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Thin smectic liquid crystalline fibrils of chiral rodlike particles
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Inspired by recent experimental work on virus-polymer mixtures, we study the properties of thin smectic fibrils
composed of chiral rodlike particles using Monte Carlo simulations. Due to the interplay between surface energy,
elastic deformation energy, and entropic effects, the fibril’s layers relax into a twisted state. We focus our study
on the layers’ twist direction and map our results to the antiferromagnetic Ising model. In this view, the chiral
interaction mimics an external field that drives the layers to have the same sense of twist. Besides, we determine
the free energy difference and barrier height between an alternating and a nonalternating sequence of twisted
layers composed of achiral rods and find that an alternating sequence is slightly preferred. We also see that
the fibrils contract on increasing the chiral interaction strength and think that further studies on self-assembled
functional materials can use our results.
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I. INTRODUCTION

Systems of rodlike bacteriophages and viruses have found
much attention as model liquid crystals in the recent decades
[1–3]. The variety of self-assembled structures that arise in
mixtures of such rodlike particles with depleting agents (usu-
ally added polymer in the globular phase) has been the focus
of many studies [4–9]. Controlling the self-organization of
the anisotropic particles is of great importance for functional
materials, biomimetic applications, and nanotechnology. The
effective attraction between the colloidal rods due to the pres-
ence of the depletants can easily be tuned by changing the
depletant concentration and their effective size. Not only the
depletants but also the properties of the colloidal particles de-
termine the type and behavior of the self-assembled structures.
Thus, the goal is to be able to control the constituent-structure-
property relation.

For the paper at hand, we take one of the structures found
in experiments and explore its behavior using Monte Carlo
simulations. The chosen structure is called a smectic fibril and
can be described as a thin fiber formed by elongated particles
whose centers of mass arrange in layers. In another view, this
is a stack of colloidal membranes, which are one-layer thick
disklike (or hexagonally shaped) assemblies of the rodlike
particles. An illustrative snapshot is shown in Fig. 1. The rods
that constitute the fibril have a chiral pair interaction in ad-
dition to their hard core repulsion. Why chiral particles? The
system’s parameter space already includes the size and aspect
ratio of the rods, size ratio of rods and depletants, number of
rods, and concentration of depletants. Chirality adds another
dimension to it that helps to tune the properties of materials.
It is also known that viruses as constituents of self-assembled
structures, which give our work inspiration, are chiral objects.
Their chirality is different from one type of virus to another
and can be modified by mutation [11,12].
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The growth of smectic fibrils can follow different routes:
(i) colloidal membranes grow first and then assemble to a
stack and (ii) particles assemble to a columnar fibril first
and then undergo a columnar-smectic transition. Experiments
have shown that the mechanism depends on the strength of the
attractive depletion interaction [9]. If the attraction is strong,
then columnar fibrils are found; however, the columnar-
smectic transition is rarely seen because of kinetic trapping.
More often, route (i) is considered, for which theoretical
descriptions and simulations are available [6,13,14]. In this
paper, we take already grown fibrils and focus on the in-
fluence of the strength of a chiral interaction between the
rodlike particles that form the fibril. This influence has already
been discussed for colloidal membranes [7,15,16], but to our
knowledge, not for stacks of those. The obvious difference is
that the membrane faces are either exposed to the depletant
gas (isolated membranes) or another membrane face (in fib-
rils). We expect to see a differing behavior because the shape
and structure of individual membranes explicitly depend on
their surface. The system finds its equilibrium state by mini-
mizing its free energy, where the latter can be approximated
by a sum of elastic deformation energy and surface energy
terms. Thus, the different interfaces must lead to different
membrane states.

Immediately visible from the snapshot in Fig. 1 is that the
rods do not point along the fibril axis (at least those close to
the surface) but show some twist. We will discuss the sense
and the sequence of the twists and map left- and right-handed
membranes to spin states up and down in a 1d Ising model
description.

