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Generation of hard twisted photons by charged particles in cholesteric liquid crystals
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We study the radiation from charged particles crossing a cholesteric plate in the shortwave approximation
when the wavelength of photons is much smaller than the pitch of the cholesteric helix, whereas the escaping
angle of the photon and the anisotropy of the permittivity tensor can be arbitrary. The radiation of photons is
treated in the framework of quantum electrodynamics with classical currents. The radiation of the plane-wave
photons and the photons with definite projection of the angular momentum (the twisted photons) produced
by charged particles crossing the cholesteric plate and moving rectilinearly and uniformly is considered. The
explicit expressions for the average number of radiated photons and their spectra with respect to the energy and
the projection of the angular momentum are obtained in this case. It turns out that in the paraxial approximation
the projection of the orbital angular momentum, l , of radiated twisted photons is related to the harmonic number
n ∈ Z as l = 2n + 1, i.e., the given system is a pure source of twisted photons as expected. It is shown that in the
paraxial shortwave regime the main part of radiated photons is linearly polarized with l = ±1 at the harmonics
n = {−1, 0}. The applicability conditions of the approach developed are discussed. As the examples, we consider
the production of 6.3 eV twisted photons from uranium nuclei and the production of x-ray twisted photons from
120 MeV electrons.
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I. INTRODUCTION

The vortex waves are called the electromagnetic waves
with a helical phase front characterized by the phase de-
pendence of the form eilϕ , where l is the projection of the
orbital angular momentum (OAM) and ϕ is the azimuthal
angle [1–7]. Evolving in time, this wave front twists around
the average direction of propagation of the electromagnetic
wave and so these waves are also referred to as twisted ones
[8]. The amplitude of the electromagnetic field of the vortex
wave vanishes on the axis of its propagation. The notion of
twisted waves is generalized to the nonparaxial regime [9–12]
where the photons constituting such an electromagnetic wave
possess the projection of the total angular momentum m and
the helicity s. In the paraxial regime, the twisted photons con-
stituting a vortex wave carry the projection of OAM l = m − s
[1]. Because of their peculiar properties, the twisted photons
found many applications in physics, biology, and telecommu-
nication technologies [2–7]. For example, the use of twisted
photons in telecommunication increases the density of infor-
mation transfer by 2l times, the quantum number l is used in
quantum cryptography, whereas in optics the twisted photons
were employed to overcome the diffraction limit (see the
references in Refs. [2–7]). To take advantage of the properties
of twisted photons in various fields of fundamental science
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and technology, there is a pressing need in the development
of new pure bright sources of twisted photons in various
spectral ranges.

Nowadays there are various methods to convert a plane-
wave electromagnetic radiation to a twisted one in the
radio and optical spectrum ranges (see the reviews in
Refs. [4,7,13]). The developing new materials allow one to
extend the spectrum range where such methods are applicable
[14]. The main advantage of such methods is their simplicity.
However, they possess certain drawbacks: low intensity, re-
strictions on the energy of created twisted photons, and poor
variability of parameters of the produced radiation. These
shortcomings beget the necessity in developing of alternative
approaches to generation of twisted photons. The more intense
sources of twisted photons do not rely on the conversion of
a plane-wave radiation into twisted one but are based on the
direct generation of twisted photons by charged particles. One
can distinguish the main of such approaches: undulator radia-
tion [15–21], the Compton effect [4,11,12,19,22], channeling
radiation [23,24], Vavilov-Cherenkov (VC) and transition ra-
diations [20,25–29]. These methods enable one to create an
intense hard electromagnetic radiation consisting of photons
with a definite projection of the angular momentum. Larger
projections of the angular momentum can be achieved by the
use of the coherent radiation from helically microbunched
beams of charged particles [17,28,30,31].

It was shown in Refs. [27,28] that even in the simplest case
of a Gaussian beam of charged particles transition and VC ra-
diations consist of twisted photons with nonzero projection of
the OAM l = −s. Furthermore, employing the symmetry ar-
guments, it was shown in the paper [27] that the use of helical
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media allows one to produce the twisted photons with higher
values of OAM in the radiation from charged particles moving
in such a medium. In our recent paper [29], the theory of radia-
tion of twisted photons developed in Ref. [27] was generalized
to the case of anisotropic media. The approximate solutions of
the Maxwell equations for cholesteric liquid crystals (CLC),
which are a particular case of a helical medium, were found
in that paper for the two cases: the paraxial approximation
and the approximation of a small anisotropy. These solutions
were used to derive the explicit expressions for the probability
to detect plane-wave and twisted photons in transition radia-
tion generated by charged particles in these regimes. In the
present paper, our aim is to apply the shortwave approxima-
tion [32–39] to describe the radiation of photons produced by
charged particles moving in the CLC plate of a finite width
for such parameters where the approximate approaches used
in Ref. [29] are not valid.

The paper is organized as follows. In Sec. II, we
describe the optical properties of CLCs and discuss differ-
ent approaches to solution of the corresponding Maxwell
equations. Section III is devoted to the shortwave approxima-
tion employed to construct the mode functions of a quantum
electromagnetic field. The boundary conditions on the inter-
faces of the CLC plate are taken into account. In Sec. IV,
we obtain the explicit expressions for the average number of
plane-wave photons radiated by a charged particle moving
in the CLC plate and investigate the spectral properties of
this radiation. In Sec. V, we deduce the average number of
radiated twisted photons using the expansion of the plane-
wave photons in terms of the twisted ones. The selection rules
resulting from a peculiar structure of CLCs readily follow
from the explicit expression for the radiation probability of
twisted photons. For the reader convenience some lengthy
formulas are removed to Appendices A, B, and C.

We use the system of units such that h̄ = c = 1 and e2 =
4πα, where α is the fine structure constant. We also suppose
(x, y, z) ≡ (x1, x2, x3) everywhere in the text.

II. ELECTROMAGNETIC PROPERTIES OF
CHOLESTERICS

At present, the liquid crystals are well studied and find
various applications in science and technology [40–44]. For
our purpose, the CLCs are of a particular interest since the di-
rector forms a helical structure in these nematic liquid crystals
[42–44]. This feature allows one to use the CLCs for gen-
eration of twisted photons, which are radiated from charged
particles passing through such a helical structure [27,29].
The other means of conversion of plane-wave photons into
twisted ones with the aid of liquid crystals including CLCs
were proposed in Refs. [45–47]. The peculiar electromagnetic
properties of CLCs are described by the permittivity tensor of
the form [40,41,43,44,48]

εi j (k0, z) = ε⊥(k0)δi j + [ε‖(k0) − ε⊥(k0)]τi(z)τ j (z),

τ(z) = [cos(qz), sin(qz), 0],
(1)

where ε‖ is the permittivity along the director τ(z) and ε⊥
is the permittivity in the direction perpendicular to it. The
period of variations of the director, 2π/q, is the helix pitch

of the CLC. For the different CLCs, it varies from dozens of
angstroms to several micrometers [43]. The period of varia-
tions of the electromagnetic properties of a CLC equals a half
of the helix pitch Eq. (1). The applied electric field, changes
of the temperature and the pressure vary the parameters
of CLCs that makes their electromagnetic properties highly
adjustable [40–44].

The Maxwell equation for the electromagnetic potential in
a CLC are written as

[k2
0εi j (k0, z) − ∂i∂ j + 	δi j]Aj (x) = 0,

∂i[εi j (k0, z)Aj (x)] = 0,
(2)

where k0 is the energy of photons in the electromagnetic wave.
The second equation in the system (2) is a consequence of the
first one at k0 �= 0. It is a generalization of the Coulomb gauge
for anisotropic media. We assume further that the boundary
conditions for Eq. (2) are such that Eq. (2) do not have solu-
tions for k0 = 0.

