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Nanofluidics of nematic liquid crystals in hollow capillaries
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The aim of this paper is to investigate the response of a homogeneously aligned nematic nanosized hollow
cavity (HANNHC) confined between two charged horizontal coaxial cylinders and subjected to both a radially
applied electrostatic field E, arising from the surface charge density κ and the temperature gradient ∇T set
between these cylinders. This was done within the framework of an extension of the classical Ericksen-Leslie
theory, supplemented by thermomechanical correction of the shear stress and Rayleigh dissipation function, as
well as taking into account the entropy balance equation. The physical mechanism responsible for the excitation
of the hydrodynamic flow in the HANNHC is based on the interaction of the director and temperature gradients
and the static electric field. Calculations show that under the influence of both the ∇T and E, a stationary flow
ust is excited in the HANNHC in the horizontal direction. It is shown that the electric force enforced by the
flexoelectric polarization plays a crucial role in the excitation of ust between these cylinders.
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I. INTRODUCTION

Nanofluidics, i.e., field of nanoliter liquids physics (1 nl =
10−12 m3), is of great interest to researchers, because of the
promising applications of these systems in biology [1], opto-
electronics [2], and various sensors and actuators [3] based on
anisotropic molecular liquids and liquid crystal (LC) materi-
als. Manipulations with these nanosized anisotropic molecular
systems in ultrathin capillaries and channels are often per-
formed using an external electric field [4]. This method of
transport of nanoliter volumes is equally applicable both for
molecular liquids and LC materials. A distinctive feature of
LC systems in comparison with anisotropic molecular liquids
is that orientation ordering of molecules described by director
field n̂ is formed in LC systems under certain thermodynamic
conditions [5]. It is shown that the interaction of the gradients
of the director field ∇n̂ and the temperature ∇T is responsible
for the occurrence of a thermomechanical force, which, in
turn, is responsible for the excitation of a stable hydrodynamic
flow v of liquid crystal materials in thin and ultrathin chan-
nels and capillaries [6]. Recently, the problem of horizontal
motion in an ultrathin channel of a drop of liquid crystal,
ranging in size from several tens to hundreds of nanoliters,
under the influence of a temperature gradient has begun to
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attract increased attention [6]. It has been shown that in the
case of a hybrid aligned nematic channel, the value of the
hydrodynamic flow v excited by ∇T is proportional to the
tangential component of the thermomechanical stress tensor
(ST) σ tm

zx . In this case, the direction of hydrodynamic flow
v is influenced by both the direction of heat flux q, caused
by the temperature difference on the bounding surfaces, and
the character of the preferred anchoring of n̂ on these sur-
faces [6]. On the other hand, in LC channels where director
anchoring on the two bounding surfaces are the same, i.e.,
both strongly homeotropic or homogeneous, the LC micro-
or nanovolume remains quiescent under the influence of the
temperature gradient. One can also consider a homogeneously
aligned nematic (HAN) sample confined in a nanosized vol-
ume between two horizontal coaxial cylinders and subjected
to both ∇T , which is set between cooler inner and hotter
outer cylinders, and the radially applied electrostatic field E,
originating from the surface charge density κ . In this case the
micro- or nanosized HAN material settles down to a stationary
flow ust regime in the horizontal direction.

It should be pointed out that the pumping effect under the
influence of the radially directed thermal gradient, but without
electric field, is not found in the LC cavity when molecules are
aligned in the same way (homeotropically or homogeneously)
on both bounding surfaces.

The aim of our paper is to study the response of the HAN
system confined in the nanovolume between two charged
horizontal coaxial cylinders and subjected to both ∇T and
a radially applied electrostatic field E = E (r)êr , originating
from the surface charge density κ , and hence electric double
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FIG. 1. The coordinate system specifying the orientation of di-
rector field n̂.

layers, on both boundaries. Another task is to show at what
sizes of the LC cavity the influence of E (r) can be neglected.

This problem will be treated in the framework of the ap-
propriate nonlinear extension of the classical Ericksen-Leslie
theory [7,8], supplemented by the thermomechanical correc-
tion of shear stress (SS) and Rayleigh dissipation function, as
well as taking into account the entropy balance equation [6,9],
whereas Rayleigh-Benard mechanism does not produce any
effect because of the small film thickness [10]. The present pa-
per is organized as follows: The relevant equations describing
director motion, fluid flow and temperature distribution in the
above named system are given in Sec. II; numerical results for
possible relaxation regime are given in Sec. III; conclusions
are summarized in Sec. IV.

II. FORMULATION OF THE RELEVANT EQUATIONS
FOR NEMATIC FLUIDS

The main aim of our paper is to study the response of the
HAN nanosized cavity (HANNC) composed of asymmetric
polar molecules, such as cyanobiphenyls, at the density ρ,
confined between two charged horizontal coaxial cylinders
with radii R1 and R2 (R2 > R1), and subjected to both ∇T ,
caused by the temperature difference on the bounding cylin-
ders, and a radially applied electrostatic field E = E (r)êr

originating from the surface charge density κ on these cylin-
ders. The size of the capillary d , on a scale ranging from
a few tens to hundreds of nanometers, is equal to R2 − R1,
and these cylinders are kept at different temperatures, with
the outer one (T2)r=R2 = Tout being hotter than the inner one
(T2)r=R1 = Tin (T2 > T1). Here êr is the radial unit vector,
directed perpendicular to the bounding cylinders, whereas the
other unit vectors of the cylindrical coordinate system used
here are êz, defined by the common axis of the two cylin-
ders, which coincides with the planar director orientations on
both boundaries (êz ‖ n̂r=R1 and êz ‖ n̂r=R2 ), and the tangential
one êα = êz × êr (for details see Fig. 1). On assuming that
both the temperature gradient ∇T , caused by the temperature
difference �T = T2 − T1 on the bounding cylinders, and the
electric field E(r) vary only in the r direction, we can sup-
pose that the components of the director n̂ = nr êr + nzêz =
sin θ (r, t )êr + cos θ (r, t )êz, as well as the rest of the physical
quantities also depend only on the coordinate r and on time t .
Here θ denotes the angle between the direction of the director
n̂ and the unit vector êz.

