
nations and dislocations: they are relevant in crystals, but
topologically precluded, hence irrelevant, in amorphous me-
dia. In this case, the quadrupole term describes the first
nontopological source with the charge q related to the
well-known eigenstrain of an Eshelby inclusion [19]. The
quadrupolar charge has the dimension of an area. Below we
will denote the magnitude of the eigenstrain as q. An extensive
presentation and discussion of elastic charges within the linear
theory is given in Refs. [20–22]. A generalization to nonlinear
elasticity can be found in Ref. [23].

Of particular importance is the Green’s function associated
with the response to quadrupolar charges, which solves the
equation



Gαβ (x) = ∂αβδ(x). (15)

Using the linearity of the equation we relate Gαβ (x) with the
derivatives of the monopole Green’s function [20]

Gαβ (x) = 1

16π
∂αβ[|x|2(log |x|2 − 1)]. (16)

C. Microscopic description and mean-field theory

When the density of quadrupoles is low, there exist a
scale separation

√
q � 	q � L. Here 	q is the typical distance

between quadrupoles, and L is the system size. The total
quadrupole charge in a small area 
S is

qαβ
tot =

∑
xi∈
S

qαβ
i δ(x − xi ). (17)

The elastic potential induced by a quadrupolar charge qαβ

located at x′ is denoted Gαβ (x − x′), hence the total elastic
potential is

χ =
∑

i

qαβ
i Gαβ (x − xi ). (18)

In the case of low quadrupole density Eq. (18) is rewritten in
the continuum limit in the form

χ (x) =
∫

d2x′ Qαβ (x′)Gαβ (x − x′), (19)

where d2x′ Qαβ (x′) ≡ qαβ
tot

We define the stress and strain Green’s functions

Gμν

αβ (σ ; x − x′) = εμρενη∂ρηGαβ (x − x′),

Gμναβ (u; x − x′) = AμνρηGρη

αβ (x − x′). (20)

From these Green’s functions we can compute the extra strain
and stress which are induced by the quadrupole field, denoted
as σμν (x|Q), uμν (x|Q):

σμν (x|Q) =
∫

d2x′Gμν

αβ (σ ; x − x′)Qαβ (x′),

uμν (x|Q) =
∫

d2x′Gμναβ (u; x − x′)Qαβ (x′). (21)

D. Mean-field equations

In general, the total strain in a given system is not de-
termined only by the density of quadrupoles, there can be
additional mechanical sources of strain. We therefore write
the total strain in the system as

uαβ (x) = uel
αβ (x) + uαβ (x|Q), (22)

where uel
αβ (x) is the “normal” strain field. The energy func-

tional, from which the equilibrium equations are derived,
contains now contributions from both the quadrupoles and the
normal elastic fields [10]. In other words,

U = Uel + UQQ + UQ-el. (23)

Finding the actual form of these three interactions requires
starting from the detailed energetic considerations as done,
for example, in Ref. [10]. This calculation is presented in
Appendix B, with the final result reading

Uel =
∫

d2x
1

2
Aαβγ δuαβuγ δ,

UQQ =
∫

d2x
1

2
�αβγ δQαβQγ δ,

UQ-el =
∫

d2x�αβ

γ δ uαβQγ δ, (24)

where � and � are appropriate coupling tensors. We note that
in principle neither the total strain field uαβ nor Qαβ is a priori
known even when the external loads are given. Both will have
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to be computed by minimizing the energy with respect to
them.

E. Minimization of the energy functional

Upon minimizing (23) with respect to the fundamental
fields d and Q we find

δQU = δQ

∫
Ld2x =

∫
d2x

(
�αβγ δQαβ + �

αβ

γ δ uαβ

)
δQγ δ,

δdU = δd

∫
Ld2x =

∫
d2x

(
σαβδuαβ + �

αβ

γ δ Qγ δδuαβ

)
.