II. MODEL AND SIMULATIONS

As a model for rods that constitute the smectic fibrils, we
use spherocylinders with a hard core. The spherocylinders’
dimensions are the length L and the diameter D. In this study,
the aspect ratio is kept constant at L/D = 10, and D is used as
the length unit. Spheres of diameter D are added as a second
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FIG. 1. Rendered snapshot of an equilibrated fibril with dimen-
sions sM = 8 (number of rods at the side of the hexagon) and NM = 6
(number of stacked membranes). Left: side view; right: top view.
Different senses of the twists’ direction can be seen. The color codes
the orientation of rods, and the rendering was done using POV-Ray
[10]. Not shown are the depleting spheres that stabilize the structure.

component. They are so-called Asakura-Oosawa spheres, i.e.,
they do not interact with each other but have a hard core inter-
action with the rods that gives rise to a depletant force between
them. For sufficiently strong resulting attraction, the assem-
bled structures are stabilized. To avoid explicitly dealing with
a large number of spheres, an implicit method introduced by
Glaser et al. has been utilized, keeping the chemical potential
of the depletants, μD, constant [17]. The essential point is that
the spheres are not stored as permanent objects but are only
temporarily created to check for overlaps with the rods; for
details, we refer to the original publication [17].

To set up the fibrils’ initial configuration, we first assemble
rods on a hexagonal grid, standing upright parallel to each
other. Together, they form a membrane in the shape of a regu-
lar hexagon. We have chosen this shape in order to mimic the
structure found in experiments of fd virus-polymer (polyethy-
lene glycol) mixtures [9]. The number of spherocylinders
making up a hexagon side is denoted sM . Next, NM membranes
are stacked along the x axis, building a fibril that spans the
simulation box. An equilibrated configuration is depicted in
Fig. 1.

In addition to the spherocylinders’ hard core, a chiral pair
potential that is known to form a cholesteric bulk phase is
added [18,19]:

UG(�ri j, m̂i, m̂ j ) = −ε
(m̂i · m̂ j )

(ri j/D)7 [(m̂i × m̂ j ) · r̂i j], (1)

where m̂i, m̂ j denote the orientations of two rods and r̂i j =
�ri j/ri j is the normalized center of mass distance. This inter-
action adds chirality to the system, which is tuned by the
parameter ε > 0 kBT . The chiral potential is minimal for an-
gles of π/4 between rods, leading to twists in the equilibrated
membranes: Rods tilt and arrange themselves in a membrane-
spanning vortex. These twists also form in absence of the
chiral potential: They occur in right- and left-handed form
in membranes of achiral rods due to an interplay between
interfacial energy, elastic deformation energy, and entropic
contributions. Yet a common sense of twist direction can be
gradually induced using the chiral interaction.

This study employs Metropolis Monte Carlo (MC) sim-
ulations in the semigrand NμDV T ensemble and three-
dimensional periodic boundary conditions. Each rod may
translate or rotate, and the maximum displacement and ro-
tation angle are adjusted to have acceptance rates of about
0.5 for each type of move. In addition to these single-particle

moves, a “box move” is applied on average once per MC
sweep. That is, the lengths of the sides of the simulation box
are slightly changed while keeping the volume constant, and
the rod centers of mass are rescaled accordingly; the y and
z dimensions are kept equal to not deform the shape of the
fibril cross section. The reason for adding the box move is
that the height of the individual membranes depends on the
total interaction (depleting plus chiral). Thus the fibril can
only relax if the box’s length in x direction, Lx, is not fixed
but self-determined. A discussion about the influence of the
initial box length and fixing the box length can be found in the
Appendix (A 2). To relax and equilibrate the systems, we use
several 105 MC sweeps, and for the main results, the averages
were taken from 16 independent simulation runs and values
recorded over 1–2 × 105 MC sweeps.

III. RESULTS

This paper mainly presents results for varying chiral
strength ε, keeping the fibril dimensions and depletant
concentration constant. From studies of isolated colloidal
membranes, it is well known that the rodlike particles within
do not all stand upright but twist towards the edge of the
membrane [7,15,16]. The reason is the competition of elastic
deformation energy, surface energy, and surface anchoring
that scale differently with the membrane volume and surface.
The surface energy describes the contribution due to the pres-
ence of the surface, while the surface anchoring contribution
accounts for the orientation of rods with respect to the surface.
The twisting also appears in the fibrils (stacks of membranes)
and is the main topic of the current study. For a theoretical
description of the fibrils in terms of free energy contributions,
one would need to include the surface-surface interaction be-
tween membranes in addition to the terms used, for instance,
in Ref. [7]. Here we do not estimate this from microscopic
principles but discuss the results in terms of a comparison to
the Ising model.