It should be noted that one of the nonmechanical method
for producing flow v in a nanofluidic nematic channel is based

on the coupling between the temperature ∇T = ∂T (r,t )
∂r êr and

the director field ∇n̂ gradients [6]. Thus, a necessary condi-
tion for the excitation of the hydrodynamic flow v in the HAN
nanofluidic channel, under the influence of the temperature
gradient, is the presence of ∇n̂. In the case when the director
n̂ anchoring on two cylinders are the same, i.e., strongly
homogeneous, and the electric field E is not applied, than
the gradient of the director field n̂ is absent, and thus there
is no deformation of the nematic cavity. There is at least one
way to form ∇n̂ in the initially HANNC, by applying the
electric field E(r), directed orthogonally to the HANNC. In
our case, such a role can be played by the electric field, for
instance, the electrostatic field originating from the surface
charge density κ on both bounding surfaces, via the electric
double layers [3], which can disturb the homogeneous orien-
tation of the director field in the LC cavity confined between
these cylinders, and makes the splay and bend deformations.
In turn, the splay and bend elastic deformations caused by
the electric field give rise to flexoelectric polarization [11]
P = e1n̂(∇ · n̂) + e3(∇ × n̂) × n̂, where ei(i = 1, 3) denote
the flexoelectric coefficients. Below, we explore a curvature
of the HANNC confined between two infinitely long charged
horizontal cylinders and consider the joint effect of flexoelec-
tric polarization P and the electrostatic field originating from
the surface charge density κ on both bounding surfaces, on the
director reorientation and the excitation of the hydrodynamic
flow v in the nanosized HAN channel. Thus, the heating
�T = Tout − Tin > 0 of the HANNC causes the flexoelectric
and thermomechanical coupling with the director’s gradient
∇n̂, and their correlation solve the problem of excitation of a
steady flow v. Here the range [Tout, Tin] falls within stability
region of the nematic phase.

Notice that, in experimental term, the mesogen sample can
usually contain some ions, and when the nematic is in contact
with a charged solid substrate, selective ion adsorption occurs.
For instance, the positive ions are attracted by the substrate,
whereas the negative ones are repelled. In this case, the sur-
face electrostatic field E0, originating from the surface charge
density κ , will penetrate the bulk over a distance of the order
of the Debye screening length λD [12], owing to screening by
the ions being present in the bulk of the LC (usually a weak
electrolyte). The distance dependence of the surface electric

field with bulk screening λD =
√

εε0kBT
2q2ni

emerges naturally

from the Poisson-Boltzmann theory as [12]

E
(

r

λD

)
= E0E

(
r

λD

)
êr

= E0
1

�

[
CIK1

(
r

λD

)
− CKI1

(
r

λD

)]
êr, (1)

where E0 = κ/(ε0ε) is the surface electrostatic field; ε0 is
the absolute dielectric permittivity of free space; ε = (ε‖ +
2ε⊥)/3 is the isotropic dielectric constant; ε‖ and ε⊥ are the
dielectric constants parallel and perpendicular to the director
n̂, respectively; q denotes the proton charge; kB is the Boltz-
mann constant; and ni is the bulk ion concentration. Here the
function E (r) is defined by E (r) = −∇ϕ, where ϕ has to
satisfy the equation

�ϕ(r) − λ−2
D ϕ(r) = 0, (2)
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with the boundary conditions ∇ϕ(r)r=R1 = E0êr and
∇ϕ(r)r=R2 = −E0êr , respectively. Finally, the function
E (r) takes the form

E

(
r

λD

)
= 1

�

[
CIK1

(
r

λD

)
− CKI1

(
r

λD

)]
, (3)

where � = I1( R2
λD

)K1( R1
λD

) − I1( R1
λD

)K1( R2
λD

), CI =
1
�

[I1( R1
λD

) + I1( R2
λD

)], CK = 1
�

[K1( R1
λD

) + K1( R2
λD

)], I1 and
K1 denote modified Bessel functions of the first and second
kinds, respectively.

On the two delimiting cylinders, the velocity field has to
satisfy the no-slip boundary condition,

v(r)r=R1 = v(r)r=R2 = 0. (4)

Taking into account that the size of the HANNC is of a few
hundreds of nanometers, one can assume the mass density ρ

to be constant across the HANNC, and thus we are dealing
with an incompressible fluid. The incompressibility condition
∇ · v = 0, coupled with the no-slip condition, implies the
existence of only one nonzero component for vector v, viz.,
v(r, t ) = vz(r, t )êz ≡ u(r, t )êz.

In the nematic phase, splay and bend deformations, caused
by electric field, give rise to two independent flexoelectric
coefficients (e1, e3) [11]. Their contributions to the induced
polarization can be written as P = Pr êr + Pzêz, where the
vector components are given by the classical Meyer model
[11]

Pr = (e1 + e3)nrnr,r + e1
n2

r

r
, (5)

and

Pz = e1nz∇,rnr + e3nrnz,r, (6)

where ni,r = ∂ni
∂r , (i = r, z) denotes the partial derivative of

director components with respect to space coordinate, and
∇,r (. . . ) = (. . . ),r + nr

r is a divergence. Thus, the aim of this
work is to study the response of a homogeneously aligned
LC nanosized cavity confined between two charged horizon-
tal coaxial cylinders and subjected to both the temperature
gradient and the radially applied screening electrostatic field,
created in the LC near the charged cylinders. However, the
question immediately arises regarding what should be the
value of the electrostatic field, originating from the surface
charge density κcr, that is sufficient to move a small amount of
nematic in the presence of the temperature gradient.