The permittivity tensor (1) is invariant under translations
in the plane (x, y). Therefore, the solutions to Eq. (2) can be
sought in the form

A(x) = eik⊥·x⊥A(z), (3)

where k⊥ := (k1, k2) and x⊥ = (x1, x2). Furthermore, the ten-
sor (1) possesses the helical symmetry, i.e., it is invariant
with respect to translations along the z axis and simultane-
ous rotations around this axis to the corresponding angle. In
consequence of this symmetry, it is useful to pass from the
Cartesian basis {e1, e2, e3} to the basis {e+, e−, e3}, where
e± := e1 ± ie2. Any vector A is written as

A = 1
2 (e+A− + e−A+) + e3A3, A3 = e3 · A, A± = e± · A,

(4)

in this basis. Making use of Eqs. (2), the third component of
A is expressed through the rest two ones

A3 = ik⊥
2k̄2

3

∂3(a+ + a−), k̄2
3 := k̄2

0 − k2
⊥, (5)

where k̄2
0 := ε⊥k2

0 , k⊥ := |k+|, and

a± = A±e∓iϕ, ϕ := arg k+. (6)

To find a±, it is necessary to solve the matrix Schrödinger
equation

(∂3K∂3 + V )

[
a+
a−

]
= 0. (7)

Here

K =
⎡
⎣1 + k2

⊥
2k̄2

3

k2
⊥

2k̄2
3

k2
⊥

2k̄2
3

1 + k2
⊥

2k̄2
3

⎤
⎦,

V = −k2
⊥
2

[
1 −1

−1 1

]
+ k̄2

0

2

[
2 + δε δεe2iθ̄

δεe−2iθ̄ 2 + δε

]
, (8)

where θ̄ := qz − ϕ and δε := ε‖/ε⊥ − 1. The quantity θ̄

equals the angle between the director τ and the component
of the wave vector k⊥. The quantity δε characterizes the
anisotropy of dielectric permittivity of the CLC. It can take
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positive or negative values and, as a rule, is small. In the
optical range, its modulus is of order 10−2–10−1 [43].

It seems impossible to find a general solution of the sys-
tem of Eqs. (7) in a closed form for arbitrary values of the
parameters. The solution of Eqs. (7) describing the electro-
magnetic wave propagating along the CLC axis is given in
Refs. [52–54]. This solution cannot be immediately used for
description of radiation of twisted photons since their ampli-
tudes vanish at k⊥ = 0. The other limiting case where the
solutions to Eqs. (7) can be found is the isotropic medium,
i.e., δε = 0. The perturbative solutions of the system (7) with
respect to δε and n⊥ := k⊥/k0 were considered in many pa-
pers [29,38,43,55–61]. We will employ the approach based
on the shortwave approximation [32–34,36,39] allowing to
find the solution to Eqs. (7) in the regions of the parameter
space where the perturbation theories with respect to n⊥ or δε

are not applicable. To wit, it was shown in Ref. [29] that the
perturbation theory with respect to n⊥ is valid when

k2
⊥

k̄2
0

� 1,
k2
⊥

k̄2
0

|q|
|k̄0 − q| � 1,

k2
⊥

|k̄0 − q||k̄0 − 2q|
δε2k̄2

0

256q2
� 1, for

δε2k̄2
0

16q2
� 1;

k2
⊥

k̄2
0

� 1,
|δε|k̄0

16|q|
k2
⊥

k̄2
0

� 1,

for
δε2k̄2

0

16q2
	 1;

(9)

where it is assumed that |δε| � 1. As for the perturbation
theory with respect to δε, |δε| � 1, it was found in Ref. [29]
that it is applicable in the parameter domain∣∣∣∣δε4 ε⊥

ε⊥ − n2
⊥

∣∣∣∣ � 1,

∣∣∣∣ δεk̄5
3

4qk2
⊥(k̄2

3 − q2)

∣∣∣∣ � 1. (10)

In particular, for k̄2
3 	 q2 the last condition in the system (10)

implies ∣∣∣∣ δεk̄3
3

4qk2
⊥

∣∣∣∣ � 1. (11)

The left-hand side of this inequality grows in increasing the
photon energy.

III. SHORTWAVE APPROXIMATION

To obtain the approximate solutions to Eqs. (7), we shall
use the standard procedure of the shortwave approxima-
tion for matrix equations (see, e.g., Refs. [32–34,38,39]). In
Refs. [35–38], this method was applied to description of prop-
agation of the electromagnetic waves in CLCs. Unfortunately,
in those papers, these solutions are not presented in the form
that is needed for construction of a quantum electromagnetic
field in the CLC plate of a finite width. In particular, the
explicit form of the coefficients of linear combination of so-
lutions to Eqs. (7) that provide a joining with the solutions
of the Maxwell equations in a vacuum is not given in those
papers for arbitrary parameters of the electromagnetic wave.
Therefore, for the reader convenience and conformity of no-
tation, we derive these solutions in this section and construct

the quantum electromagnetic field in the CLC plate of a finite
width employing the procedure given in Refs. [27,29].

We seek for the solution of Eqs. (7) in the form of the
asymptotic series in powers of 1/k0:

�(z) :=
[

a+
a−

]
= M(z)eiS(z) 


∞∑
n=0

k−n
0 �n(z)eiS(z), (12)

where S(z) is a scalar function of the first degree of ho-
mogeneity with respect to k0. Notice that the matrix K is
of zero homogeneity degree with respect to k0 and V is of
second degree. Substituting the expansion (12) into Eqs. (7)
and gathering the terms of the same homogeneity degree with
respect to k0, we arrive at the infinite chain of equations. The
first two equations are

[−(S′)2K + V ]�0 = 0,

[−(S′)2K + V ]�1 + ik0K (2S′� ′
0 + S′′�0) = 0. (13)

In fact, the first equation is the equation for the eigenvectors
corresponding to the zero eigenvalue of the matrix standing in
the square brackets. Requiring that this equation possesses a
nontrivial solution �0(z), we find the semiclassical momenta
S′(z). Then taking into account that the matrix in the square
brackets in the second equation in the system (13) is Hermi-
tian, we multiply this equation by �

†
0 from the left. Separating

the real and imaginary parts in the equation obtained, we
arrive at

(S′�†
0 K�0)′ = 0, Im(�†

0 K� ′
0) = 0. (14)

As follows from the Fredholm theorem (see, e.g., Ref. [62],
Sec. VI.5), these equations are the necessary and sufficient
conditions for solubility of the second equation in the sys-
tem (13). The first equation in the system (13) determines
�0(z) up to multiplication by an arbitrary function of z.
Equations (14) remove this ambiguity. As a result, �0(z) are
defined up to multiplication by a constant.

Consider the other eigenvectors of the matrix appearing in
the first equation in the system (13):

[−(S′)2K + V ]�⊥ = ν�⊥, �
†
⊥�0 = 0, (15)

where ν �= 0. Then it follows from the second equation in the
system (13) that

�1 = − ik0

ν

[�†
⊥K (2S′� ′

0 + S′′�0)]

�
†
⊥�⊥

�⊥, (16)

where we have taken into account that the system of Eqs. (13)
is two dimensional and suppose that

�
†
0�1 = 0. (17)

In what follows, we will consider only the leading con-
tribution to the expansion (12). This approximation proved
to be adequate for the study of optical properties of CLCs
with large pitch and is in a good agreement with the
experiments [37,38,63].

The shortwave approximation holds if

k0/|q| 	 1. (18)

Moreover, as long as we keep the terms proportional to δε

entering into the potential V as the leading contributions, the
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more stringent condition should be satisfied

k0|δε|/|q| 	 1. (19)

Therefore, the semiclassical mode functions derived below
are not applicable in the limit δε → 0. However, as is seen
from the condition (11), the standard perturbation theory with
respect to δε is not valid in the region defined by the inequal-
ity (19). As far as the perturbation theory with respect to n2

⊥ is
concerned, it follows from the third line of the system (9) that
it does not hold in the domain Eq. (19) provided

k0|δε|n2
⊥ � 16|q|ε1/2

⊥ . (20)

For high photon energies, the components of the permittivity
tensor behave as

ε⊥,‖(k0) = 1 − ω2
⊥,‖/k2

0 , (21)

where ω⊥,‖ are the plasma frequencies. Hence, the condition
(19) is violated for very high energies of photons. In that
region of the parameter space, the perturbation theories with
respect to δε and n2

⊥ work well, or one can apply the short-
wave approximation regarding the terms proportional to δε in
Eqs. (7) as small corrections.

The solutions of the form (12) have a clear physical inter-
pretation. The vector M(z) found perturbatively by means of
the above procedure determines the polarization of the wave
and possible small phase corrections to its components. The
Hamilton-Jacobi action [the eikonal S(z)] is responsible for
the common rapidly varying phase of the wave. The general
solution provided by this approach is a linear combination
of the waves with different, in general, vectors M(z) and
Hamilton-Jacobi actions S(z).