(25)

From the first equation we get a linear screening relation
(analogous to the linear relation between electric field and
induced polarization in dielectric materials)

Qαβ = −�αβμν�γ δ
μνuγ δ ≡ −�̃αβγ δuγ δ, (26)

where �αβμν is the inverse of �αβμν . Substituting in Eq. (25)
and integrating by parts we get

δdU =
∫

d2x
(
σαβ∂αδdβ + �

αβ

γ δ Qγ δ∂αδdβ

)

=
∮ (

σαβ + �
αβ

γ δ Qγ δ
)
nαδdβd	

−
∫

d2x∂α

(
σαβ + �

αβ

γ δ Qγ δ
)
δdβ, (27)

hence

∂α

(
σαβ + �

αβ

γ δ Qγ δ
) = 0. (28)

Combining (26) with (28) we find an equation of the form

Dαβ
τμ∂ασ τμ = 0 (29)

with D an invertible tensor depending on the coupling ten-
sors �,�,A. Upon inversion we get the standard equilibrium
equation ∂ασαβ = 0. The effective elastic properties are ob-
tained by substituting the constitutive relation (26) in the
energy density (23):

L = 1
2 Aμνρσ uμνuρσ + 1

2�αβγ δQαβQγ δ + �
αβ

γ δ uαβQγ δ

= 1
2 Aμνρσ uμνuρσ + 1

2�αβγ δ (−�̃αβμνuμν )(−�̃γ δρσ uρσ )

+ �
μν

γ δ uμν (−�̃γ δρσ uρσ ) ≡ 1
2 Ãμνρσ uμνuρσ (30)

with

Ãμνρσ = Aμνρσ + �αβγ δ�̃
αβμν�̃γ δρσ − 2�

μν

γ δ �̃γ δρσ . (31)

We see that the renormalization of the quadrupole-quadrupole
interactions results with a linear constitutive relation between
inducing stress and induced quadrupoles which then renor-
malizes the elastic tensor [15]. This is the analog of the
situation in dielectrics where the dielectric constant is renor-
malized by the induced dipoles. In the next subsection we
provide examples of this situation.

F. Numerical examples

To test our theory of the effect of low density quadrupoles
we employ the same system that gave rise to the results shown
in Fig. 2, but at much higher pressure, P = 40 and P = 60. We

FIG. 4. Displacement field for P = 40. Inset: the displacement
field caused by inflating one disk closest to the origin by 1%. Here
the displacement vectors are normalized and color coded as in Fig. 1.
Shown also is the fit of Eq. (9) to the angle-averaged displacement.
Here the parameters used in the fit are d0 = 0.03028, rin = 3.268,
rout = 82.74.

expect that at higher pressures the density of plastic events
will be much lower, and indeed this is what we see; cf. the
displacement maps in panel (a) of Figs. 4 and 5. Here the
vectors of the displacement field are multiplied by a factor
of 40 (compared to 10 for P = 4.5). One can observe imme-
diately that the displacement field is now concentrated near
the inflated disk and decays towards the outer boundary, as

FIG. 5. Displacement field for P = 60. Inset: the displacement
field caused by inflating one disk closest to the origin by 1%. The
displacement vectors are normalized and color coded as in Fig. 1
Shown also is the fit of Eq. (9) to the angle-averaged displacement.
Here the parameters used in the fit are d0 = 0.03487, rin = 3.631,
rout = 81.9. We note that rin is of the order of the inclusion, and rout

of the system radius.
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is expected in (renormalized) elasticity. The angle-averaged
displacement fields is computed from these maps and are
shown together with the solution Eq. (9) in panel (b) of these
figures. We should stress that one does not expect agreement
at low values of r before the continuum limit that is used
here becomes valid. We see that for r � 10 the continuum
approximate fits extremely well the measured data.