The answer to this question will be given in the framework
of the classical Ericksen-Leslie theory [7,8], supplemented by
the thermomechanical correction of the SS and the Rayleigh
dissipation function [6], as well as the entropy balance
equation [9]. The hydrodynamic equations describing the re-
orientation of the HAN system in the named setting can be
derived from the balance of elastic, viscous, thermomechan-
ical, and electric torques acting on the unit LC volume, the
linear momentum equation for the velocity field v(r, t ), and
the heat conduction equation for the temperature field T (r, t ),
respectively. These equations have the form [13][

δWF

δn̂
− δψel

δn̂
+ δR

δ ˙̂n

]
× n̂ = 0, (7)

ρv̇ = ∇,rσ + ∇,rψ
el+P, (8)

and

CpṪ (r, t ) = −∇,rqr, (9)

where 2WF = K1n2
r,r + K3n2

z,r is the elastic and
2ψel+P = ε0εE2(r) + 2Pr (r)E (r) is the electric torque
with the flexoelectric correction term, whereas K1 and
K3 are the splay and bend elastic constants of the
LC system, respectively. The full Rayleigh dissipation
function R = Rvis + Rtm + Rth is composed of three
contributions, which are given in the forms [13,14] 2Rvis =
γ1(ṅ2

r + ṅ2
z ) + u,r (ṅrnz − ṅznr )[γ1 + γ2(n2

z − n2
r )] + h(r)u2

r ,
Rtm = ξTr{( 1

2 + n2
z )(ṅrnr,r + ṅznz,r ) + 1

2r nrnz(ṅznr − ṅrnz )
+ u,r[nr,r (nz + 1

4 nzn2
r ) − 3

4r nznr]}, and Rth = 1
T T 2

,r (λ‖n2
r +

λ⊥n2
z ), corresponding to the viscous, thermomechanical,

and thermal contributions, respectively. Here ˙̂n = dn̂
dt is the

material derivative of the director n̂, ρ is the mass density of
the LC system, 2h(r) = α4 + 1

2 (γ1 + α5 + α6) + α1n2
r n2

z +
γ2(n2

z − n2
r ) is the hydrodynamic function, γ1 = α3 − α2 and

γ2 = α3 + α2 are the rotational viscosity coefficients of the
LC system, α1/α6 are the six Leslie viscosity coefficients,
λ‖ and λ⊥ are the heat conductivity coefficient parallel and
perpendicular to the director n̂, and ξ ∼ 10−12 J/m K is the
thermomechanical constant [6,15,16]. The full ST σ = δR

δ∇v is
composed of four σ = σelast + σvis + σtm − PI contributions,
which are given in the forms σelast = − ∂WF

∂∇n̂ · (∇n̂)T,

σvis = δRvis

δ∇v , and σtm = δRtm

δ∇v , corresponding to the elastic,
viscous, and thermomechanical forces, whereas P is the
hydrostatic pressure in the HANNC and I is the unit tensor,
respectively.

When the gradient of temperature ∇T is set up across
the HANNC, we expect that the temperature field T (r, t )
satisfies the heat conduction equation (9), where Cp is the
heat capacity, and qr = −T δR

δT,r
denotes the radial heat flux

component, which in a cylindrical coordinate takes the form
qr = T,r (λ‖ n2

r + λ⊥ n2
z ) + ξ T [( 1

2 + n2
z )(ṅrnr,r + ṅznz,r ) +

1
2r nrnz(ṅznr − ṅrnz )] + u,rξT [nr,r (nz + 1

4 nzn2
r ) − 3

4r nznr].
The Ericksen-Leslie form for the viscous part of the

dissipation function gives the SS component for the geome-
try consideration σvis = δRvis

δ∇v = 1
2 (ṅrnz − ṅznr )[γ1 + γ2(n2

z −
n2

r )] + h(r)u,r , whereas the thermomechanical part of dissi-
pation function gives the corresponding contribution to SS as
σtm = δRtm

δ∇v = ξT,r[nr,r (nz + 1
4 nzn2

r ) − 3
4r nznr].

In order to observe the response of the HANNC confined
between two charged horizontal coaxial cylinders and sub-
jected both to the temperature gradient and the radially applied
screening electrostatic field, we consider the dimensionless
analog of the torque balance equation [see Eq. (7)]. For two
component director n̂ = nr êr + nzêz in a cylindrical coordi-
nate system, the dimensionless torque balance equation reads
[13]

nrṅz − nzṅr = 1

2
u,r

[
1 − γ21

(
n2

z − n2
r

)]

− E2(r, τ )nrnz − δ1E (r, τ )Pz(r, τ )
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− δ2

{
1

r
[rK(r)],r − (1 − K31)n2

z,r − 1

r2
nrnz

}

− 1

2
δ3χ,r

[
nznr,r

(
3 + n2

r

) − nrnz,r
(
1 + n2

r

)]
,

(10)

where r denotes the dimensionless radius (i.e., scaled by
d), K = nznr,r − K31nrnz,r , K31 = K3/K1, γ21 = γ2/γ1, ṅi =
dni
dτ

(i = r, z) is the material derivative with respect to di-
mensionless time τ = (ε0εE2

0 /γ1)t , and Pz(r) denotes the
dimensionless component of the polarization vector P (i.e.,
scaled by E0d), whereas the dimensionless temperature
χ (r, τ ) = T (r, τ )/TNI is scaled by the nematic-isotropic tran-
sition value. In turn, three parameters of the LC system are
as follows: δ1 = e1

E0d , δ2 = (Eth/πE0)2, δ3 = δ2
ξTNI

K1
, whereas

Eth = π
d

√
K1

ε0εa
is the critical value of the electric field E (r).

