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Heat fluctuations in a harmonic chain of active particles
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One of the major challenges in stochastic thermodynamics is to compute the distributions of stochastic
observables for small-scale systems for which fluctuations play a significant role. Hitherto much theoretical
and experimental research has focused on systems composed of passive Brownian particles. In this paper, we
study the heat fluctuations in a system of interacting active particles. Specifically we consider a one-dimensional
harmonic chain of N active Ornstein-Uhlenbeck particles, with the chain ends connected to heat baths of different
temperatures. We compute the moment-generating function for the heat flow in the steady state. We employ
our general framework to explicitly compute the moment-generating function for two example single-particle
systems. Further, we analytically obtain the scaled cumulants for the heat flow for the chain. Numerical Langevin
simulations confirm the long-time analytical expressions for first and second cumulants for the heat flow for a
two-particle chain.
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I. INTRODUCTION

Nonequilibrium systems are ubiquitous [1–4]. Examples
include molecular motors, engines, biomolecules, colloidal
particles, and chemical reactions. In stark contrast to equi-
librium counterparts [5], a general framework to understand
nonequilibrium systems is still missing. In the last couple of
decades, researchers have found general relations governing
systems arbitrarily far from equilibrium, such as the fluctua-
tion relations [1], notably including transient and steady-state
fluctuation theorems [6–9], the Jarzynski work-free energy
relation [10], the Crooks work-fluctuation theorem [11], and
the Hatano-Sasa relation [12]. Recently, the thermodynamic
uncertainty relation was established [13], essentially bound-
ing the precision of arbitrary currents by the average entropy
production. This points to promising applications to infer dis-
sipation by measuring arbitrary currents [14–18].

Although these relations are independent of specific system
details, fluctuations of observables (heat, work, entropy pro-
duction, particle current, efficiency, etc.) remain dependent on
the choice of the system. The probability distribution P(A, τ )
of an observable A at time τ in a system of interest carries
full information about the fluctuations of A. In the long-time
limit, P(A, τ ) is expected to have a large-deviation form [19],
P(A, τ ) � eτI(A/τ ), where the symbol � implies logarithmic
equality and the large-deviation function is

I (a) ≡ lim
τ→∞

1

τ
ln P(A = aτ, τ ), (1)

for A scaling linearly with the observation time τ [19]. Un-
fortunately, exact calculation of the large-deviation function
is known only for a few systems (see some examples in
Refs. [20–27]).

Another class of nonequilibrium systems, active matter
[28–37], has attracted significant attention in recent years.
The individual components of active matter independently
consume energy from an internal source (in addition to the
surrounding environment) and perform directed motion [38],
thereby breaking time-reversal symmetry. Systems exhibit-
ing active behavior include fish schools [39], flocking birds
[40,41] and rods [42], light-activated colloids [43], bacte-
ria [44,45], synthetic microswimmers [46–48], and motile
cells [49]. Several interesting observations have been made
in different settings, for example, clustering [50,51], absence
of a well-defined mechanical pressure [52], motility-induced
phase separation [53], and jamming [54]. Research has fo-
cused on numerous quantitative features of active systems,
e.g., transport properties in exclusion processes [55–58], posi-
tion distributions with [59,60] and without resetting [61–63],
survival probability [64], mean squared displacement and
position correlation functions [65], spatiotemporal velocity
correlation functions [66], arcsine laws [67], and the perimeter
of the convex hull [68].

Three predominant types of modeling are used to describe
the motion of an individual active particle: (1) an active Brow-
nian particle (ABP) [69], (2) a run-and-tumble particle (RTP)
[69], and (3) an active Ornstein-Uhlenbeck particle (AOUP)
[70]. Recently, inspired by two bacterial species (Myxococcus
xanthus and Pseudomonas putida), Santra et al. introduced a
new scheme, a direction-reversing active Brownian particle
(DRABP), to model bacterial motion [71]. These different
models differ in how they model self-propulsion. In this paper
we study the simplest model, an AOUP, which nevertheless
introduces several rich behaviors such as motility-induced
phase separation [53], glassy dynamics [72], accumulation at
walls [73], and has recently been used to understand distance
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from equilibrium [74–76] and time-reversal symmetry break-
ing [70] of active-matter systems.