The direction of twist of the individual membranes is
(in most situations) fixed during the initial equilibration. In
the achiral case, ε = 0 kBT , there is a 50% chance to find
left-handed membranes, but with increasing chiral strength,
a higher percentage of membranes is left handed. The hand-
edness parameter quantifies this fact:

R�r = N� − N r

NM
,

where N�(N r) is the number of left-(right-)handed mem-
branes. As can be seen in Fig. 2, for ε � 8 kBT all membranes
are left-handed and the strongest effect of the chiral strength
is found for 2 < ε/kBT < 5. Typically, the handedness is not
changed once the twist is developed. Therefore, we resolve the
measured quantities with respect to the number of left-handed
membranes.

In addition to quantifying the fraction of left-handed mem-
branes, it is interesting to study their distribution along the
fibril. The two extreme cases are (i) all left-handed mem-
branes are stacked together so that there are only two (or
zero for R�r = ±1) interfaces between left- and right-handed
membranes and (ii) the number of left-right interfaces is
maximized by separating the left-handed membranes. To
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FIG. 2. Handedness parameter vs. chiral strength. Fibril dimen-
sions are kept constant at NM = 4 and sM = 6 and the depletant
density is ρD = 2.31 D−3. Error bars depict the standard deviation.

distinguish these cases, we introduce the twist alternation
number:

TA = NC

NM
,

where NC is the number of left-right interfaces (C for change
of twist direction). While this quantity is intuitive, it dis-
regards that the fraction of left-handed membranes already
restricts the number of possible twist alternations. In addi-
tion, the left-hand fraction is not (necessarily) constant for
a fixed set of parameters. It is therefore expedient to in-
clude the minimum and maximum possible values, TA,min =
2 min(min(N�, N r ), 1)

NM
and TA,max = 2 min(N�, N r )

NM
, to get a

normalized quantity:

T ∗
A = TA − TA,min

TA,max − TA,min

[Note that TA,min and TA,max are resolved with respect to N�, so
that results for T ∗

A are given as average of T ∗
A (N�) over N�.]

In the achiral case one could expect TA to be 0.5, assuming
that neither a change of twist direction nor its preservation is
preferred. But this is not the case (not even close to), as shown
in Fig. 3. Thus we conclude that there is a preference for
changing the twist direction between consecutive membranes.
This reminds us of the antiferromagnetic Ising model, where
left- and right-handed membranes represent spin up and down.
The respective Hamiltonian for the achiral case reads

H ({s}) = −J
NM−1∑

i=1

sisi+1 − JsNM s1,

with the coupling constant J < 0 and si = ±1. {s} is a short
notation for the state given by all the si, i = 1, . . . , NM . In
this comparison, J quantifies the energy difference between
neighboring membranes having the same handedness and
neighboring membranes having an opposite handedness. The
theoretical twist alternation number using this Ising descrip-
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FIG. 3. (Normalized) twist alternation number vs. chiral
strength. Fibril dimensions are kept constant at NM = 4 and sM = 6
and the depletant density is ρD = 2.31 D−3. Error bars depict the
standard deviation. The normalized twist alternation number reaches
its maximum already at ε = 4 kBT , while the plain twist alternation
number still decreases and shows large error bars. The reason is that
there are two, three, or four left-handed membranes, but in all cases,
the number of twist alternations takes its maximum value (1, 0.5,
and 0, respectively).

tion is

TA,Is = 〈NM −
NM−1∑

i=1

sisi+1 − sNM s1〉/(2NM )

= 1/2 + 〈H〉/(2JNM ),

where the brackets denote the canonical ensemble average.
The average energy is found from the partition function,
〈H〉 = −∂ ln Z/∂β, with β = 1/kBT and

Z =
∑
{s}

exp [−βH ({s})]

= [2 cosh(βJ )]NM + [2 sinh(βJ )]NM .

A similar relation can be derived for the normalized twist
alternation number T ∗

A,Is. We map the measured values of the
twist alternation number to the theoretical values from the
Ising model and find J = −0.73 kBT (using theoretical and
simulation results for TA) or J = −0.37 kBT (using theoreti-
cal and simulation results for T ∗

A ). Surely, it is questionable
whether NM = 4 is large enough for such a comparison.
Therefore we also study fibrils with NM = 12, 20, and 30
and summarize the results in Table I. There is a systematic
deviation of J with the number of stacked membranes, but

TABLE I. Summary of the mapping between simulation results
and Ising model, cf. Eq. (2). ε̃ denotes the dimensionless chiral
strength ε/kBT .

NM J (TA)/kBT J (T ∗
A )/kBT C(ε̃)/kBT

4 −0.73 −0.37 ε̃1.5/4.1
12 −0.35 −0.33 ε̃1.4/4.2
20 −0.47 −0.41 ε̃1.2/2.5
30 −0.54 −0.55 ε̃1.2/2.5
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the mapped values from TA and T ∗
A agree well for all but the

shortest fibril, and all values agree at least in the order of
magnitude.