In the case of incompressible fluid, the dimensionless
Navier-Stokes equation [see Eq. (8)] reduces to [13]

δ4u,τ (r, τ ) = ∇,r
[
σ vis

rz + σ tm
rz

]
, (11)

∇,rσ
elast
rr − σ elast

αα

r
+ ψel+P

,r = 0, (12)

where δ4 = ρK1

γ 2
1

is an extra one parameter of the LC system,
whereas

∇,rσ
elast
rr =σ elast

rr,r + σ elast
rr
r , σ elast

rr = − δ2[P (r)+(nr,r + nr
r )nr,r

+ K31n2
z,r], and σ elast

αα = −δ2[P (r) + (nr,r + nr
r ) nr

r ] are two
normal ST components, and P (r) is the scaled hydrostatic
pressure (i.e., scaled by K1/d2). The Ericksen-Leslie form for
the viscous and thermomechanical parts of the shear stress
components for the geometry under consideration takes the
forms

σ vis
rz = 1

2 (ṅrnz − nrṅz ) + γ21
(
n2

r + n2
z

) + h(r)u,r, (13)

and

σ tm
rz = 1

4δ3χ,r
[
nrnz

(
1 + 2n2

r

) + 6nznr,r − n3
r nz,r

]
. (14)

When a small mean temperature gradient (in our case
∼1 K/μm) is set up across the LC system, we expect the
temperature field χ (r, τ ) to satisfy the dimensionless heat
conduction equation [13]

δ5χ̇ = ∇,r
[
χ,r

(
λn2

r + n2
z

)] + δ6∇,r[χ,rH(r)], (15)

where λ = λ‖
λ⊥

is the ratio of heat conductivity coef-
ficients along and perpendicular to the director, and
H(r) = ( 1

2 + n2
z )(ṅrnr,r + ṅznz,r ) + 1

2r nznr (ṅznr − ṅrnz ) +
u,r[nr,r (nz + 1

4 nzn2
r ) − 3

4r nznr] is the hydrodynamic function.

Here δ5 = ρCpK1

λ⊥γ1
and δ6 = ξ K1

λ⊥γ1d2 are two additional
parameters of the LC system.

Thus, the set of parameters involved in Eqs. (10), (11),
and (15) is δ1 = e1

E0d , δ2 = (Eth/πE0)2, δ3 = δ2
ξTNI

K1
, δ4 = ρK1

γ 2
1

,

δ5 = ρCpK1

λ⊥γ1
, and δ6 = ξ K1

λ⊥γ1d2 .
We will assume the homogeneous strong anchoring of the

director on both bounding cylinders, i.e.,

(nr )r=r1
= (nr )r=r2

= 0, (16)

together with the no-slip conditions

u(r)r=r1 = u(r)r=r2 = 0, (17)

where we used the corresponding dimensionless radii ri =
Ri/d (i = 1, 2). The boundary conditions on dimensionless
temperature are reduced to

χ (r)r=r1 = χ1, χ (r)r=r2 = χ2, (18)

where the dimensionless temperature χ = T/TNI is scaled by
the nematic-isotropic transition value.

As the next step we choose the surface charge density
κ corresponding to the experimentally obtained values. The
condition for production the distortion of nematic nanocavity
is κ > κcr, which inputs the electric field component E (r)
self-consistently with the nematic distortion of n̂. Taking into
account that the value of the surface charge density κ can be
expressed as κ = qns, where q = 1.6 × 10−19 C is the proton
charge and ns denotes the surface ion concentration, which
is varied between 1015 and 1017 m−2 [17], our choice of
ns ≈ 2.5 × 1016 m−2 seems reasonable. Thus, in this case κ

is equal to 4 × 10−3 C/m2.
For the case of 4-n-pentyl-4′-cyanobiphenyl (5CB), at the

temperature Tin = 300 K and density 103 kg/m3, the ex-
perimental data for elastic constants are K1 = 10.5 pN and
K3 = 13.8 pN [18], whereas the measured data for the di-
electric constants are ε‖ = 18 and ε⊥ = 8 [19], as well as
the measured γ1 ∼ 0.072 Pa s and γ2 ∼ −0.079 Pa s [20].
At the temperature of 300 K and density of 103 kg/m3,
values of the six Leslie coefficients (in Pa s) were found to
be [20] α1 ∼ −0.0066, α2 ∼ −0.075, α3 ∼ −0.0035, α4 ∼
0.072, α5 ∼ 0.048, and α6 ∼ −0.03, respectively. The value
of the heat capacity Cp is equal to 103 J/kg K [21], whereas
the value of the thermal conductivity coefficients are [22]
λ‖ = 0.24 W/m K and λ⊥ = 0.13 W/m K, respectively. The
magnitude of the Debye length depends solely on the proper-
ties of the LC and not on any property of the surface. In the
case of homogeneous alignment of the 5CB layers on both
cylinders, and neq ∼ 5 × 1020 m−3 [17], the Debye length is
equal to λD ∼ 50 nm.

Two parameters of our system of the nonlinear partial dif-
ferential equations (10), (11), and (15), δ1 = ( Eth

πE0
)2 and δ2 =

ξ TNI
K1

δ1, include the value of the threshold electric field Eth =
π
d

√
K1

ε0εa
, which is inversely proportional to the thickness d of

the HANNC. Thus, we have a set of parameters corresponding
to different cavity thicknesses: D = d/λD = 2.0, 4.0, 8.0, and
16.0, respectively. For the case of 5CB, at the temperature cor-
responding to nematic phase, the set of values of the threshold
electric field are as follows: Eth(D = 2.0) = 1.15 × 10−3,
Eth(D = 4.0) = 0.59 × 10−3, Eth(D = 8.0) = 0.30 × 10−3,
and Eth(D = 16.0) = 0.15 × 10−3, respectively, calculated in
units C/m2. In turn, the set of δ1 are as follows: δ1(D = 2.0) ∼
9.0 × 10−4, δ1(D = 4.0) ∼ 2.5 × 10−4, δ1(D = 8.0) ∼ 6.0 ×
10−5, and δ1(D = 16.0) ∼ 1.5 × 10−5, whereas the set
of δ2 are as follows: δ2(D = 2.0) ∼ 2.6 × 10−2, δ2(D =
4.0) ∼ 7.3 × 10−3, δ2(D = 8.0) ∼ 1.75 × 10−3, and δ2(D =
16.0) ∼ 4.4 × 10−4, respectively. The other parameters δ3, δ4,
δ5, and δ6 do not depend on the cavity thickness d and are
equal to δ3 ∼ 0.016, δ4 ∼ 9 × 10−4, δ5 ∼ 2 × 10−3, and δ6 ∼
7.0 × 10−7. For example, the values of parameters δ1(D =
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2.0) and δ2(D = 2.0) are approximately 60 times greater than
the values of parameters δ1(D = 16.0) and δ2(D = 16.0).