A central concern in nonequilibrium physics is heat con-
duction through a system of interest, connected to two heat
baths at different temperatures. According to Fourier’s law,
the local current is proportional to the local temperature gra-
dient. Much research has studied the microscopic details of
this picture in, for example, harmonic chains [77,78] and lat-
tices [79–82], anharmonic chains [83,84] and lattices [82,85],
disordered harmonic chains [86], a harmonic chain with
alternating masses [87], elastically colliding unequal-mass
particles [88], a free Brownian particle [90], and Brownian
oscillators [89,91]. We are unaware of any study of heat con-
duction in a system of interacting active particles.

In this paper, we quantify the effect of activity on heat-
transport properties (both average and fluctuations of heat
flow) in a one-dimensional chain of N AOUPs connected by
harmonic springs. In the steady state, we compute the long-
time limit of the moment-generating function for heat flow
using the formalism developed in Ref. [77]. We use our frame-
work to show explicit derivations for the moment-generating
functions in the long-time limit for two different one-particle
systems [89,92]. We write analytical expressions for the first
two cumulants of the heat flow (higher cumulants can be
computed similarly). For a two-AOUP chain, we also compare
the long-time analytical results with numerical simulations
performed using Langevin dynamics.

The paper is organized as follows. In Sec. II, we present
the model and discuss the steady-state joint distribution. In
Sec. III, we formally derive the distribution of heat flow in
the long-time limit. In Sec. IV, we compute the characteristic
function for heat flow in the long-time limit in the steady state.
We apply our formalism to two different examples in Sec. V.
Using the characteristic function, we analytically compute
cumulants for heat flow in Sec. VI and compare the analytical
results for a chain of two particles with numerical simulations.
Finally, we conclude in Sec. VII.

II. SETUP

Consider a harmonic chain composed of N active Ornstein-
Uhlenbeck particles (AOUPs) in one dimension. Each particle
is connected to its nearest neighbors with harmonic springs.
Let ki be the stiffness constant of a spring connecting particles
i and i + 1. The left- and right-end particles, particles 1 and
N , are connected to fixed locations with harmonic springs of
stiffness kL = k0 and kR = kN , respectively. Particles 1 and N
are, respectively, coupled with friction coefficients γL and γR

to baths of temperature TL and TR. Figure 1 shows a schematic
of the system.

The underdamped dynamics of this coupled system obey,
in matrix form,

Ẋ (t ) = V (t ), (2a)

MV̇ (t ) = −�X − �V (t ) + F (t ) + B(t ), (2b)

Ḟ (t ) = −R−1F (t ) + Z (t ), (2c)

where the dot indicates a time derivative. In Eqs. (2a)
and (2b), X ≡ (x1, x2, . . . , xN )�, V ≡ (v1, v2, . . . , vN )�, and
M ≡ diag(m1, m2, . . . , mN ), where xi, vi, and mi, respec-

FIG. 1. Schematic for one-dimensional harmonic chain of active
Ornstein-Uhlenbeck particles coupled to two heat baths. mi is the
mass of the ith particle, ki is the spring constant, and TL,R and γL,R,
respectively, are temperatures of and friction coefficients coupling to
the left (L) and right (R) heat baths.

tively, are the position, velocity, and mass of the ith
particle. The left and right ends of the chain are con-
nected to heat baths (see Fig. 1), so the noise vec-
tor is B ≡ δi,1ηL + δi,NηR = (ηL, 0, . . . , 0, ηR )�, and the
friction matrix is � ≡ δi, j (δi,1γL + δi,NγR), where ηL,R(t )
are Gaussian thermal white noises with mean zero and
correlations 〈ηL(t )ηL(t ′)〉 = 2γLTLδ(t − t ′), 〈ηR(t )ηR(t ′)〉 =
2γRTRδ(t − t ′), and 〈ηL(t )ηR(t ′)〉 = 0. For convenience,
throughout the paper we set Boltzmann’s constant to one.
The nearest-neighbor coupling is reflected in the tridi-
agonal symmetric force matrix � with elements �i, j ≡
(ki−1 + ki )δi, j − ki−1δi, j+1 − kiδi, j−1. The chain particles are
driven by force vector F≡( f1, f2, . . . , fN )�, with each active
force fi dynamically evolving according to the Ornstein-
Uhlenbeck (OU) equation in Eq. (2c), with active-noise vector
Z (t )≡(ζ1, ζ2, . . . , ζN )�, where each component ζi(t ) is again
a Gaussian white noise with mean zero and correlations
〈ζi(t )ζ j (t ′)〉 = 2Da

i δi, jδ(t − t ′). The active and thermal noises
are uncorrelated to each other, i.e., 〈ηi(t )ζ j (t ′)〉 = 0 for all
t, t ′. In Eq. (2c), R≡diag(t a

1 , t a
2 , . . . , t a

N ) is a diagonal matrix
whose (i, i)-th element corresponds to the active relaxation
time for the ith active force. The superscript “a” indicates
active.