Applying the above general formulas to Eqs. (7), we obtain
the four linear independent solutions: the direct ordinary wave

a(1)
± = ±ik̄3eik̄3z±iθ̄√

2k̄3
(
k̄2

0 − k2
⊥ cos2 θ̄

) ,

A(1)
3 = k⊥ sin θ̄eik̄3z√

2k̄3
(
k̄2

0 − k2
⊥ cos2 θ̄

) , (22)

the reflected ordinary wave

ã(1)
± = ±ik̄3e−ik̄3z±iθ̄√

2k̄3
(
k̄2

0 − k2
⊥ cos2 θ̄

) ,

Ã(1)
3 = − k⊥ sin θ̄e−ik̄3z√

2k̄3
(
k̄2

0 − k2
⊥ cos2 θ̄

) , (23)

the direct extraordinary wave arising from birefringence
in a CLC

a(2)
± = k̄2

3 cos θ̄ ± ik̄2
0 sin θ̄√

2k(2)
3 k̄2

0

(
k̄2

0 − k2
⊥ cos2 θ̄

)eiS(θ̄ ),

A(2)
3 = − k(2)

3 k⊥ cos θ̄√
2k(2)

3 k̄2
0

(
k̄2

0 − k2
⊥ cos2 θ̄

)eiS(θ̄ ), (24)

where

k(2)
3 =

√
(1 + δε)k̄2

3 + δεk2
⊥ sin2 θ̄ ,

S(θ̄ ) := √
1 + δε

k̄3

q
E

(
θ̄ ;

−δεk2
⊥

(1 + δε)k̄2
3

)
, (25)

and the reflected extraordinary wave

ã(2)
± = k̄2

3 cos θ̄ ± ik̄2
0 sin θ̄√

2k(2)
3 k̄2

0

(
k̄2

0 − k2
⊥ cos2 θ̄

)e−iS(θ̄ ),

Ã(2)
3 = k(2)

3 k⊥ cos θ̄√
2k(2)

3 k̄2
0

(
k̄2

0 − k2
⊥ cos2 θ̄

)e−iS(θ̄ ). (26)

We have introduce the standard notation,

E (θ̄ ; κ) :=
∫ θ̄

0
dx

√
1 − κ sin2 x, (27)

for the incomplete elliptic integral of the second kind. In
calculating the third component, A3, Eq. (5) has been used,
where, within the accuracy we work, one should take into
account only the leading in k−1

0 term stemming from the action
of ∂3 on the fast oscillating exponent. The solutions for the
reflected waves Eqs. (23) and (26) can be obtained from the
solutions (22) and (24) by using the symmetry,

a±(z) → a∗
∓(z), (28)

of Eq. (7).
In the paraxial regime when the component A3 can be

neglected, the polarizations of the ordinary and extraordi-
nary waves are linear. In the case of the ordinary direct
and reflected waves, the plane of linear polarization lies at
an angle of

φ = qz (29)

to the axis 1. As for the plane of linear polarization of
the direct and reflected extraordinary waves, this angle is
written as

φ = ϕ + arg
(
k̄2

3 cos θ̄ + ik̄2
0 sin θ̄

) ≈ qz. (30)

In other words, the polarizations vectors of these waves are
directed along τ(z).

Notice that the expressions for the mode functions A(1,2)

and Ã(1,2) agree with the symmetry property mentioned in
Sec. 5D of Ref. [27] devoted to helical media, the particular
case of which the cholesterics are. Namely, on performing the
Fourier transform with respect to ϕ = arg k+, as in passing
from the mode functions of plane-wave photons to the twisted
ones in formula (58), the resulting mode functions have the
form given in formulas (129) and (131) of Ref. [27]. This is
a consequence of the fact that the dependence of the mode
function (22), (23), (24), and (26) on z is gathered into the
combination θ̄ = qz − ϕ up to a constant phase factor at the
given mode. However, as we shall see further, this property is
violated by the presence of interfaces of the CLC plate which
spoil the helical symmetry of the system.

The Hamilton-Jacobi action S(θ̄ ) for the extraordinary
wave (25) is convenient to split into the linear in θ̄ part and
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the periodic one, S̄(θ̄ ), with the period π :

S(θ̄ ) =: p3θ̄/q + S̄(θ̄ ), (31)

where the quasimomentum

p3 = 2

π

√
1 + δε k̄3E

( −δεk2
⊥

(1 + δε)k̄2
3

)
, E (x) := E (π/2; x).

(32)

It is assumed for the extraordinary waves that the radicand of
k(2)

3 is nonnegative for any θ̄ , i.e., there are no turning points.
The presence of turning points means that there exist bound
states of photons in the CLC arising due to total internal reflec-
tion. In the papers [37,51,65,66], these states were thoroughly
investigated and it was shown that they leak from the CLC
plate only in the case when min(ε⊥, ε‖) < 1. In what follows,
we will consider such values of the momentum k of radiated
photons that the turning points are not realized.

Consider the CLC plate in a vacuum. This slab is perpen-
dicular to the axis z with the width L = πNu/q, where Nu is
the number of periods of the CLC helix. Then we have to join
the solutions (2) of the Maxwell equations in the CLC plate
with the free waves in a vacuum using the standard boundary
conditions at z = 0 and z = −L:

[�±]z=0 = [�±]z=−L = 0,

[±i(∂3�± − ∂±�3)]z=0 = [±i(∂3�± − ∂±�3)]z=−L = 0.

(33)

For z > 0, the mode function �(s, k; x) of the quantum elec-
tromagnetic field Â(x) reads

�(s, k; x) = C√
2k0V

f (s, k)e−ik0x0+ik·x, (34)

where the polarization vector of the plane-wave photon with
helicity s is written as

f (s, k) = (
cos ϕ cos θ − is sin ϕ, sin ϕ cos θ + is cos ϕ,

− sin θ
)/√

2, sin θ := k⊥/k0 ≡ n⊥, (35)

in the Cartesian basis. In the CLC plate, the mode function is
given by the linear combination

�(s, k; x) = C√
2k0V

(
r1A(1)

+ r2A(2) + l1Ã(1) + l2Ã(2))e−ik0x0+ik⊥·x⊥ , (36)

where C, r1,2, and l1,2 are some constants and the components
of A(1,2) and Ã(1,2) are given in formulas (22), (23), (24), and
(26). For z < −L, the mode function becomes

�(s, k; x) = C√
2k0V

[(d+f++ + d−f−+)eik3z

+ (h+f+− + h−f−−)e−ik3z]e−ik0x0+ik⊥·x⊥ , (37)

where

fsσ := f (s, k⊥, σk3), σ = ±1. (38)

The general formulas for the joining coefficients are given
in Appendix A.

The final expression for the mode function �(s, k; x)
should be normalized. This specifies the normalization con-
stant C. The normalization condition gives rise to (see for
details Sec. 5A of Ref. [27])

|C|2 = (|d+|2 + |d−|2)−1. (39)

It is convenient to write the normalization constant in the form

|C|−2 = ν0 + [ν1e−i(k̄3+p3 )L + ν2e−2ik̄3L

+ ν3e−2ip3L + ν4ei(k̄3−p3 )L + c.c.]. (40)

The exact expressions for the coefficients νk , k = 0, 4, and the
joining coefficients r1,2 and l1,2 are rather cumbersome and are
given in Appendix B. In the paraxial approximation, n2

⊥ � 1,
the expressions are greatly simplified (see Appendix C). We
shall show below that it is in the paraxial regime where the
radiation from a charged particle moving along the z axis is a
pure source of twisted photons.

Having obtained the mode functions, the quantum electro-
magnetic field Â(x) and quantum electrodynamics (QED) in a
medium are constructed in the standard way as it is described
in Refs. [27,29,67]. The quantum electromagnetic field in the
interaction picture is written as

Â(x) =
∑
s=±1

∫
V dk
(2π )3

�(s, k; x)â(s, k)+
∑

α

�α (x)âα + H.c.,

(41)
where â, â† denote the creation-annihilation operators

[â(s, k), â†(s′, k′)] = (2π )3

V
δs,s′δ(k − k′), [âα, â†

β ] = δαβ.

(42)

The second term on the right-hand side of formula (41) de-
scribes the contribution of bound states with n⊥ > 1. This
term can be omitted in the analysis of radiation detected out
of the CLC plate. The explicit expression for the quantum
electromagnetic field allows one to find the probabilities of
various QED processes evolving in the CLC slab or near it by
employing the standard techniques of QED. In particular, the
average number of plane-wave and twisted photons radiated
by charged point particles moving along arbitrary trajectories
can easily be found [18,27] and the formalism developed in
the papers [31,64] can be applied. Of course, by using the
quantum electromagnetic current one can find the probabili-
ties of other processes involving, for example, Dirac particles
[26,68–71] or atomic and nuclear phototransitions [72–76].