Thus, the coupling constant quantifies by how much a left-
right alternation is preferred over keeping the twist direction.
To complete the picture, we can also find this value from um-
brella sampling simulations, where an alternating sequence is
biased to a nonalternating sequence. More precisely, we take a
fibril of NM = 4 stacked membranes with alternating twist di-
rection and force one of the left-handed membranes to become
right-handed. Details can be found in the Appendix (A 1).
There is a barrier between the two states (the untwisted state of
a membrane) that makes it unlikely that the twist direction is
changed once the fibril is relaxed. The height of this barrier is
found to be approximately 23 kBT , and the coupling constant
J is related to the free energy difference between the alternat-
ing and nonalternating state: 4J = 	Fan (the factor 4 results
from having two changes from alternation to nonalternation
when inverting one membrane and 2J energy difference per
changeover). We find 	Fan = −2.46 ± 0.38kBT and are thus
very close to the coupling constants found from the mapping
of the twist alternation number.

The antiferromagnetic coupling must have an entropic ori-
gin. We did several tests to identify microscopic explanations
for the behavior: We studied the distribution of rods’ centers
of mass along the fibril axis for alternating and nonalternating
sequences and measured local free volumes of rods in the
membrane, which was biased to have a particular twist via the
umbrella sampling. However, the differences between alter-
nating and nonalternating sequences were not clear enough to
identify the microscopic origin of the antiferromagnetic cou-
pling. We conclude that the microscopic differences are very
subtle, and much more statistics would need to be collected to
make a significant statement.

Adding chirality to the system drives the membranes to
become left handed, as can be seen from Figs. 2 and 3. In
terms of the Ising model, this resembles adding an external
field that supports one spin state:

H ({s}) = −J
NM−1∑

i=1

sisi+1 − JsNM s1 + C
NM∑
i=1

si, (2)

with C > 0 (< 0) for supporting spin down (up). The partition
function in this case is given by

Z = λ
NM+ + λ

NM− ,

λ+ = eβJ cosh βC +
√

e2βJ sinh2(βC) + e−2βJ ,

λ− = eβJ cosh βC −
√

e2βJ sinh2(βC) + e−2βJ ,

and the twist alternation number reads

TA,Is = 1/2 + 〈H〉/(2JNM ) − C〈M〉/(2JNM ),

where the “magnetization” is 〈M〉 = −∂ ln Z/∂C/β. From the
simulation results (TA and T ∗

A ) for different chiral strengths
ε we can now get the field strength C. We find that C does
not linearly depend on ε, but with an exponent slightly larger
than 1, see Table I. To give an impression of the theoretical
behavior of the twist alternation number in the vicinity of the
mapped parameters J and C, we plot the graphs of TA,Is in
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FIG. 4. Twist alternation number for the antiferromagnetic Ising
model vs. coupling constant for different field strengths.

Fig. 4. The strongest effect is found for C = 1 kBT , where the
twist alternation number drops from about 0.9 to about 0.2 in
the given range of J . For stronger chiral interaction, i.e., larger
C, |J| would need to be much larger to significantly increase
the twist alternation number. However, in the relevant range
of J and C that match the simulation result, both parameters
tune the behavior of left- and right-handed membranes.

With increasing chiral strength (or similarly decreasing
reduced temperature), the fibril contracts, as shown in Fig. 5.
The relative reduction of the length is naturally rather low, but
it is systematic and may add up to a relevant amount for many
stacks. We believe that this contraction is one effect that may
be utilized in functional materials. Left-handed membranes
are shorter than right-handed ones, as is seen by the difference
in the length for different compositions at the same chiral
strength. The reason is that the system reduces the unfavored
right-handed twist by making right-handed membranes twist
less (and thus appear thicker). This effect can also be seen
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FIG. 5. Fibril length divided by number of stacked membranes
vs. chiral strength. Fibril dimensions are kept constant at NM = 4
and sM = 6 and the depletant density is ρD = 2.31 D−3. The different
symbols (and colors) denote different numbers of left-handed mem-
branes, as indicated. Error bars depict the standard error of the mean.
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FIG. 6. Reduced potential energy of fibrils vs. chiral strength.
Fibril dimensions are kept constant at NM = 4 and sM = 6 and the de-
pletant density is ρD = 2.31 D−3. The different symbols (and colors)
denote different numbers of left-handed membranes, as indicated.
Error bars depict the standard error of the mean.