Subsequent calculations will show how the changes in the
values of parameters δi (i = 1, 2), included in the system of
the nonlinear partial differential equations (10), (11), and (15),
will affect the nature of the hydrodynamic flow v, excited
both by the temperature difference �χ = χout − χin and the
surface electric field E, originating from the surface charge
density κ .

Using the fact that δ4 � 1, the Navier-Stokes equation (11)
can be considerably simplified as the velocity follows adia-
batically the motion of the director. Thus, the whole left-hand
side of Eq. (11) can be neglected, so that the equation takes
the form

σ vis
rz + σ tm

rz = C(τ )

r
, (19)

where C(τ ) is a function that does not depend on r and will
be fixed by the boundary no-slip conditions [see Eq. (17)]. In
turn, using the fact that δ5 and δ6 � 1, the heat conduction
equation (15) can be reduced to

∇,r
[
χ,r

(
λn2

r + n2
z

)] = 0, (20)

which has a solution

χ (r, τ ) = �χ

I

∫ r

r1

dr

r
(
λn2

r + n2
z

) + χ1, (21)

where �χ = χ2 − χ1, and the function I (τ ) is equal to∫ r2

r1

dr
r(λn2

r +n2
z ) . The smallest initial perturbation of the director

component nr (r, τ0) gives the initial values I (τ0), defined by
the boundary conditions Eq. (18). In the case of the cylindrical
geometry, the balance of linear momentum Eq. (12) can be
used here for defining the pressure P (r), and has the solution

P (r, τ ) = ψel+P + σ elast
rr +

∫ r

r1

σ elast
rr − σ elast

αα

r
dr + P0,

(22)

where P0 is an arbitrary constant. As for numerical solu-
tion of the above equations (10), (11), and (15), the director
rotation rate is eliminated from the system of equations by
means of Eqs. (10) and (11), and the value of C(τ0) can be
found using the boundary conditions [Eqs. (16) and (17)]. The
initial velocity gradient ur (r, τ0) from Eqs. (19)–(21) yields
the new director component distribution nr (r, τ0 + �τ ) from
Eq. (10), and the procedure is iterated up to the stationary
state of nst

r (r), which imposes the stationary distributions of
velocity ust (r) and temperature χ st (r). The thermodynamic
condition: Ṙfull < 0, Rfull = ∫ r2

r1
Rdr [23] yields a check on

convergence.

III. NUMERICAL RESULTS

Now we will focus on the numerical study of the effect of
both the temperature ∇χ and the director field ∇n̂ gradients
on the process of excitation of the hydrodynamic flow v in
the HANNC of thickness d . In our case ∇χ is produced by
the temperature difference �χ = χ2 − χ1 = 0.0162 (∼7 K),
which is set between cooler inner [χr=r1 = χ1 = 0.97
(∼300 K)] and hotter outer [χr=r2 = χ2 = 0.9862 (∼307 K)]

FIG. 2. Distance dependence r − r1 of the electrostatic field
E (r − r1), calculated using Eq. (3). As explained in the text, four
values of the dimensionless cavity thickness D = d/λD = 2.0 (curve
1), 4.0 (curve 2), 8.0 (curve 3), and 16.0 (curve 4), have been used
throughout.

cylinders, whereas ∇n̂, in the initially homogeneously aligned
nanofluidic cavity, is set up due to accounting the surface
electric field E0. Taking into account that the surface electric
field penetrates the bulk of the LC phase on the order of the
Debye screening length λD from both cylinders, the ratio λD/d
will significantly affect the nature of the hydrodynamic flow
in the nanofluidic cavity.

First of all, Fig. 2 shows the distribution of the electrostatic
field E (r − r1), produced by the surface charge density κ

on both bounding surfaces, and calculated using Eq. (3), for
the four values of the dimensionless cavity thickness D =
d/λD = 2.0 (curve 1), 4.0 (curve 2), 8.0 (curve 3), and 16.0
(curve 4), respectively.

According to our calculations, the ranges of distance r,
counted from the inner cylinder (r = r1), over which the
charged surfaces cannot perturb the nematic phase there is
only in the case of D = d/λD = 16.0 [see Fig. 2 (curve 4)]
and is equal to r1 + 4.0 � r � r1 + 12.0. In other words,
with the fixed distance d = 16.0λD (∼0.8 μm) between two
boundaries, the influence of the electrostatic field E0, pro-
duced by the surface charge density κ = 4.0 × 10−3 C/m2,
is restricted to the boundary layers r1 � r � r1 + 4.0 and
r1 + 12.0 � r � r1 + 16.0, and its role becomes negligible in
the above central region.