IV. RADIATION OF PLANE-WAVE PHOTONS

The peculiarity of the periodic structure of CLCs is re-
vealed in the VC [29,55–60] and transition [29,61] radiations.
As for any periodic dispersive medium, several Cherenkov
cones are produced by a charged particle passing through
a CLC plate [43,58,77,78]. Because of the constructive in-
terference of electromagnetic waves produced by a charged
particle, this radiation possesses the harmonics in energy and
has larger intensity at these harmonics than in the case of a
homogeneous medium.

We begin with the description of plane-wave photons cre-
ated by a classical current of the charged particle with the
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charge Ze moving uniformly and rectilinearly. The trajectory
of such a particle reads

x0 = t, x = βt . (43)

The average number of plane-wave photons radiated by
a charged particle during an infinite interval of time is
written as [27,67,78–80]

dP(s, k) = Z2e2

∣∣∣∣
∫ ∞

−∞
dte−ik0x0(t )ẋ(t ) · �(s, k; x(t ))

∣∣∣∣
2 V dk

(2π )3
.

(44)

The expression on the right-hand side of formula (44) also
enters into the probability to detect a photon with the quantum
numbers (s, k) (see the details in Refs. [18,27,81]). The ex-
pression under the modulus sign, which is proportional to the
one-particle transition amplitude, splits into the sum of several
terms: the edge radiation from the part of the trajectory z > 0,

C√
2k0V

iβ · f (s, k)

k0(1 − n · β)
; (45)

the transition radiation from the part of the trajectory z < −L,

iC√
2k0V

[
β · (f++d+ + f+−d−)

k0(1 − n · β)
eik0(1−nβ)L/β3 + β · (f−+h+ + f−−h−)

k0(1 − n⊥ · β⊥ + n3β3)
eik0(1−n⊥·β⊥+n3β3 )L/β3

]
; (46)

the transition radiation from the periodic permittivity in the CLC plate

C√
2k0V

∞∑
n=−∞

e−i(2n+1)ϕ

{
ϕ(x(1)

n )r1

(
n̄3

8k0

)1/2[
β̄−cn − β̄+cn+1 − β3n⊥

n̄3
(cn − cn+1)

]

+ ϕ(x(2)
n )r2eip3ϕ/q

(8ε⊥k0)1/2

[(
ε⊥ − n2

⊥
2

)
(β̄+dn+1 + β̄−dn) − n2

⊥
2

(β̄+dn + β̄−dn+1) − β3n⊥(d̃n + d̃n+1)

]

+ ϕ(x̃(1)
n )l1

(
n̄3

8k0

)1/2[
β̄−cn − β̄+cn+1 + β3n⊥

n̄3
(cn − cn+1)

]

+ ϕ(x̃(2)
n )l2e−ip3ϕ/q

(8ε⊥k0)1/2

[(
ε⊥ − n2

⊥
2

)
(β̄+d−n−1 + β̄−d−n) − n2

⊥
2

(β̄+d−n + β̄−d−n−1) + β3n⊥(d̃−n + d̃−n−1)

]}
, (47)

where β̄± := β±e∓iϕ , β⊥ = |β+|, and

ϕ(x) := 2πeiTuNux/2δNu (x), δNu (x) := sin(TuNux/2)

πx
, Tu := π/(qβ3). (48)

Besides,

x(1)
n := k0(1 − n̄3β3 − n⊥ · β⊥) − qβ3(2n + 1), x(2)

n := k0
(
1 − n̄(2)

3 β3 − n⊥ · β⊥
) − qβ3(2n + 1),

x̃(1)
n := k0(1 + n̄3β3 − n⊥ · β⊥) − qβ3(2n + 1), x̃(2)

n := k0
(
1 + n̄(2)

3 β3 − n⊥ · β⊥
) − qβ3(2n + 1),

n̄3 := k̄3/k0, n̄(2)
3 := p3/k0.

(49)

To obtain expression (47), we have expanded the periodic part of the integrand of formula (44) in a Fourier series and introduced
the notation for the Fourier coefficients

cn :=
∫ π

−π

dx

2π

e−2inx

(ε⊥ − n2
⊥ cos2 x)1/2

= (2|n| − 1)!!

ε
1/2
⊥ |n|!

(
n2

⊥
8ε⊥

)|n|
F (|n| + 1/2, |n| + 1/2; 2|n| + 1; n2

⊥/ε⊥),

dn :=
∫ π

−π

dx

2π

e−2inx+iS̄(x)

(ε‖ − n2
⊥(1 + δε cos2 x))1/4(ε⊥ − n2

⊥ cos2 x)1/2
,

d̃n :=
∫ π

−π

dx

2π
e−2inx+iS̄(x) (ε‖ − n2

⊥(1 + δε cos2 x))1/4

(ε⊥ − n2
⊥ cos2 x)1/2

. (50)

The integral defining the coefficients cn can be found in Ref. [82]. In the expression on the last line of formula (47), we have
used the oddness of the function S̄(θ̄ ).

In the paraxial limit, the last two integrals in formula (50) are readily evaluated. Namely, if the following estimates are
satisfied,

n2
⊥ � 1,

ε
1/2
‖ k0

32q

(
n2

⊥δε

ε‖

)2

� 1, (51)

then

S̄(θ̄ ) = √
1 + δε

k̄3

q

[
E

(
θ̄ ;

−n2
⊥δε

(1 + δε)n̄2
3

)
− 2

π
E

( −n2
⊥δε

(1 + δε)n̄2
3

)]
≈ −k⊥n⊥δε

8qε
1/2
‖

sin(2θ̄ ). (52)
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Therefore, we have

dn ≈ ε
−1/4
‖ ε

−1/2
⊥ J−n

⎛
⎝k⊥n⊥δε

8qε
1/2
‖

⎞
⎠, d̃n ≈ ε

1/4
‖ ε

−1/2
⊥ J−n

⎛
⎝k⊥n⊥δε

8qε
1/2
‖

⎞
⎠. (53)

Furthermore, in the leading order in n⊥, we obtain

cn ≈ (2|n| − 1)!!

ε
1/2
⊥ |n|!

(
n2

⊥
ε⊥

)|n|
. (54)

For n⊥ → 0, the coefficients of the Fourier series cn, dn, and d̃n are proportional to δn,0. In that case, the series over n in
expression (47) is terminated.

We shall be interested further in the case Nu 	 1. Then the modulus of the function ϕ(x) possesses a sharp maximum at
x = 0. Therefore, squaring the modulus of the one-particle amplitude, one can neglect the contributions of the edge radiation
described by formulas (45), (46), and of the interference terms resulting from the product of the terms in formula (47) standing
at ϕ(x) with different arguments. Hence,

dP(s, k) ≈ |ZeC|2 dk
32πk0

∞∑
n=−∞

{
δ2

Nu
(x(1)

n )|r1|2 n̄2
3

k0

∣∣∣∣β̄−cn − β̄+cn+1 − β3n⊥
n̄3

(cn − cn+1)

∣∣∣∣
2

+ δ2
Nu

(
x(2)

n

) |r2|2
ε⊥k0

∣∣∣∣
(

ε⊥ − n2
⊥
2

)
(β̄+dn+1 + β̄−dn) − n2

⊥
2

(β̄+dn + β̄−dn+1) − β3n⊥(d̃n + d̃n+1)

∣∣∣∣
2

+ δ2
Nu

(
x̃(1)

n

)|l1|2 n̄2
3

k0

∣∣∣∣β̄−cn − β̄+cn+1 + β3n⊥
n̄3

(cn − cn+1)

∣∣∣∣
2

+ δ2
Nu

(
x̃(2)

n

) |l2|2
ε⊥k0

∣∣∣∣
(

ε⊥ − n2
⊥
2

)
(β̄+d−n−1 + β̄−d−n) − n2

⊥
2

(β̄+d−n + β̄−d−n−1) + β3n⊥(d̃−n + d̃−n−1)

∣∣∣∣
2}

. (55)

The energy spectrum of radiation is found from the re-
quirement that the argument of δ2

Nu
(x) vanishes. As a result,

formulas (49) imply the following four spectral series:

k0 = qβ3(2n + 1)