in the potential energy, Fig. 6: The 50:50 mixture of left- and
right-handed membranes does not have vanishing energy. Due
to the symmetry of the interaction potential, given by Eq. (1),
a mirror-imaged membrane has the same absolute value of the
total energy as the original, but the energy has the opposite
sign. That is, the left-handed and right-handed membranes are
not simple inversions of each other, which is in accord with
the difference in length discussed above. This also presents
a caveat for the comparison to the Ising model: The energy
difference between a left- and a right-handed membrane due
to the “field” C is given by 2C in this model. In the actual
system it is not that simple because of the feedback between
the fraction of left-handed membranes, degree of twist, and
chiral strength. For a fixed fibril composition, the reduced
potential energy seems to decrease linearly.

To quantify the twist that all membranes show (even for
ε = 0 kBT ), we fit the azimuthally averaged twist angle profile
to a simple form:

ϕ(r) = ϕ0

( r

R

)α

,

so that ϕ0 is the twist angle at the surface, which is on average
at a distance R from the axis, and α determines the slope of
the profile at the surface. For the systems in this study, we find
α ≈ 1. The results in Fig. 7 show the expected behavior, i.e.,
with increasing chiral strength, the left-handed membranes
twist more strongly, and the right-handed ones (if present)
twist less.

Not only the chiral strength affects the results, but also the
concentration of depleting spheres, which was kept constant
at ρD = 2.31 D−3 so far. There is a lower bound on ρD, below
which fibrils are not stable anymore and fall apart. Above that,
fibrils twist less with increasing ρD, Fig. 8. The reason for this
is the increase of the packing density towards hexagonal close
packing, which is incommensurate with any twist and thus
reduces ϕ0. Remarkably, even at very high depletant density,
some twist prevails, which we attribute to the enhancement
of translational entropy due to rods moving along their tilted
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FIG. 7. Edge twist angle vs. chiral strength. Fibril dimensions
are kept constant at NM = 4 and sM = 6 and the depletant density
is ρD = 2.31 D−3. The different symbols denote different numbers
of left-handed membranes, as indicated, and the color denotes the
handedness [black: right, blue (gray): left]. Error bars depict the
standard error of the mean.

axes. However, the system shows a hexagonal order, which is
measured with the hexagonal order parameter:

 =
∣∣∣∣∣∣

1

Nr

Nr∑
j=1

1

b j

∑
n∈nn j

ei6θ (n, j)

∣∣∣∣∣∣
,

where Nr is the total number of rods in the fibril, b j is the
number of nearest neighbors of rod j (6 in the center and <6
at the edge), nn j the set of nearest neighbors of rod j and
θ (n, j) the angle between a fixed axis and the connecting line
of rods n and j, and can be seen in Fig. 9. It decreases rapidly
below ρD = 2/D3, where the fibril first becomes liquidlike,
i.e., the positional order within the membranes reduces to
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FIG. 8. Edge twist angle vs. depletant concentration for achiral
rods. Fibril dimensions are kept constant at NM = 4 and sM = 6.
The different symbols denote different numbers of left-handed mem-
branes, as indicated, and the color denotes the handedness [black:
right; blue (gray): left]. Error bars depict the standard error of the
mean.
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FIG. 9. Hexagonal order parameter vs. depletant concentration
for achiral rods. Fibril dimensions are kept constant at NM = 4 and
sM = 6. Error bars are absent for low ρD and depict the (very small)
standard error of the mean from several simulations at high ρD.

short-range order while the membranes still stay stacked along
the fibril axis. For even lower ρD the fibril starts to fall apart
and loses any ordering. On the other hand, the hexagonal order
parameter gets very close to one for large ρD, even though the
membranes are still twisted.

We note that for ρD > 4/D3 the fibrils contract along their
long axis to an extent that the average length per membrane
is less than the rod length. This means that the assumption of
stacked, upright-standing rods in the membranes’ twist cen-
ters has to be dropped. These centers might be shifted from the
central axis, or all rods within a membrane are tilted. Either
way, the system’s cylindrical symmetry must be broken. We
do not elaborate on this here but use it to motivate the strong
fluctuations of ϕ0 at high depletant concentration.

A comparison to and a brief discussion of the behavior of
isolated membranes is given in the Appendix (A 3).