IV. CONTINUUM THEORY FOR HIGHER DENSITIES
OF QUADRUPOLES

A. Constructing the theory

The previous section indicated that we can continue our
study following the common approach in constructing energy
densities employing the natural interacting fields, by identify-
ing the scalars that are consistent with the symmetries of the
system. Equation (23) is the most general quadratic energy
that is isotropic and homogeneous, containing a density of
quadrupoles interacting with the elastic fields of a solid. Mo-
tivated by the celebrated hexatic phase in 2D crystals [16], we
now consider the case in which the pressure on the amorphous
solid is sufficiently low (equivalent to high temperature in
the 2D melting problem), such that quadrupoles assemble to
dipoles. The quadrupoles tend to align in two dimensions,
sometimes forming shear bands [9,10]. In this case the amor-
phous solid is modeled as an elastic solid containing a density
of quadrupoles and dipoles.

In the previous section we assumed that the density
of quadrupoles is low, allowing us to neglect higher or-
der terms in the multipole expansion, and in particular the
gradient of the quadrupole density in the passage from
Eq. (18) to Eq. (19). Presently we consider higher densities
of quadrupoles, forcing us to add to the energy functional
gradients of the quadrupolar field.

To understand how dipoles are coupled to the elastic field
we can look at the quadrupole-strain coupling and perform
integration by parts to find∫

d2x�αβ

γ δ uαβQγ δ =
∫

d2x�αβ

γ δ ∂αdβQγ δ

=
∮

dl �
αβ

γ δ dβQγ δnα

−
∫

d2x�αβ

γ δ dβ∂αQγ δ. (32)

This implies that quadrupole density gradients couple with
elasticity via the displacement field. In parallel with this
observation, we should recall that any high-order tensor com-
prises subsets of its components that are essentially lower
rank tensors. This is how stress decomposes into pressure (a
scalar) and deviators (purely rank-2). The quadrupole density
gradient ∂αQγ δ is a rank-3 tensor and comprises dipole con-
tributions, such as ∂βQαβ or ∂αQββ . For reasons of symmetry,
only these components may couple statistically with the dis-
placement field, not the rest, which is purely rank-3. Dipoles,
hence, are expected to be responsible for the dominant effect
arising from quadrupole density gradients.

This is similar to the physics underlying the celebrated
hexatic phase in 2D crystals [16]. We thus expect that at
sufficient low pressure (equivalent to high temperature in the

2D melting problem), the increasing density of quadrupoles
leads to the emergence of dipole contributions. In such con-
ditions, hence, the amorphous solid has to be modeled as an
elastic solid containing a density of quadrupoles and dipoles.
Since we found above that the effect of quadrupoles alone
is limited to renormalizing the elastic tensor, and since ei-
ther dipole field would play a similar role, we can focus,
for simplicity, on the consequences of introducing a single
dipole field, say, Pα ≡ ∂βQαβ . The most general isotropic and
homogeneous quadratic energy then reads

L = 1
2 Aμνρσ uμνuρσ + 1

2�αβPαPβ + �α
βdαPβ. (33)

At this point we should remind the reader that the notation
using the dipole field Pα does not change the fact that the
minimization of L should be done with respect to the fun-
damental field dα and Qαβ . Minimization with respect to P
would violate the conservation of dipoles. To make this point
obvious we write the energy density in the explicit form

L = 1
2 Aμνρσ uμνuρσ + 1

2�αβ∂μQμα∂νQνβ + � β
α ∂μQμαdβ.

(34)
Upon minimizing with respect to the fundamental fields d

and Q we find

δQS = δQ

∫
Ld2x =

∫
d2x

(
�αβPα + �α

β dα

)
δPβ,

δd S = δd

∫
Ld2x =

∫
d2x

(
σαβδuαβ + �α

β Pβδdα

)
. (35)

From the first equation we get a linear screening relation

Pα = −�αβ�
γ

β dγ . (36)

In the second equation we use the relation between strain and
displacement Eq. (4). Substituting Eq. (4) and integrating by
parts we get

δdU =
∫

d2x
(
σαβ∂αδdβ + �β

α Pαδdβ

)

=
∮

σαβnαδdβd	

−
∫

d2x
(
∂ασαβ + �β

α Pα
)
δdβ, (37)

hence

∂ασαβ = −�β
α Pα. (38)