1 − n⊥ · β⊥ − n̄3β3
, k0 = qβ3(2n + 1)

1 − n⊥ · β⊥ + n̄3β3
,

k0 = qβ3(2n + 1)

1 − n⊥ · β⊥ − n̄(2)
3 β3

, k0 = qβ3(2n + 1)

1 − n⊥ · β⊥ + n̄(2)
3 β3

,

(56)

where n ∈ Z and k0 > 0. In the case of CLC with small
electric susceptibility, χ‖,⊥ := ε‖,⊥ − 1, in the paraxial ap-
proximation, the approximate radiation spectrum produced
by an ultrarelativistic particle, γ 	 1, β⊥ � 1, takes a
simple form

k0 = 2qγ 2(2n + 1)

1 + (β⊥ − n⊥)2γ 2 − χ⊥γ 2
, k0 = q(2n + 1)

2 + χ⊥/2
,

k0 = 2qγ 2(2n + 1)

1 + (β⊥ − n⊥)2γ 2 − χ‖γ 2
, k0 = q(2n + 1)

2 + χ‖/2
, (57)

As is seen from inequalities (18), (19), the shortwave approxi-
mation is not applicable for description of radiation induced
by the quantum field modes corresponding to the reflected
waves (23) and (26) when the harmonic number n is small.

For χ‖,⊥γ 2 > 1, there are values of n⊥ such that the de-
nominator in Eq. (56) for the spectrum of radiation induced
by the direct ordinary and extraordinary waves is negative. In
that case, q(2n + 1) must be negative. In the opposite case,
the quantity q(2n + 1) must be positive. Notice that all the
above formulas and properties are valid for both right-handed,
q > 0, and left-handed, q < 0, CLCs. The schematic repre-

sentation of the possible experimental setup for observation
of the created radiation is given in Fig. 1. The plots of the
average number of plane-wave photons produced by the ura-
nium nuclei and electrons crossing normally the CLC plate
are presented in Fig. 2.

V. RADIATION OF TWISTED PHOTONS

Inasmuch as the translations in the plane (x, y) are a sym-
metry of the CLC permittivity, it was useful to start our

FIG. 1. The scheme of the experimental setup. The beam of
charged particles falls normally onto the CLC plate and then passes
through the perforated mirror. The transition radiation created in
the CLC plate is reflected by this mirror and is brought out to the
detector. The second mirror is placed parallel to the first one so
that the spectrum of radiation over m is preserved. Notice that the
CLC is depicted only schematically. Actually, CLCs possess neither
sublayers nor periodic stricture in these sublayers.
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FIG. 2. The average number of plane-wave photons, dP/dk0dk⊥, produced in transition radiation by charged particles traversing normally
the cholesteric plate. The shortwave approximation is used. The helicity of radiated photons is denoted as s and n⊥ = k⊥/k0. The waviness of
the plots reflects the presence of resonances in the photon spectrum of the CLC plate. The insets on the plots represent the distribution over
n⊥ at the maximum of radiation intensity. Upper plots: Transition radiation from the ions 238U92+ with the Lorentz factor γ = 2 [49]. The plot
(a) is for s = 1 and the plot (b) is for s = −1. The width of the CLC plate L = 150 μm, the number of periods Nu = 40, and the components
of the permittivity tensor are ε⊥ = 2.1 and ε‖ = 2.49 (see, e.g., Ref. [50]). The parameter of applicability of the shortwave approximation
standing on the left-hand side of inequality (19) is 6.6 at the maximum of radiation intensity. Notice that the perturbation theories with respect
to k⊥ and δε are not valid for these parameters. The maxima of the corresponding applicability parameters—the expressions on the left-hand
sides of (9) and (10)—are 3.5 and 4.2, respectively. Lower plots: Transition radiation from electrons with the Lorentz factor γ = 235. The plot
(c) is for s = 1 and the plot (d) is for s = −1. The width of the CLC plate L = 40 μm, the number of periods Nu = 40, and the components
of the permittivity tensor are ε⊥ = 1 − ω2

p/(3k2
0 ) and ε‖ = 1 − ω2

p/k2
0 with ωp = 21 eV (see for details Ref. [51]). The parameter (19) is 0.89

at the maximum of radiation intensity. Therefore, the shortwave approximation describes radiation only qualitatively. The perturbation theory
with respect to δε is not valid for these parameters since the maximum of the applicability parameters Eq. (10) is 2.3 × 103. The perturbation
theory with respect to n⊥ works well in this parameter domain. The maximum of the applicability parameters standing on the left-hand side of
inequalities (9) is 1.5 × 10−3.

study with consideration of radiation of plane-wave photons.
Having obtained the one-particle radiation amplitude of plane-
wave photons, it is not difficult to find the radiation amplitude
of twisted photons. To this aim, one needs to take a linear
combination of radiation amplitudes of plane-wave photons
as in Refs. [4,11,12]. The expansion of the plane-wave photon
wave function in terms of the twisted ones reads

f (s, k)eik·x
√

2k0V
= − sin θeik3z

2
√

k0V

∞∑
m=−∞

ime−imϕ

× √
RLz

(
2

sin θ

)3/2

ψ(s, m, k3, k⊥; x), (58)

where the components of the mode functions of twisted pho-
tons are [4,11,12,18]

ψ3(s, m, k3, k⊥; x) = 1√
RLz

(
k⊥
2k0

)3/2

Jm(k⊥|x+|)eim arg x+ ,

ψ±(s, m, k3, k⊥; x) = ik⊥
sk0 ± k3

ψ3(s, m ± 1, k3, k⊥; x).

(59)

The parameters V , R, and Lz characterize the normalization
volume for the system at issue.

To find the average number of twisted photons radiated
by a charged particle traversing the CLC plate along the tra-
jectory (43), it is sufficient to expand the plane-wave photon
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wave functions entering in formulas (45)–(47) in terms of the
twisted photon wave functions employing the relations (58).
As in the previous section, we shall be interested in the leading
contribution to radiation at Nu 	 1. Besides, we suppose that
β⊥ = 0 and the estimates (51) are valid, i.e., we work in the
paraxial approximation. In the paraxial regime, the projection
of the total angular momentum m of the twisted photon splits
into the spin part s and the projection of the orbital angular
momentum l = m − s [1].

Under the above assumptions, one can neglect the con-
tributions proportional to n2

⊥ in the normalization constant
(40) and use the approximate expressions (C6) for the join-
ing coefficients. Applying formula (58) to the expression on
the first line in the radiation amplitude (47), we deduce the
following contribution to the one-particle radiation ampli-
tude of a twisted photon with quantum numbers s, m, k3,
and k⊥:

− sβ3C

4
√

RLz
i−m

(
n⊥
2

)3/2 ∞∑
n=−∞

ϕ(xn)δm,2n+1+s(1 + ε
−1/2
⊥ )(cn − cn+1). (60)

The other terms in Eq. (47) are transformed in the same way. Introducing, for brevity, the notation

J̃n := Jn

(
k⊥n⊥δε

8qε
1/2
‖

)
, n ∈ Z; J̃n(x) := 0, n �∈ Z, (61)

we derive the average number of radiated twisted photons

dP(s, m, k3, k⊥) = |Zeβ3C|2
∞∑

n=−∞

[
δ2

Nu
(x(1)

n )δm,2n+1+s(1 + ε
−1/2
⊥ )2(cn − cn+1)2 + δ2

Nu
(x(2)

n )J̃2
(m−2n−1−s)/2

(1 + ε
1/2
‖ )2

ε
1/2
‖ ε⊥

(d̃n + d̃n+1)2

+ δ2
Nu

(x̃(1)
n )δm,2n+1+s(1 − ε

−1/2
⊥ )2(cn − cn+1)2 + δ2

Nu
(x̃(2)

n )J̃2
(m−2n−1−s)/2

(1 − ε
1/2
‖ )2

ε
1/2
‖ ε⊥

(d̃n + d̃n+1)2

]
n3

⊥dk3dk⊥
64

,

(62)

where d̃n and cn have the form (53) and (54), and x(1,2)
n ,

x̃(1,2)
n are given by formulas (49) with β⊥ = 0. The photon

energy spectrum has the same form as for plane-wave photons
and is described by formulas (56) and (57) but with β⊥ = 0.
Since d̃n and cn are proportional to δn,0 in the paraxial limit,
the main contribution to radiation comes from the harmonics
with n = {−1, 0}. Notice that the average number of radiated
twisted photons (62) summed over m is independent of s. This
reflects the fact that the radiation is linearly polarized in the
approximation we use.