IV. CONCLUSION

We have studied the influence of the strength of a chiral
interaction between rodlike particles on the properties of thin
smectic fibrils by employing Monte Carlo simulations. The
fibrils are composed of hexagonally shaped colloidal mem-
branes that are stacked face to face. An attractive depletion
interaction due to the presence of Asakura-Oosawa spheres
stabilizes the whole assembly.

Like in isolated colloidal membranes, the rods within the
stacked membranes twist towards the fibril surface, even for
vanishing chiral interaction. This effect is based on the in-
terplay between surface energy, elastic deformation energy,
and entropic effects. In the achiral case, the number of mem-
branes with left- and right-handed twist is balanced, and an
alternation of twist direction along the fibril is preferred. We
compared this result with the antiferromagnetic Ising model
and could determine coupling constants that agree with um-
brella sampling results of the free energy difference between
alternating and nonalternating twist directions. An increasing
chiral strength gradually increases the fraction of left-handed

membranes to 1 and thus takes the role of an external field in
the Ising model comparison.

The chiral interaction tunes not only the twist direction
but also the length of the fibril: The fibril contracts on
increasing the chiral strength (or similarly decreasing the tem-
perature). We believe that this effect could find application
in stimuli-responsive self-assembled materials. However, we
are not aware that it has been seen in experiments so far,
presumably due to small absolute differences and low reduced
chiral strength. Also, the sequence of left- and right-handed
membranes may be used to encode information: Because of
the high barrier between alternating and nonalternating se-
quences, the system will not change the overall sequence for
weak, reduced chiral strengths, but will do so on increasing
this strength.

Besides, all effects depend on the depletant concentration,
giving another possibility also experimentally to tune the
behavior. For the paper at hand, we did the detailed study
only for one depletant concentration because the results are
expected to be of similar quality for a range of concentrations.
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APPENDIX

1. Umbrella sampling of twist inversion

In order to understand whether the coupling of the handed-
ness of neighboring membranes depends on the equilibration
protocol, we did several tests: letting membranes relax con-
secutively one after the other, having only two membranes
relax while the others are held fixed, and changing the simu-
lation box length. The results were not unambiguous, so we
performed umbrella sampling simulations to determine the
free energy difference between alternating and nonalternating
twist direction of consecutive membranes along the fibril. For
a proper review on the umbrella sampling technique, we refer
to Ref. [20]. The fibril consists of four membranes, initially
with alternating twist directions, and one of them is forced to
change its twist direction. Biasing coordinates are chosen to
measure the strength of the twist, including its direction, and
the slope of the twist angle profile at the membrane surface.
The latter is necessary to ensure that the reversed membrane
also shows an almost linear twist angle profile, as does the
initial, relaxed one. The strength of twist is measured as the
average squared x component of the unit orientation vectors of
all Nm rods in the membrane, m2

x = 〈∑Nm
i=1 m2

i,x/Nm〉, where the
brackets denote an average over a few Monte Carlo sweeps.
A left- and a right-handed membrane are distinguished by
the parameter s being −1 or +1, respectively. The combined
reaction coordinate reads ms = sm2

x + 1 − s, and is 1 for an
untwisted membrane, >1 for a left-handed one and <1 for a
right-handed one. To get useful statistics over the whole range
of ms, we subdivide the range into several overlapping win-
dows. In each of them, the system is biased to have values of
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FIG. 10. Free energy barrier between a fibril with only alter-
nating twist directions (rlrl, ms ≈ 1.035) and a fibril with less
alternations (rrrl, ms ≈ 0.964). Fibril dimensions are NM = 4 and
sM = 6 and the depletant density is ρD = 2.31 D−3. The s in the
definition of ms is +1 if the second membrane is right handed and
−1 if it is left handed. Umbrella sampling results are analyzed by
a weighted histogram analysis method (WHAM) and the umbrella
integration technique.

ms in that window, and it is moderately biased to have a linear
twist angle profile. The biasing potential is harmonic, with its
minimum in the center of the window. Its strength is cho-
sen such that the window center is sampled sufficiently and
overlap to neighboring windows is assured, which gets more
intricate around ms = 1, where more windows and stronger
biasing are needed.

The umbrella sampling results in all the windows need
to be combined to get the free energy differences over the
whole range of ms. There are several techniques to do that,
but the most commonly used ones are weighted histogram
analysis (WHAM) and umbrella integration, cf. Ref. [20] and
references therein. The main difference is that in WHAM,
the free energy data from the different windows are shifted
and combined to minimize the statistical error of the global
distribution of reaction coordinates. In contrast, in umbrella
integration, the mean forces are averaged over the windows,
and the free energy is found by integration. Here we show the
resulting barrier for both methods in Fig. 10. The agreement
is excellent, but in the vicinity of ms = 1, we needed many
simulation data to get reliable values. Error bars are estimated
based on the discussions in Refs. [21,22].