Combining (36) with (38) we find

∂ασαβ = −�β
α Pα = �β

α�αμ�γ
μdγ . (39)

We see that the displacement field acts as a screening source
in the equilibrium equation. We now rewrite this equation by
substituting the stress in terms of strain, and the strain in terms
of the displacement. In isotropic and homogeneous materials
the coupling tensors have the following forms:

Aαβγ δ = λ1gαβgγ δ + λ2(gαγ gβδ + gαδgβγ ),

�β
α = μ1gα

β,

�αβ = μ2gαβ, (40)
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FIG. 6. The solutions of Eq. (45) for different values of the
parameter κ . Here rin = 0.01 and rout = 1, with dr (rin ) = 0.1 and
dr (rout ) = 0.

with g the Euclidean metric tensor. Direct substitution yields

λ2
d + (λ1 + λ2)∇(∇ · d) = μ1P = −μ2
1

μ2
d, (41)

or in a simpler form


d +
(

1 + λ1

λ2

)
∇(∇ · d) = − μ2

1

μ2λ2
d. (42)

The screening effect is negligible when μ2
1

μ2λ2
� 1. At low

pressures λ2 → 0 and the screening effect dominates. Unlike
the quadrupole screening, dipole screening leads to a qualita-
tively new behavior.

B. Response to particle inflation

Presently we discuss simulations that are identical in pro-
tocol and aim as those discussed in Sec. III F, but at much
lower pressure, P = 4.5. A disk which is closest to the origin
was inflated by 1%. Upon assuming polar symmetry Eq. (42)
reduces to


d = − μ2
1

μ2(λ1 + 2λ2)
d ≡ −κ2 d. (43)

In polar coordinates

d ′′
r + 1

r
d ′

r +
(

κ2 − 1

r2

)
dr = 0. (44)

This is the Bessel equation. A solution of this equation satis-
fying dr (rin ) = d0, dr (rout ) = 0 reads

dr (r) = d0
Y1(r κ )J1(routκ ) − J1(r κ )Y1(routκ )

Y1(rinκ )J1(routκ ) − J1(rinκ )Y1(routκ )
. (45)

Here J1 and Y1 are the Bessel functions of the first and second
kind, respectively. The solution of this equation for different
values of κ are shown in Fig. 6. We note that the length scale
that is apparent from the appearance of a maximum in Fig. 6
is determined by the inverse of κ . Whether a maximum will
appear, or whether several maxima will show up, depends on
the ratio between rout and κ−1.

C. Comparison to the simulations

The simulations of our circular box with configurations
of binary disks serves admirably to test the theory and the
applicability of Eq. (45). Repeating the same kind of simu-
lations that led to Figs. 4 and 5, but at much lower pressure
P = 4.5, we get typical displacement fields as seen in Fig. 1.
Fitting Eq. (45) to the angle-averaged displacement field we
get Fig. 2. Remembering that we should not expect a perfect
fit of a continuum theory neither at rin nor at rout, the quality
of the fit seen is more than satisfactory. We thus propose that
the theory presented above appears quite relevant at least to
model amorphous solids. Of course, comparisons to experi-
mental system is highly desirable and will be part of our future
research.

V. PLASTIC OR ELASTIC?

Before summarizing the paper, we need to ascertain that
the displacement fields shown in Figs. 1, 4, and 5 are indeed
resulting from plastic responses. It is well known that upon
applying strain to an amorphous solid, the displacement field
is partly affine (following precisely the applied strain) and
partly nonaffine. The nonaffine responses can be reversible or
irreversible. Only the latter can be referred to as plastic. A
straightforward way to test the reversibility of a measured dis-
placement field is simply to revert the applied perturbation. In
the present cases, in which we always inflated a central disk by
1%, we can deflate it back, and measure the displacement field
(after the deflation) compared to the original configuration.
We show two typical results of this test in Figs. 7 and 8. The
first of these refers to the high pressure P = 60. In the upper
panel we display the displacement field after the inflation, and
in the lower panel after the deflation. We see that there is
essentially no change.