As long as the photon energy given by the expressions (56)
and (57) must be positive, the quantity q(2n + 1) > 0 for
radiated twisted photons corresponding to reflected waves.
Furthermore, in the ultrarelativistic limit, one can introduce
the standard notation for the Cherenkov cone opening

nVC
⊥ :=

√
χ‖,⊥ − γ −2, (63)

for the direct ordinary and extraordinary waves. In that case,
if nVC

⊥ is imaginary or n⊥ > nVC
⊥ , then q(2n + 1) > 0 for the

photons radiated in this mode. If 0 < n⊥ < nVC
⊥ , then q(2n +

1) < 0. Hence, in the both cases, only one value of n from
{−1, 0} is admissible for a given n⊥. For nVC

⊥ > 0, the one
value of n from {−1, 0} is realized at n⊥ < nVC

⊥ , whereas the
other value of n is realized at n⊥ > nVC

⊥ .
As is seen from expression (62), the photon radiated by

a charged particle due to ordinary waves obeys the selection
rule

l := m − s = 2n + 1. (64)

This selection rule forbids the radiation of twisted photons
with even values of l by a charged particle traversing normally
a CLC plate. Moreover, taking into account that the har-
monics with n = {−1, 0} dominate, the twisted photons with
l = ±1 are mostly radiated. The twisted photons radiated at
a given harmonic are linearly polarized and possess the OAM
projection l .

It also follows from the above analysis of the spectrum
that the handedness of the CLC helix determines the sign
of the OAM projection of radiated twisted photons. The sign
flip of the CLC helix chirality changes the sign of the OAM
projection of radiated photons provided other parameters are
not varied. Moreover, if the harmonic of the direct radiation
lies inside of the Cherenkov cone (63), then ql < 0 (see
Fig. 3). If the harmonic of the direct radiation is outside of
the Cherenkov cone, then ql > 0 (see Figs. 4, 5, and 6). This
inversion of the sign of the orbital angular momentum of
radiated photons is analogous to the sign flip of l due to the
anomalous Doppler effect in undulators filled with dispersive
medium [20]. The same properties are inherent to twisted
photons radiated by a charged particle due to extraordinary
waves when

k⊥n⊥|δε|
8|q|ε1/2

‖
� 1, (65)

i.e., in the paraxial regime.
Recall that there is the selection rule l = −s for twisted

photons produced by transition and VC radiations from
a classical charged particle crossing a plate made of an
isotropic homogeneous dielectric [27,28]. To observe the
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FIG. 3. The average number of twisted photons, dP/dk0dk⊥, produced in transition radiation from the ions 238U92+ traversing normally
the cholesteric plate. The shortwave approximation is used. The projection of the total angular momentum is denoted as m. The insets on
the plots represent the distributions over m and n⊥ at the maximum of radiation intensity. The parameters are the same as in Fig. 2. The
contributions with s = 1 and s = −1 are almost the same indicating that the radiation polarization is linear. Upper plots: Transition radiation
from the single ion 238U92+. The plot (a) is for s = 1 and the plot (b) is for s = −1. The selection rule (64) is fulfilled for n = −1. The negative
radiation harmonic is realized because n⊥ is inside of the Cherenkov cone (63). Lower plots: Transition radiation from the Gaussian beam of
N = 105 ions with transverse and longitudinal dimensions σ⊥ = 1 μm and σ3 = 125 μm, respectively. The plot (c) is for s = 1 and the plot
(d) is for s = −1. As expected [31,64], the distribution over m becomes much wider than for the radiation from a single ion since k⊥σ⊥ 	 1.
Nevertheless, the projection of the total angular momentum per photon, �, is the same as for the one-particle radiation.

twisted photons in those radiations, it is necessary to install
a homogeneous circular polarizer selecting the photons with
definite helicity. In the case of a CLC plate, such a polarizer is
unnecessary. This becomes especially important for the hard
twisted photons as long as it is difficult to select the photons
with definite helicity in this spectral range.

VI. CONCLUSION

Let us summarize the results. We constructed the quan-
tum theory of radiation of plane-wave and twisted photons
from classical charged particles traversing a CLC plate.
Investigations in this field are conducted for many years
[29,43,55–60]. However, these studies were mainly based on
the two wave approximation or on the perturbation theory with
resect to the anisotropy of the permittivity tensor or on the
paraxial approximation. In the present paper, we investigated
the radiation of twisted and plane-wave photons in the short-
wave approximation for which k0 	 q, the observation angles
are arbitrary and δε can be large.

The shortwave approximation was already used to describe
the propagation of electromagnetic waves in liquid crystals
[35–38]. This method showed a good agreement with experi-
mental data in the range of its applicability. Employing this
method, we obtained the explicit expressions for the mode
functions taking into account the boundary conditions on the
interfaces of the CLC plate for arbitrary parameters of the
radiated photon where the shortwave approximation is valid.
This allowed us to construct the operator of a quantum electro-
magnetic field in the CLC plate. The derived mode functions
can also be used for investigation of optical properties of the
CLC plate of a finite width and for description of radiation
produced by charged particles moving in CLCs along trajec-
tories of a general form.

Having the operator of a quantum electromagnetic field
at hand, the explicit expressions for the average numbers of
plane-wave, formula (55), and twisted, formula (62), photons
were deduced by the standard means [27,29,80]. As expected,
the radiation generated by a charged particle moving uni-
formly and rectilinearly possesses the harmonics in energy of
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FIG. 4. The average number of twisted photons, dP/dk0dk⊥, produced in transition radiation from electrons traversing normally the
cholesteric plate. The shortwave approximation is used. The insets on the plots represent the distributions over m and n⊥ at the maximum
of radiation intensity. The parameters are the same as in Fig. 2. Upper plots: Transition radiation from the single electron. The plot (a) is for
s = 1 and the plot (b) is for s = −1. The selection rule (64) is fulfilled for n = 1 with good accuracy. The contributions with s = 1 and s = −1
are of the same order of magnitude and so the radiation polarization is close to linear. Lower plots: Transition radiation from the Gaussian beam
of N = 105 electrons with transverse and longitudinal dimensions σ⊥ = 1 μm and σ3 = 125 μm, respectively. The plot (c) is for s = 1 and the
plot (d) is for s = −1. The distribution over m becomes wider than for the radiation from a single electron since k⊥σ⊥ 	 1. The projection of
the total angular momentum per photon, �, and the projection of the orbital angular momentum per photon are the same as for the one-particle
radiation.

radiated photons described by formulas (56). In virtue of
anisotropy of the CLC permittivity tensor and of the finite
width of the plate, there are four series of harmonics induced
by the direct ordinary and extraordinary waves and their re-
flected counterparts. The shortwave approximation proved to
be not applicable for description of photon radiation corre-
sponding to reflected waves at low harmonics. One needs
to resort to other methods [29] for a correct description of
radiation at these harmonics. Nevertheless the shortwave ap-
proximation gives a rather good qualitative description even
in the parameter domain where it is poorly applicable (see
Fig. 5).

We analyzed the radiation spectrum with respect to the
projection of the total and orbital angular momenta at the
given harmonics. It turns out that, in the paraxial regime,
there is the selection rule l = 2n + 1, where l is the OAM
projection of a radiated twisted photon and n ∈ Z is the
harmonic number. In other words, the system at issue is a
pure source of twisted photons. Since the pitch of the CLC
helix can be changed easily by varying the temperature, the

external electromagnetic field, and the composition of CLC,
this source allows one to change quickly the energy of radiated
twisted photons in a wide spectral range. In the shortwave
approximation, the twisted photons radiated from a classical
charged particle traversing normally the CLC plate possess a
linear polarization. The peculiar form of the CLC permittivity
tensor gives rise to generation of twisted photons mainly with
l = ±1 in the paraxial regime at the harmonics n = {−1, 0}
(see Figs. 3, 4, 5, and 6). The radiation at the higher harmonics
is suppressed. The radiation harmonics corresponding to n
with larger absolute value can be amplified by making use
of the coherent radiation of microbunched beams of electrons
adjusted to such a frequency of photon radiation. Nowadays,
there are created the electron bunch trains with distinguishable
harmonics of coherent radiation in the X-ray range [83,84].
Furthermore, the distribution of radiation of twisted pho-
tons with respect to m can be shifted by the number of the
harmonic of coherent radiation [31] if one uses the coher-
ent radiation from helically microbunched beams of charged
particles [30].
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FIG. 5. The same as on the lower plots in Fig. 2 and on the upper plots in Fig. 4 but the paraxial approximation is employed [29]. The
insets on the plots represent the distributions over m and n⊥ at the maximum of radiation intensity. For the parameters taken, the paraxial
approximation is applicable (the smallness parameter following from inequalities (9) is 2.1 × 10−3) whereas the shortwave approximation [the
parameter (19) is 1.7] and the perturbation theory with respect to δε (the smallness parameter following from inequalities (10) is 3.2 × 103) are
not. Despite this fact we see that the shortwave approximation describes the distributions with respect to m and n⊥ quite well. The distributions
over k0 agree only qualitatively. The selection rule (64) holds for both the approximations. Upper plots: Transition radiation of plane-wave
photons. The plot (a) is for s = 1 and the plot (b) is for s = −1. Lower plots: Transition radiation of twisted photons. The plot (c) is for s = 1
and the plot (d) is for s = −1.