2. Influence of initial box length

As described in the simulations section, the length of
the simulation box is allowed to fluctuate to reduce stress
imposed by the periodic boundaries (self-determined box
length). However, we found that the results depend on the
initial box length, especially for long fibrils. As an example,
Fig. 11 shows the normalized twist alternation number vs. the
initial length of the box. The alternation of twist direction is
suppressed for small initial box lengths. This is somewhat un-
expected because one would assume that close-by membranes
interact more strongly and follow the (slightly) preferred twist
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FIG. 11. Normalized twist alternation number vs. initial box
length for the achiral case (ε = 0 kBT ). Fibril dimensions are NM =
30 and sM = 6 and the depletant density is ρD = 2.31 D−3.

alternation. We explain the reduction of T ∗
A by the fact that

for small Lx,0 the box length increases at the beginning of
the simulation, while for large Lx,0 it decreases from the start.
That is, for the former, it is more critical for the system to
stretch than to follow the preferred twist direction, and for
the latter shrinking the length and twist alternation accompany
each other. This is also supported by the fact that the surface
twist angle decreases with increasing fibril length to prevent
the creation of additional surfaces between membranes, as
illustrated by a sketch in Fig. 12. One could ask why at all
the rods twist at the fibril surface at the risk of creating more
surface. We think that this is due to an increase in translational
entropy: tilted rods can move a larger distance along their axis
compared to untilted rods for the same membrane distance.
We tested the length-twist relation by fixing the fibril length
(no relaxation) to different values in a range around the aver-
age equilibrium length from the self-determined simulations.
There is a clear dependence: ϕ0 monotonically decreases from
about 0.25 for the smallest length (close to maximal packing)

FIG. 12. Sketch of a fibril of length Lx showing the hypothetical
gap between membranes due to a high twist angle ϕ0. The average
distance between membrane center planes is Lx/NM . At the surface,
a gap of height h between the membranes appears that depends on
the average membrane distance and on the surface twist angle. To
avoid the formation of additional surfaces between membranes, the
gap needs to be smaller than the depletant diameter. This in turn
constrains ϕ0 to smaller values for larger fibril lengths. Left: ϕ0 = 0,
right: ϕ0 > 0.
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FIG. 13. Comparison of the handedness parameter for mem-
branes stacked to a fibril (black crosses) and isolated membranes
with the same size (blue stars) sM = 6 at a depletant density of
ρD = 2.31 D−3.

to about 0.18 for a length close to the rupture length, where the
membranes separate from each other and destroy the fibril.

The simulations of the results presented in the main text
were started with an initial length per membrane of Lx,0/NM =
11.625 D, where we expect (from Fig. 11) the results to be
independent on further increase of the initial length.

3. Comparison to isolated membranes

Isolated colloidal membranes have already been studied
[7,15,16]. However, for a direct comparison of the behavior
of stacked and isolated membranes, it is advantageous to
simulate isolated membranes with the same parameters. The
simulations are identical to those of the stacked membranes;
only the periodic boundaries do not have an effect anymore
because the isolated membranes are centered in the simulation
box, which is much larger than the membrane. The initial
setup is the same, too, i.e., rods are aligned in the same
direction and placed on a hexagonal lattice. The results shown
are found from up to 16 independent runs.

First, we compare the handedness parameter in Fig. 13.
For the isolated membranes, this is defined as the difference
between the number of left- and right-handed membranes di-
vided by the number of independent runs. In the isolated case,
a chiral strength of ε = 4 kBT is sufficient to have 100% left-
handed membranes, while in the stacked case ε = 8 kBT is
needed. Already for ε = 2 kBT , the isolated membranes show
a much larger fraction of left-handed membranes compared to
the stacked ones. This is another proof of the antiferromag-
netic coupling of neighboring membranes.

Similarly, we compare the reduced potential energy in
Fig. 14. There are two things to note: As for stacked mem-
branes and as expected, the absolute value of the energy of
isolated membranes is larger for a left-handed one compared
to a right-handed one (as seen for ε = 2 kBT ). Besides, the
absolute energy value is slightly smaller in the isolated mem-
branes compared to the stacked ones. This means that the
free surface in the isolated case causes the rods to take an
energetically less preferred configuration in order to reduce
the surface contribution to the free energy.
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FIG. 14. Comparison of the reduced potential energy for mem-
branes stacked to a fibril and isolated membranes with the same
size sM = 6 at a depletant density of ρD = 2.31 D−3. The different
symbols (and colors) denote different numbers of left-handed mem-
branes, as indicated.