In this study we investigate the joint effect of flexoelec-
tric polarization P and thermomechanical force, caused by
the coupling of two gradients, ∇χ and ∇n̂, on the orien-
tational dynamics of the HAN cavity confined between two
charged cylinders and subjected to the temperature gradient,
caused by the temperature difference on these cylinders. Each
calculation will be repeated both for the case involving no
flexoelectric polarization, defined by setting P = 0 [see the
curves shown in Figs. 3(a) to 4(a)], as well as for the case with
accounting the flexoelectric polarization P 	= 0 [see the curves
shown in Figs. 3(b) to 4(b)] throughout the relevant equations.
Calculations for both models use the relaxation criterion ε =
|[nr (r, τm+1) − nr (r, τm)]/nr (r, τm)| with ε = 10−4, and the
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FIG. 3. Plot of the stationary radial distribution of the polar angle θ st (r − r1) across the dimensionless HAN cavity r1 � r � r2, under the
effect of the electric field E0, caused by the surface density κ = 4 × 10−3 C/m2, and the temperature difference �χ = 0.0162, both for the
cases of P = 0 (a) and P 	= 0 (b), respectively. As explained in the text, four values of the dimensionless cavity thickness D = d/λD = 2.0
(curve 1), 4.0 (curve 2), 8.0 (curve 3), and 16.0 (curve 4), have been used throughout.

numerical procedure was then carried out until a prescribed
accuracy was achieved. Here m denotes the iteration number.

The relaxation processes of the radial director component
nr (r, τ ), described by the angle θ (r, τ ), the velocity u(r, τ ),
and the temperature field χ (r, τ ) across the dimensionless
HAN cavity has been obtained by solving the system of
nonlinear partial differential equations (10), (19), and (21),
together with the boundary conditions Eqs. (16)–(18), and
the initial condition nr (r, τ = 0) = 0.001 (r1 < r < r2), by
means of the numerical relaxation method [24]. In our calcu-
lations, we have been using four values of the dimensionless
cavity thickness D = d/λD = 2.0 (∼0.1 μm), 4.0 (∼0.2 μm),
8.0 (∼0.4 μm), and 16.0 (∼0.8 μm), the surface charge
density κ = 4.0 × 10−3 C/m2, and the heating regime with
the temperature difference �χ = χ2 − χ1 = 0.9862−0.97 =
0.0162 (∼7 K), respectively. Figure 3 shows the response of
the dimensionless HAN cavity confined between two horizon-
tal coaxial cylinders and subjected to both the temperature
gradient ∇χ , which is set up between cooler inner and hot-
ter outer cylinders, and the electrostatic field E0, produced
by the surface charge density κ on both bounding cylinders,
in the form of the stationary profile of the radial component of

the director nr , which in our case is described by the distribu-
tion of the stationary polar angle θ st (r − r1) across the entire
cavity. This stationary radial distribution of the polar angle
θ st (r − r1) is the result of the relaxation of the polar angle
limτ→τR θ (r − r1, τ ) = θ st (r − r1) across the dimensionless
HAN cavity r1 � r � r2 [r2 = r1 + D(i)], with the different
thicknesses D(i) = d/λD = i (i = 2, 4, 8, 16), under the ef-
fect of the electrostatic field E0, produced by the surface
charge density κ = 4 × 10−3 C/m2, and the heating regime
with the temperature difference �χ = 0.0162 (∼7 K). The
results of calculations are shown both for the cases of P = 0
[see Fig. 3(a)] and P 	= 0 [see Fig. 3(b)], respectively.

Calculations have shown that the distribution of the station-
ary angle θ st (r − r1) across the dimensionless HAN cavity,
under the action of the electrostatic field E (r), calculated
using Eqs. (10), (19), and (21), is weakly affected by flex-
oelectric polarization P 	= 0 only in the case of an ultrathin
cavity with D(2) = 2.0 (∼0.1 μm) [see curves 1, on the
Figs. 3(a) and 3(b), respectively]. With an increase in the
thickness of the HAN cavity with D(2) = 2.0 (∼0.1 μm) up
to D(4) = 4.0 (∼0.2 μm) and thicker, taking into account
the flexoelectric polarization leads to a qualitative change in

FIG. 4. Plot of the stationary radial distribution of the polar angle θ st (r − r1) across the dimensionless HAN cavity r1 � r � r2, under the
effect of the electric field E0, caused by the surface density κ = 4 × 10−3 C/m2, both for the cases of P = 0 (a) and P 	= 0 (b), respectively.
Here the temperature difference �χ is equal to 0. [(c) and (d)] Same as described in the cases (a) and (b), but with accounting the temperature
difference �χ = 0.0162. As explained in the text, four values of the dimensionless cavity thickness D = d/λD = 2.0 (curve 1), 4.0 (curve 2),
8.0 (curve 3), and 16.0 (curve 4), have been used throughout.
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FIG. 5. Same as described in the caption of Fig. 3, but a plot of the stationary radial distribution of the velocity component ust (r − r1)
across the dimensionless HAN cavity r1 � r � r2.

the nature of the orientation dynamics. Figures 3(a) and 3(b)
(curves 2, 3, and 4) show the most pronounced effect of the
flexoelectric polarization P 	= 0 on the stationary profile of
the radial component of the director nr , which in our case
is described by the distribution of the stationary polar angle
θ st (r − r1). So, in the case of P = 0, the viscous Tvis, elastic
Telast, thermomechanical Ttm, and electric Tel torques acting on
the unit LC volume produce the complex reorientation of the
radial director component nr [curves from 2 to 4 in Fig. 3(a)],
which is finally described by the distribution of the station-
ary angle θ st (r − r1), across the entire cavity. This process
shows that the electric torque near the inner cylinder r = r1

perturbs the radial director component in positive verse and
in opposite verse near the outer cylinder r = r1 + D(i), (i =
4, 8, 16). The values of nr have become positive and the
convex profile for reorientation is building up [Fig. 3(a),
curves 2, 3, and 4], over the intervals 0 � r � 2.0, for the
case of D(4) = 4.0, 0 � r � 4.0, for the case of D(8) = 8.0,
and 0 � r � 8.0, for the case of D(16) = 16.0, respectively.
In turn, the electric torque near the outer cylinder r = r2