In comparison with transition radiation from charged par-
ticles crossing the plate made of an isotropic homogeneous
dielectric or an ideal conductor where the OAM projection
l = −s, in the case of the CLC plate l does not depend
on the photon polarization. This allows one to simplify the
experimental scheme proposed in Ref. [28] to observe the
twisted photons in transition and VC radiations. One needs
no a homogeneous circular polarizer in the case of a CLC
plate. The source of twisted photons based on the transition
radiation from a CLC plate can be used to rotate the micro-
and nano-objects in physics, chemistry, and biology and also
to excite the nondipole transitions in atoms [72–75] and
nuclei [4,76].
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APPENDIX A: GENERAL FORMULAS FOR THE JOINING
COEFFICIENTS

Let us find the joining coefficients for the mode functions
(34), (36), and (37) and the normalization factor. The joining
coefficients are obtained from the boundary conditions (33).
In evaluating the derivatives of the semiclassical mode func-
tions (22), (23), (24), and (26), one has to take into account
only the leading contributions in powers of k−1

0 . These contri-
butions come from the derivatives acting on the fast oscillating
exponent. It is useful to write the corresponding conditions as
the matrix equation[

U 0
UT −U0T ′

][
ach

al

]
=

[
g
0

]
, (A1)

where

aT
ch = (r1, r2, l1, l2), aT

l = (d+, d−, h+, h−). (A2)
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FIG. 6. The average number of twisted photons, dP/dk0dk⊥, produced in transition radiation from electrons traversing normally the
cholesteric plate. The paraxial approximation is used [29]. The insets on the plots represent the distributions over m and n⊥ at the maximum
of radiation intensity. The width of the CLC plate L = 20 μm, the number of periods Nu = 25, and the components of the permittivity tensor
are ε⊥ = 1 − ω2

p/(3k2
0 ) and ε‖ = 1 − ω2

p/k2
0 with ωp = 21 eV. The parameter (19) is 1.3 at the maximum of radiation intensity and so the

shortwave approximation does not work well. In particular, we see that the radiation at the harmonic is not linearly polarized. The perturbation
theory with respect to δε is also not valid for these parameters. The maximum of the applicability parameters (10) is 2.5 × 102. The maximum
of the parameters (9) controlling the applicability of the perturbation theory with respect to n⊥ is 2.0 × 10−2. Upper plots: Transition radiation
from a single electron. The plot (a) is for s = 1 and the plot (b) is for s = −1. The selection rule (64) is fulfilled for n = 1. Lower plots:
Transition radiation from the Gaussian beam of N = 105 electrons with transverse and longitudinal dimensions σ⊥ = 1 μm and σ3 = 125 μm,
respectively. The plot (c) is for s = 1 and the plot (d) is for s = −1. The distribution over m becomes wider than for the radiation from a single
electron since k⊥σ⊥ 	 1. The projection of the total angular momentum per photon, �, and the projection of the orbital angular momentum
per photon are the same as for the one-particle radiation.

Besides,

T = diag(e−ik̄3L, e−ip3L, eik̄3L, eip3L ), T ′ = diag(e−ik3L, e−ik3L, eik3L, eik3L ),

U0 = 1√
2

⎡
⎢⎢⎢⎢⎣

cos θ − 1 cos θ + 1 − cos θ − 1 − cos θ + 1

cos θ + 1 cos θ − 1 − cos θ + 1 − cos θ − 1

k0(1 − cos θ ) k0(1 + cos θ ) k0(1 + cos θ ) k0(1 − cos θ )

k0(1 + cos θ ) k0(1 − cos θ ) k0(1 − cos θ ) k0(1 + cos θ )

⎤
⎥⎥⎥⎥⎦,

U =
[
U11 U12

U21 U22

]
, U11 =

[
a(1)

+ a(2)
+

a(1)
− a(2)

−

]
, U12 = U11

∣∣∣∣
a→ã

,

U21 = −iK∂zU11, U22 = −iK∂zU12 = −U21

∣∣∣∣
a→ã

,

gT = [
cos θ − s, cos θ + s, k0(1 − s cos θ ), k0(1 + s cos θ )

]
/
√

2,

(A3)
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where a(1,2)
± and ã(1,2)

± are the solutions (22), (23), (24), and (26). In the expressions for the components of the matrix U , all the
functions of z are taken at z = 0. Explicitly,

U21 =
⎡
⎣k̄3

[
a(1)

+ + k2
⊥

2k̄2
3
(a(1)

+ + a(1)
− )

]
k(2)

3

[
a(2)

+ + k2
⊥

2k̄2
3
(a(2)

+ + a(2)
− )

]
k̄3

[
a(1)

− + k2
⊥

2k̄2
3
(a(1)

− + a(1)
+ )

]
k(2)

3

[
a(2)

− + k2
⊥

2k̄2
3
(a(2)

− + a(2)
+ )

]
⎤
⎦. (A4)

Then we have

ach = U −1g, al = (T ′)−1U −1
0 UTU −1g, (A5)

for the solution of Eq. (A1).
Despite the fact that we work in the shortwave approximation, the solution Eq. (A5) obeys exactly the unitarity relation (see

for details Appendix A in Ref. [29]):

1 + |h+|2 + |h−|2 = |d+|2 + |d−|2. (A6)

This allows one to write the normalization constant in the form (see the details in Sec. 5A of Ref. [27])

|C|2 = 2(1 + a†
l al )

−1 = (|d+|2 + |d−|2)−1
. (A7)

APPENDIX B: EXPLICIT EXPRESSIONS FOR THE JOINING COEFFICIENTS

The exact expressions for the joining coefficients ach defined in formula (A2) can be cast into the form

r1 = is

√
k0

ε⊥ − n2
⊥ cos2 ϕ

(n̄3 + cos θ )
n̄3(z2

s + 1) − (z2
s − 1)(n̄3 cos θ + sin2 θ )

4n̄1/2
3 zs

,

r2 =
√

k0

ε⊥ − n2
⊥ cos2 ϕ

e−iS(−ϕ) (z2
s + 1)(n̄2

3 + ε⊥n(2)
3 cos θ ) − ε⊥(z2

s − 1)(n(2)
3 + cos θ )

4ε
1/2
⊥ (n(2)

3 )1/2zs

,

l1 = is

√
k0

ε⊥ − n2
⊥ cos2 ϕ

(n̄3 − cos θ )
n̄3(z2

s + 1) − (z2
s − 1)(n̄3 cos θ − sin2 θ )

4n̄1/2
3 zs

,

l2 = −
√

k0

ε⊥ − n2
⊥ cos2 ϕ

eiS(−ϕ) (z2
s + 1)(n̄2

3 − ε⊥n(2)
3 cos θ ) + ε⊥(z2

s − 1)(n(2)
3 − cos θ )

4ε
1/2
⊥ (n(2)

3 )1/2zs

,

(B1)

where n̄3 := k̄3/k0 and n(2)
3 := k(2)

3 /k0. The exact expressions for the coefficients νk , k = 0, 4, entering the normalization
constant (40) are

ν0 = [
8n̄2

3(n(2)
3 )2(1 − n2

⊥)ε2
⊥
(
4ε⊥z2

s − n2
⊥
(
z2

s + 1
)2)2]−1{

ε4
⊥(n(2)