The second of these tests is performed at P = 4.5. The dis-
placement fields after inflation and after deflation are shown
again in the upper and lower panels, respectively, this time in
Fig. 8.

The conclusion is that upon deflation the displacement field
is not annulled. In fact, it remains invariant, showing unequiv-
ocally that we are dealing with nonaffine plastic responses that
are not reversible. This should be considered as a distinction
from dielectrics, in which dipoles annul when the electric field
is switched off.

VI. SUMMARY AND THE ROAD AHEAD

In summary, we have shown that the ever-existing plastic
responses in amorphous solids should be carefully taken into
account in assessing their implications for the mechanical
properties of the host materials. The displacement field in
response to a local source of stress can differ enormously
from the expectation of classical elasticity theory. Instead
of decaying like 1/rD−1 the displacement field can increase,
decrease, and oscillate as a function of r, and it is all de-
pendent on the density of quadrupolar plastic responses, their
gradients (dipoles), and in extreme cases also monopoles.
We have demonstrated that measured displacement fields in
model systems of amorphous configurations of binary disks
in which one disk close to the origin is slightly inflated agree
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FIG. 7. Comparison of typical displacement fields with respect to
the unperturbed configuration, P = 60. Upper panel: after inflation.
Lower panel: after deflation.

excellently well with the theory that was developed in this
paper.

It is worthwhile to reiterate that the kind of screening
discussed here is analogous, but in fact richer, than the elec-
trostatic counterpart. While in electrostatics one is concerned
with charges and dipoles, here we have three possible screen-
ing agents, monopoles, dipoles, and quadrupoles. The case
with small density of quadrupoles is analogous to dielectrics,
having only renormalization of the material parameters. The
interesting situation of screening dipoles in elasticity, for
which the displacement field changes qualitatively, does not

FIG. 8. Comparison of typical displacement fields with respect to
the unperturbed configuration, P = 4.5. Upper panel: after inflation.
Lower panel: after deflation.

have an analog in electrostatics. Finally, monopoles may be-
come relevant, but we did not deal with them explicitly since
we expect that their appearance will be accompanied with the
melting (or unjamming) of our amorphous solids.

Finally, we want to stress that the theory presented above
is not limited to amorphous solids. The way that the theory
was constructed, using the scalar fields that are allowed by
symmetry, opens up the application of the theory to any situa-
tion in which elasticity is accompanied by induced relaxation
mechanisms. Such extensions will be provided in future pub-
lications.
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APPENDIX A: SYSTEM PREPARATION AND PROTOCOLS

We investigate frictionless assemblies of circular disks that
are at mechanical equilibrium, prepared with a desired target
pressure P and confined in a circular two-dimensional box
with a fixed outer wall. Open source codes (LAMMPS [24])
are used to perform the simulations. Every simulation be-
gins with a dilute (area ratio φ = 0.45) configuration of N =
16 000 bidisperse disks placed randomly in a circular box with
a radius rout = 80 in SI units. Initially, half of the disks have a
radius R1 = 0.35 and the other half a radius R2 = 0.49, both
in SI units. To reach a desired pressure the diameter of all
the particles are inflated by a small factor (1.00004) in each
step, and the system is relaxed to mechanical equilibrium after
every inflation step by solving Newton’s second law of motion
with damping. This process is carried out until the desired
target pressure is reached.

The normal contact force is Hertzian, following the Dis-
crete Element Method of Ref. [25]. The tangential contact
force is zero as the system is frictionless. Let us consider
two particles i and j, at positions ri, r j with velocities vi,
v j . Two particles interact if and only if there is an overlap,
i.e., if the relative normal compression 


(n)
i j = Di j − ri j > 0,

where ri j = |�ri j |, ri j = �ri − �r j , Di j = Ri + Rj , and Ri, Rj the
radii of disks i and j. The normal unit vector is denoted as
�ni j = �ri j/ri j . Normal component of the relative velocity at
contact is given as

v
(n)
i j = (vi j .ni j ) ni j . (A1)