perturbs the radial director component nr in negative verse,
and the values of nr have become negative and the concave
profile for reorientation is building up [Fig. 3(a), curves 2,
3, and 4], over the intervals 2.0 � r � 4.0.0, for the case of
D(4) = 4.0, 4.0 � r � 8.0, for the case of D(8) = 8.0, and
8.0 � r � 16.0, for the case of D(16) = 16.0, respectively. At
the same time, these profiles are antisymmetric with respect
to the middle of the HAN cavity. In turn, the flexoelectric
polarization P 	= 0 leads to a change in the nature of the
orientation dynamics for the case of D(4) = 4.0 (∼0.2 μm),
whereas in the case of thicker HAN cavities, such as D(8) =
8.0 (∼0.4 μm) and D(16) = 16.0 (∼0.8 μm), the orientation
dynamics remains qualitatively the same, with the exception
that the profiles are no longer antisymmetric with respect
to the middle of the cavities [see curves 3 and 4, on the
Figs. 3(a) and 3(b), respectively], and slightly shifted toward
the outer cylinder. Thus, in the case of thicker cavities, such
as D(8) = 8.0 (∼0.4 μm) and D(16) = 16.0 (∼0.8 μm), the
consideration of flexoelectric polarization P 	= 0 leads to a
shift of the profiles of the stationary angle θ st (r − r1) across
the entire cavity toward the outer cylinder, and these Figs. 3(a)
and 3(b) show the most pronounced effect both of the di-
mensionless thickness D and the flexoelectric polarization

P 	= 0 on the orientational dynamics in the dimensionless
HAN cavity.

The curves shown in Figs. 4(a) correspond to the stationary
radial distribution of the polar angle θ st (r − r1) across the
dimensionless HAN cavity r1 � r � r2, under the effect of the
electric field E0, caused by the surface density κ = 4 × 10−3

C/m2, both for the cases of P = 0 (a) and P 	= 0 (b), respec-
tively. Here the temperature difference �χ is equal to 0. In
turn, the curves shown in Figs. 4(b) correspond to the station-
ary radial distribution of the polar angle θ st (r − r1) across the
dimensionless HAN cavity r1 � r � r2, under the effect of the
electric field E0, caused by the surface density κ = 4 × 10−3

C/m2, and the temperature difference �χ = 0.0162 (∼7 K),
both for the cases of P = 0 (a) and P 	= 0 (b), respectively.
The results of the comparison of these two scenarios, with and
without accounting the effect of the temperature gradient, in-
dicate that the influence of ∇χ is insignificant on the process
of reorientation of the radial component nr (r) of the director
field.

The curves shown in Figs. 5(a) and 5(b) correspond to
the stationary radial distribution of the dimensionless velocity
component ust (r − r1) across the dimensionless HAN cav-
ity confined between two horizontal coaxial cylinders, and
subjected to both the temperature gradient ∇χ , which is set
up between cooler inner and hotter outer cylinders, and the
electrostatic field E0, produced by the surface charge den-
sity κ on both bounding cylinders. The curves shown in
Figs. 5(a) correspond to the case involving no flexoelectric
polarization, defined by setting P = 0, whereas the curves
shown in Figs. 5(b) correspond to the case with accounting
the flexoelectric polarization P 	= 0 throughout the relevant
equations.

Calculations have shown that, following changes in the
distribution of the stationary profile of the radial component of
the director nr , the distribution of the stationary radial compo-
nent of the velocity ust (r − r1) across the dimensionless HAN
cavity r1 � r � r2 is strongly influenced by flexoelectric po-
larization P 	= 0. Indeed, in the case of an ultrathin cavity with
the dimensionless thickness D = d/λD = 2.0 (∼0.1 μm),
both profiles of the velocity ust (r − r1) across the dimension-
less HAN cavity r1 � r � r2, for the cases of P = 0 [see
Fig. 5(a), curve 1] and P 	= 0 [see Fig. 5(b), curve 1], are
characterized by qualitatively similar convex profiles through-
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FIG. 6. Plot of the stationary radial distribution of the velocity component ust (r − r1) across the dimensionless HAN cavity r1 � r � r2,
under the effect of the electric field E0, caused by the surface density κ = 4 × 10−3 C/m2, both for the cases of P = 0 (a) and P 	= 0 (b),
respectively. Here the temperature difference �χ = 0.0. As explained in the text, four values of the dimensionless cavity thickness D =
d/λD = 2.0 (curve 1), 4.0 (curve 2), 8.0 (curve 3), and 16.0 (curve 4), have been used throughout.

out the cavity. In the case of P = 0, the entire volume of the
liquid crystal, excluding a small area near the outer cylinder,
moves in the positive direction almost twice as fast as in the
case of P 	= 0. With a doubling of the cavity, a qualitative
change in the velocity profile occurs. In the case of P = 0,
half of the volume of the LC cavity in the vicinity to the inner
cylinder moves in the negative direction, while the other part
of the HAN cavity in the vicinity to the outer cylinder moves
in the positive direction [see Fig. 5(a), curve 2], whereas in
the case of P 	= 0, the entire volume of the HAN cavity, with
the exception of a small area near the outer cylinder, moves
in the positive direction almost twice as slowly as in the case
of the ultrathin [D(2)] cavity. At the same time the maxi-
mum stationary velocity [ust

max(r = 3.09) = 0.65] in the case
of P = 0 is approximately 10 times greater than in the case of
P 	= 0. Thus, accounting the flexoelectric polarization P leads
to the slowing of the hydrodynamic flow in the dimensionless
HAN cavity, under the effect of both the electrostatic field E0

and ∇χ .
With the further increase in the size of the cavity,

from D(4) = 4.0 (∼0.2 μm) to D(8) = 8.0 (∼0.4 μm) and
D(16) = 16.0 (∼0.8 μm), the stationary velocity profiles
ust (r − r1) across the dimensionless HAN cavity r1 � r � r2

corresponding to the cases of P = 0 and P 	= 0 become qual-
itatively similar to each other. In this case, part of the volume
of the HAN cavity in the vicinity to the inner cylinder moves
in the negative direction, while the other part of the HAN
cavity in the vicinity to the outer cylinder moves in the positive
direction. At the same time, the maximum of the stationary
velocity ust

max, for both dimensionless sizes D(8) and D(16),
in the positive direction is approximately 4.5 times faster than
in the negative direction, whereas accounting the flexoelectric
polarization P 	= 0 leads to a slowdown in the flow in the HAN
cavity.