3 )4n̄2
3

[
4z2

s − n2
⊥
(
z2

s + 1
)2]2

+ n̄2
3

[
ε2
⊥
(
4z2

s + n2
⊥
(
z2

s − 1
)2) − 2ε⊥n2

⊥(z2
s + 1) + n4

⊥
(
z4

s + 1
)2]2

+ ε2
⊥
(
n(2)

3

)2[
ε4
⊥
(
4z2

s + n2
⊥
(
z2

s − 1
)2)2 − 8ε3

⊥
[
n4

⊥(z4
s − 1)2 + 2n2

⊥
(
z6

s + 14z4
s + z2

s

) − 24z4
s

]
+ ε2

⊥
[
6n6

⊥(z4
s − 1)2 + n4

⊥(13z8
s + 124z6

s + 414z4
s + 124z2

s + 13) − 8n2
⊥z2

s (13z4
s + 50z2

s + 13) + 16z4
s

]
− 2ε⊥n2

⊥
[
n4

⊥(z2
s + 1)4

(
13z4

s + 58z2
s + 13

) − 4n2
⊥
(
z2

s + 1
)2(

z4
s + 18z2

s + 1
) − 16z4

s

]
+ 14n8

⊥(z2
s + 1)4 − 8n6

⊥
(
z2

s + 1
)2(

z4
s + 5z2

s + 1
) + 16n4

⊥z4
s

]}
, (B2)

ν1 = χ⊥n4
⊥
(
z4

s − 1
)(

n̄3 + ε⊥n(2)
3

)
8n̄3n(2)

3

(
1 − n2

⊥
)
ε⊥

(
4z2

s ε⊥ − n2
⊥
(
z2

s + 1
)2)2

[
ε2
⊥(1 − n2

⊥)(z2
s − 1)2 − n̄4

3(z2
s + 1)2

+ χ⊥n2
⊥
(
z4

s − 1
)(

n̄3 + ε⊥n(2)
3

) + n̄3n(2)
3 ε⊥

(
4z2

s − n2
⊥
(
z2

s + 1
)2)]

,

(B3)

ν2 = −χ2
⊥
[
4z2

s n̄2
3 + ε⊥n2

⊥
(
z2

s − 1)2 − 2n̄3n2
⊥
(
z4

s − 1
)][

4z2
s n̄2

3 + ε⊥n2
⊥
(
z2

s − 1
)2]

16n̄2
3(1 − n2

⊥)
(
4z2

s ε⊥ − n2
⊥
(
z2

s + 1
)2)2 , (B4)

ν3 = −
[
n̄4

3

(
z4

s + 1
)2 − ε2

⊥
(
n(2)

3

)2(
4z2

s − n2
⊥(z2

s + 1)2
) − ε2

⊥(1 − n2
⊥)

(
z2

s − 1
)2]

16
(
n(2)

3

)2
(1 − n2

⊥)ε2
⊥
(
4z2

s ε⊥ − n2
⊥
(
z2

s + 1
)2)2

× [
n̄4

3

(
z4

s + 1
)2 − ε2

⊥(n(2)
3 )2

(
4z2

s − n2
⊥(z2

s + 1)2
) − ε2

⊥(1 − n2
⊥)

(
z2

s − 1
)2 − 2n(2)

3 n2
⊥χ⊥ε⊥

(
z4

s − 1
)]

, (B5)
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ν4 = χ⊥n2
⊥(n̄3 − ε⊥n(2)

3 )(z4
s − 1)

8n̄3n(2)
3 (1 − n2

⊥)ε⊥
(
4z2

s ε⊥ − n2
⊥
(
z2

s + 1
)2)2

[
n̄3

(
z2

s + 1
)2(

ε⊥n2
⊥n(2)

3 − n̄3
3

)

− χ⊥n2
⊥
(
z4

s − 1
)
(n̄3 − ε⊥n(2)

3 ) − 4n̄3n(2)
3 ε⊥z2

s + (
1 − n2

⊥
)(

z2
s − 1

)2
ε2
⊥
]
, (B6)

where, for brevity, we denote zs := eisϕ . As is seen, the dependence of νk on s and ϕ is gathered into the combination sϕ.

APPENDIX C: PARAXIAL APPROXIMATION

In the leading order in n2
⊥, the solutions (22)–(24) are written as follows: the direct ordinary wave,

a(1)
± = ±i(2k̄0)−1/2eik̄3z±iθ̄ , A(1)

3 = k⊥ sin θ̄

(2k̄3
0 )1/2

eik̄3z; (C1)

the reflected ordinary wave,

ã(1)
± = ±i(2k̄0)−1/2e−ik̄3z±iθ̄ , Ã(1)

3 = − k⊥ sin θ̄

(2k̄3
0 )1/2

e−ik̄3z; (C2)

the direct extraordinary wave,

a(2)
± = (

2k0ε
1/2
‖

)−1/2
eiS(θ̄ )±iθ̄ , A(2)

3 = −k⊥ cos θ̄

(
k0ε

1/2
‖

2k̄4
0

)1/2

eiS(θ̄ ); (C3)

the reflected extraordinary wave,

ã(2)
± = (

2k0ε
1/2
‖

)−1/2
e−iS(θ̄ )±iθ̄ , Ã(2)

3 = k⊥ cos θ̄

(
k0ε

1/2
‖

2k̄4
0

)1/2

e−iS(θ̄ ). (C4)

Notice that we do not develop the arguments of the fast oscillating exponents as a series in n⊥ and neglect the small terms only
in the preexponential factors. To discard the contributions proportional to n2

⊥ in the fast oscillating exponents, the more stringent
conditions for large L must be satisfied,

ε
−1/2
⊥ k0n2

⊥L � 1,
√

1 + δεε
−1/2
⊥ k0n2

⊥L � 1, (C5)

and not just n2
⊥ � 1.

The exact expressions for r1,2, l1,2 are presented in formula (B1). In the paraxial approximation, neglecting the contributions
of the order of n2

⊥ and higher, we obtain

r1 = is

√
k0

ε
1/2
⊥

ε
1/2
⊥ + 1

2zs
, r2 =

√
k0

ε
1/2
‖

ε
1/2
‖ + 1

2zs
e−iS(−ϕ),

l1 = is

√
k0

ε
1/2
⊥

ε
1/2
⊥ − 1

2zs
, l2 =

√
k0

ε
1/2
‖

ε
1/2
‖ − 1

2zs
eiS(−ϕ).

(C6)

We see that the coefficients at the reflected waves are proportional to χ⊥,‖ and, as a rule, are small. In the paraxial regime, the
coefficients specifying the normalization constant (40) become

ν0 = 1

16

(
12 + ε⊥ + ε−1

⊥ + ε‖ + ε−1
‖

) − n2
⊥δε

32ε2
‖ε⊥z2

s

[(
ε2
‖ε

2
⊥ − ε‖ − χ2

‖ ε⊥/2
)(

z4
s + 1

) − (ε2
‖ − 1)ε⊥z2

s

]
,

ν1 = n2
⊥χ⊥(z4

s − 1)
(ε1/2

‖ − ε
1/2
⊥ )(ε1/2

‖ ε
1/2
⊥ + 1)

64z2
s ε

1/2
‖ ε

3/2
⊥

,

ν2 = − χ2
⊥

32ε⊥
− n2

⊥χ2
⊥

64ε2
⊥z2

s

[(
ε⊥ − ε

1/2
⊥ + 1

)
z4

s + ε⊥ + ε
1/2
⊥ + 1

]
,

ν3 = − χ2
‖

32ε‖
+ n2

⊥χ‖
128ε2

‖ε⊥z2
s

{(
ε

1/2
‖ − 1

)[(
ε

1/2
‖ + 1

)
(ε‖ + ε⊥) + 2ε

3/2
‖ χ⊥

]
z4

s − 2(ε‖ + 1)(ε‖ − ε⊥)z2
s

+ (ε1/2
‖ + 1)

[
(ε1/2

‖ − 1)(ε‖ + ε⊥) + 2ε
3/2
‖ χ⊥

]}
,

ν4 = n2
⊥χ⊥(z4

s − 1)

(
ε

1/2
‖ + ε

1/2
⊥

)(
ε

1/2
‖ ε

1/2
⊥ − 1

)
64z2

s ε
1/2
‖ ε

3/2
⊥

, (C7)
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Notice that the second term in ν0 and the expressions for νk , k = 1, 4, are of order χ2
⊥,‖, i.e., they are small. The terms proportional

to n2
⊥ are suppressed even stronger.
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