The normal force exerted by grain j on i is

F (n)
i j = kn


(n)
i j ni j − γn

2
v

(n)
i j , (A2)

where

kn = k′
n

√



(n)
i j R−1

i j ,

γn = γ ′
n

√



(n)
i j R−1

i j , (A3)

with R−1
i j ≡ R−1

i + R−1
j . k′

n is the normal spring stiffness. The
parameter γ ′

n is the viscoelastic damping constant. In the cur-
rent simulations, the stiffness, kn = 2 × 106 N/m in SI units.
The mass of each disk is m = 1 in SI units. Each particle
is inflated by a small factor followed by subsequent relax-
ation, annulling the total forces on each disk until they are
smaller than 10−7 in SI units. This process is continued until
a mechanically stable configuration is generated at a desired
pressure P in SI units.

After achieving a mechanically stable configurations at a
target pressure, we choose the disk with larger diameter that
is closest to the center of the simulation box and inflate it by
1%. We then measure the displacement field that is induced
by this inflation. This is the data shown throughout this paper.

APPENDIX B: MICROSCOPIC DERIVATION OF EQS. (24)

The detailed representation of the energy was presented
in Ref. [10]. We show now that the present equations are
equivalent. As an example consider the first term in (24):

Uel =
∫

d2x
1

2
Aαβγ δuαβ (x)uγ δ (x)

=
∫

d2x
1

2
Aαβγ δuel

αβ (x)uel
γ δ (x)

+
∫

d2xAαβγ δuel
αβ (x)uQ

γ δ (x)

+
∫

d2x
1

2
Aαβγ δuQ

αβ (x)uQ
γ δ (x). (B1)

Here the first term corresponds to the self-energy associated
with the bare elastic fields. The second term vanishes identi-
cally. To see this we have to substitute the explicit expression
for Gu

γ δμν and perform integration by parts twice with respect
to x to obtain an integrand proportional to εαμεβν∂μνuel

αβ ,
which is the compatibility condition on the bare strain.

The last term describes the interactions between induced
quadrupoles located at different points:∫

d2x
1

2
Aαβγ δuQ

αβ (x)uQ
γ δ (x)

=
∫

d2xd2x′d2x′′ 1
2

Aαβγ δGu
αβμν (x − x′)

×Gu
γ δρσ (x − x′′)Qμν (x′)Qρσ (x′′)

=
∫

d2x′d2x′′ 1
2

Qμν (x′)Qρσ (x′′)

×
∫

d2xAαβγ δGu
αβμν (x − x′)Gu

γ δρσ (x − x′′)

≡
∫

d2x′d2x′′ 1
2

Qμν (x′)Qρσ (x′′)�μνρσ (x′ − x′′). (B2)

This expression is ill defined in the case x′ − x′′ → 0.
Therefore renormalization techniques are required, where a
cutoff length scale is introduced to regularize the integral,
representing the quadrupoles’ core size. This result with an
additional term describing quadrupoles’ self-interactions, as
in the second expression in (24).

The third term in (24) has two contributions: a quadrupole-
quadrupole interaction term, correcting the coefficient of (B2),
and a quadrupole-strain term

UQ-el =
∫

d2x�αβ

γ δ uαβQγ δ =
∫

d2x�αβ

γ δ uel
αβQγ δ

+
∫

d2xd2x′�αβ

γ δ Gu
αβμν (x − x′)Qγ δ (x)Qμν (x′),

(B3)
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Wrapping it all together we find

U =
∫

d2x
1

2
Aαβγ δuel

αβ (x)uel
γ δ (x) +

∫
d2x′d2x′′ 1

2
Qμν (x′)Qρσ (x′′)�μνρσ (x′ − x′′)

+
∫

d2x
1

2
�αβγ δQαβQγ δ +

∫
d2x�αβ

γ δ uel
αβQγ δ. (B4)

This is exactly the form of the energy functional in [10], and therefore we focus on this functional form in (23) and (24).
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