The edge twist angle ϕ0 slightly depends on the membrane
situation (isolated or stacked) and is a bit larger in the isolated
case, as can be seen in Fig. 15. A more apparent difference
is found for the area number density, ρ0 = Nr/(πR2), where
Nr is the number of rods per membrane and R is an effective
radius found from assuming azimuthal symmetry. As shown
in Fig. 16, the isolated membranes appear to be denser with
an ε-dependent density, while the stacked membranes have a
constant (lower) density. In addition to comparing the isolated
and stacked membranes, we also briefly discuss the influence
of membrane size and depletant density on the isolated mem-
branes. A more detailed study about isolated membranes will
be published elsewhere [16]. Figure 17 shows the membrane
area density for numbers of rods per membrane N = 91,
397, and 919, and for three different depletant densities as a

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

0.31

0.32

0.33

 0  2  4  6  8

|ϕ
0 

|

ε / kBT

isolated; Nl = 1
fibril;     Nl = 2
fibril;     Nl = 4

FIG. 15. Comparison of the edge twist angle for membranes
stacked to a fibril and isolated membranes with the same size sM = 6
at a depletant density of ρD = 2.31 D−3. We only show results for
left-handed membranes and N� = 2 and 4.
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FIG. 16. Comparison of the area number density for membranes
stacked to a fibril and isolated membranes with the same size sM = 6
at a depletant density of ρD = 2.31 D−3. We only show results for
left-handed membranes and N� = 2 and 4.

function of the chiral strength ε. As expected, for fixed N and
ε, the density increases with increasing depletant density. The
membrane density is higher for the smallest N compared to the
two larger numbers, where the densities almost agree. Most
interesting is the behavior with ε: The density increases with
ε for the smallest system at the medium and high depletant
concentration (red and green crosses); it is almost constant
for the larger systems at the highest ρD (red triangles and
circles); it slightly decreases for the larger systems at the
medium ρD (green triangles and circles) and the small system
at the lowest ρD (blue crosses); and it clearly decreases for the
larger systems at the lowest depletant density (blue triangles
and circles).

An explanation for the latter can be found by looking at
the edge twist angle, Fig. 18. For the two larger membranes
at the lowest depletant density, the edge twist angle strongly
increases with the chiral strength ε. This is only possible be-
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FIG. 17. Area number density for isolated membranes vs. chi-
ral strength for different depletant densities (color) and different
numbers of rods (symbols: cross: N = 91; triangle: N = 397; circle:
N = 919). We only show results for left-handed membranes.
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FIG. 18. Edge twist angle for isolated membranes vs. chiral
strength for different depletant densities (color) and different num-
bers of rods (symbols: cross: N = 91; triangle: N = 397; circle:
N = 919). We only show results for left-handed membranes.

cause the membranes lose the hexagonal ordering and become
more fluidlike. That means there is an order-disorder transi-
tion below ρD = 2.3 D−3, which is, however, not seen in the
smallest system. The stronger twist in the fluidlike membranes
decreases the (average) membrane density because tilted rods
take more space when projected on the membrane’s central
plane. The slight increase of ρ0 with ε for some systems is
due to the attractiveness of the chiral interaction potential.

Not only the edge twist angle but also the shape of the twist
angle profile changes with membrane size and depletant den-
sity. This is quantified by the curvature parameter α, which is a
fitting parameter for the twist angle profile ϕ(r) = ϕ0(r/R)α ,
where R again is the approximated radius. The result for a
fixed chiral strength is shown in Fig. 19. For the smallest
systems, α is close to 1 independent of ρD, i.e., the profile is
close to linear. For the ordered membranes (ρD � 2.3 D−3), α

increases slightly with the number of rods, and for the fluidlike
membranes, the curvature is clearly stronger.
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FIG. 19. Curvature parameter for isolated membranes vs. num-
ber of rods for different depletant densities (color) and a chiral
strength of ε = 6 kBT .
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It is expected that in the fibril system (i.e., stack of
membranes), the described effects are much weaker
due to the membranes’ face-face interaction. How-

ever, it would be interesting to study the stability
of fibrils composed of fluidlike membranes in the
future.
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