The curves shown in Figs. 6(a) and 6(b) correspond to
the stationary radial distribution of the dimensionless velocity
component ust (r − r1) across the dimensionless HAN cav-
ity confined between two horizontal coaxial cylinders, and
subjected to the electrostatic field E0, produced by the sur-
face charge density κ on both bounding cylinders. Here the
temperature difference �χ is equal to 0. The results of the
comparison of these two scenarios, with [see Figs. 5(a) and

5(b)] and without [see Figs. 6(a) and 6(b)] accounting the
effect of the temperature gradient, indicate that the influence
of ∇χ on the process of formation of the stationary flow
ust (r − r1) in the HAN cavity confined between two horizon-
tal coaxial cylinders and subjected to the electrostatic field E0,
produced by the surface charge density κ on both bounding
cylinders, is significant. The influence of the electrostatic field
E0 on the formation of the hydrodynamic flow ust (r − r1) in
the dimensionless HAN cavity is so negligible in comparison
with the influence of ∇χ that it can be completely ignored.

It should also be noted that in the case of ultrathin HAN
cavities, with D(i), (i = 2, 4), the electrostatic field E0, pro-
duced by the surface charge density κ on both bounding
cylinders and directed across the LC cavity, completely blocks
the flow ust (r − r1) of the LC material [see Fig. 6(b), curves
1 and 2]. In this case, the contribution of the electric force
prevails over the contribution of viscous and elastic forces
and any horizontal steady flow of the LC phase stops in
the HANNC, since under the influence of electrostatic field
the dipoles of molecules forming the LC phase are oriented
along this field. This once again shows that the macroscopic
description of the nature of the hydrodynamic flow of an
anisotropic fluid subtly senses the microscopic structure of the
LC material.

In the case of nano-or microfluidic LC channels, the main
factor influencing the formation of the hydrodynamic flow is
the external electric field, whether it is an electrostatic field or
due to a voltage applied between two coaxial cylinders [25].

IV. CONCLUSION

In summary, we have investigated the response of the
HANNC composed of asymmetric polar molecules, such as
cyanobiphenyls, confined between two charged horizontal
coaxial cylinders and subjected to both the temperature gra-
dient and the radially applied screening electrostatic field.
These cylinders were kept at different temperatures �T =
Tout − Tin, with the outer one being hotter than the inner cooler
one and subjected to the radially applied electrostatic field
E0, caused by the surface charge density κ on these bounding
cylinders. In this case the electrostatic field E0, applied across
the HANNC, disturbs the homogeneous orientation of the
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director field in the LC cavity with thickness d and makes
the splay and bend deformations. In the nematic phase, these
deformations induced flexoelectric polarization P, which en-
forced the electric torque acting per unit LC volume. In this
study we investigate the joint effect of flexoelectric polariza-
tion P and thermomechanical force, caused by the coupling
of the temperature and the director field gradients on the
process of excitation of the hydrodynamic flow v in the HAN
nanosized cavity.

In our case, the temperature gradient ∇T is formed due to
the temperature difference �T = Tout − Tin on both bounding
cylinders, which must fall within the nematic stability range.
Our calculations, based on the appropriate nonlinear exten-
sion of the classical Ericksen-Leslie theory, supplemented by
the thermomechanical correction of the shear stress and the
Rayleigh dissipation function, as well as the entropy balance
equation, show that under the influence of both the radially
applied electrostatic field E0, caused by the surface charge
density κ on both bounding cylinders, and the heating regime
�T = Tout − Tin, the stationary flow v = ust (r)êz, directed
parallel to the bounding cylinders, is set up. It is shown that the
electric force enforced by the flexoelectric polarization plays
a crucial role in the formation of the horizontal flow between
these cylinders. Taking into account that the surface electric
field penetrates the bulk of the LC phase on the order of the
Debye screening length λD from both cylinders, the ratio λD/d
significantly affects the nature of the hydrodynamic flow in the
nanofluidic cavity. Thus, our calculations show that the most
pronounced effect of flexoelectricity in the HAN nanosized
cavity between two coaxial cylinders is observed on the flow
velocity and the effect on the orientational dynamics is weak.

It is also shown that in LC cavities starting from the size
of 1 micron or more, the influence of the electrostatic field,
originated from the surface charge density on both bounding
surfaces can be neglected.

The effect of both the electrostatic field E0, caused by
the surface charge density κ = 4.0 × 10−3 C/m2, and the
heating regime �T ∼ 7 K on the stationary flow vst (r) =
ust (r)êz, directed parallel to the bounding cylinders, probably
can be observed in the HAN cavity. The temperature dif-
ference �T = Tout − Tin ∼ 7 K, for the experimentally well
studied and technologically interesting case of 4-n-pentil-
4′-cyanobiphenyl (5CB), can be achieved by pumping the
cooling material (with a temperature Tin less than with 7 de-
grees below room temperature Tout) through the inner cylinder.
At such conditions, in the HAN microcavity with the thick-
ness d ∼ 0.4 μm, the maximal stationary velocity ust (8D)
is equal to 0.02 m/s, and can be visualized using the multi-
purpose video tools, whereas the reorientation dynamics of
the 5CB under microfluidic confinement can be studied by
polarized light microscope technique.

We believe that the precise handling of the LC micro-
volumes can be developed utilizing the interactions of both
director and velocity fields with the radially directed tem-
perature gradient. Hence, the possible pumping technique
described above appears applicable to various experimental
setups not involving mobile parts.
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