In the long-time stationary state, the mean of each active
force fi is zero, with correlation

〈 fi(t ) f j (t
′)〉 = Da

i t a
i exp

{−|t − t ′|/t a
i

}
δi, j . (3)

Notice that in the limit t a
i → 0 and Da

i → ∞ such that (t a
i )2Da

i
approaches a finite constant 2Ai, this active force is delta
correlated in time: 〈 fi(t ) f j (t ′)〉 = 2Ai δi, jδ(t − t ′).

From Eqs. (2a)–(2c), the dynamical state vector
U≡(X,V, F )� of the full system is linear with Gaussian
white noises. Therefore, at a long time, the distribution of
U reaches a stationary state (SS) Gaussian distribution (see
Appendix B):

PSS(U ) ≡ 1√
(2π )3N det[
]

exp

[
−1

2
U �
−1U

]
, (4)

for correlation matrix


 ≡ 〈UU �〉 = 1

π

∫ +∞

−∞
dω

[
N∑

j=1

Da
jq jq

†
j

ω2 + (t a
j )−2

+ γLTL�1�
†
1 + γRTR�N�

†
N

]
, (5)
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in which vectors q j and � j , respectively, are

q�
j ≡ (G1, j, G2, j, . . . , GN, j, iωnG1, j, (6a)

iωnG2, j, . . . , iωnGN, j, δ1, j, . . . , δN, j ) for j = 1, . . . , N,

��
j ≡ (G1, j, G2, j, . . . , GN, j, iωnG1, j,

iωnG2, j, . . . , iωnGN, j, 0, 0, . . . , 0︸ ︷︷ ︸
N

) for j = 1, N. (6b)

Notice that the symbol † refers to the combination of trans-
pose and ω → −ω operations on a matrix. In both vectors (6a)
and (6b), the first N components, middle N components, and
final N components, respectively, correspond to positions x,
velocities v, and active forces f . Gi, j (ω) is the (i, j)-th matrix
element of the symmetric Green’s function matrix

G(ω) ≡ [� − ω2M + iω�]−1. (7)

In this paper, we are interested in the fluctuations of heat
flow from the left heat bath to the system [93] in a given time
τ in the steady state PSS(U0) [see Eq. (4)]:

QL ≡
∫ τ

0
dt [ηL(t ) − γLv1(t )]v1(t ). (8)

In Sec. IV we will show that the fluctuations of heat flow from
the right heat bath can be computed using that of the left heat
bath by applying suitable transformations.

Note that the above integral (8) has to be interpreted with
the Stratonovich rule [94]. QL is not linear in the Gaussian
state vector U , so we expect that its probability distribution
P(QL, τ ) is not generally Gaussian.

In the following, we give a formal derivation of P(QL, τ )
using the Fokker-Planck equation.

III. FORMAL SOLUTION OF THE FOKKER-PLANCK
EQUATION TO DERIVE P(QL, τ )

To obtain the distribution of QL, it is convenient to first
compute the conditional characteristic function [also known
as the conditional moment-generating function (CMGF)]:

Z (λ,U, τ |U0) ≡
∫ +∞

−∞
dQL e−λQL ρ(QL,U, τ |U0), (9)

where ρ(QL,U, τ |U0) is the conditional joint distribution. We
write the right-hand side (RHS) as

Z (λ,U, τ |U0) = 〈e−λQLδ[U − U (τ )]〉U0 , (10)

where the angular brackets indicate averaging over all trajec-
tories emanating from a fixed initial state vector U0. Note that
setting the conjugate variable λ to zero in either Eq. (9) or (10)
gives the distribution P(U, τ |U0) of state vector U at time τ

starting from a fixed initial vector U0. Z (λ,U, τ |U0) obeys the
Fokker-Planck equation [2]:

∂Z (λ,U, τ |U0)

∂τ
= LλZ (λ,U, τ |U0), (11)

where Lλ is the Fokker-Planck operator [see Eq. (A3)] [2].
Since this differential equation is linear, the formal solution

can be written as a linear combination of left and right eigen-
functions. In the long-time limit, the solution is dominated by

the term corresponding to the largest eigenvalue μ(λ) of Lλ,
giving

Z (λ,U, τ |U0) ≈ eτμ(λ)χ (U0, λ)�(U, λ), (12)

where �(U, λ) is the corresponding right eigenfunction
such that Lλ�(U, λ) = μ(λ)�(U, λ), and χ (U0, λ) is the
projection of the initial state U0 onto the left eigen-
vector corresponding to μ(λ). Further note that the left
and right eigenfunctions satisfy the normalization condition∫

dU χ (U, λ)�(U, λ) = 1.
Integrating the CMGF over both the steady-state distribu-

tion PSS(U0) of the initial state vector U0 (4) and the final state
vector U gives the characteristic function (moment-generating
function):

Z (λ, τ ) ≈ g(λ)eτμ(λ), (13)

for prefactor

g(λ) ≡
∫

dU0

∫
dU PSS(U0)χ (U0, λ)�(U, λ). (14)

Inverting Z (λ, τ ) using the inverse Fourier transform gives the
distribution function:

P(QL, τ ) = 1

2π i

∫ +i∞

−i∞
dλ eλQL Z (λ, τ )

≈ 1

2π i

∫ +i∞

−i∞
dλ g(λ)eτ [μ(λ)+λQ], (15)

where Q ≡ QL/τ is the time-averaged heat rate entering the
system from the chain’s left end. The integral is performed
along the vertical contour passing through the origin of the
complex-λ plane.

When both g(λ) and μ(λ) are analytic functions of λ, the
integral (15) can be approximated (in the large-τ limit) using
the saddle-point method [19], giving the large-deviation form
of the distribution

P(QL = Qτ, τ ) � eτI(Q), (16)

where I (Q) ≡ μ(λ∗) + Qλ∗ is the large-deviation function
[19], and λ∗ is the saddle point, a solution of

∂μ(λ)

∂λ

∣∣∣∣
λ=λ∗(Q)

= −Q. (17)

However, when g(λ) has singularities in the region λ ∈
[0, λ∗], special care is needed [89,92,95].

Computation of μ(λ) and g(λ) using the Fokker-Planck
equation is rather difficult. In Sec. IV, we compute the charac-
teristic function Z (λ, τ ) using a method developed in [77] and
previously used to compute distributions of quantities such
as partial and apparent entropy productions [96–98], work
fluctuations [92,95], heat transport in lattices [79], and heat
and work fluctuations for a Brownian oscillator [89].

IV. COMPUTING THE CHARACTERISTIC
FUNCTION Z(λ, τ )

In this section, we derive the largest eigenvalue μ(λ) and
the prefactor g(λ) appearing in the characteristic function
Z (λ, τ ) [see Eq. (13)] for heat QL flowing through the left
end of the N-particle system in the steady state.
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We first introduce the finite-time Fourier transform and its
inverse [77],

Ã(ωn) ≡ 1

τ

∫ τ

0
dt A(t ) e−iωnt , (18a)

A(t ) ≡
+∞∑

n=−∞
Ã(ωn) eiωnt , (18b)

where ωn=2πn/τ for integer n.
We replace ηL(t ) and v1(t ) in the RHS of Eq. (8) with their

finite-time inverse Fourier transform representations (18b),
and then integrate over time, obtaining the Fourier decompo-
sition for the left heat flow:

QL = τ

2

+∞∑
n=−∞

[η̃L(ωn)ṽ1(−ωn) + η̃L(−ωn)ṽ1(ωn)

− 2γLṽ1(ωn)ṽ1(−ωn)]. (19)

We substitute the above expression of QL in the conditional
characteristic function, Z (λ,U, τ |U0), given in Eq. (10), and
compute the average (see Appendix C for detailed calcula-
tions), which eventually leads to (in the long-time limit)

Z (λ,U, τ |U0) ≈ eτμ(λ)e− 1
2 U �L1U e− 1

2 U �
0 L2U0√

(2π )3N det H1(λ)
, (20a)

μ(λ) ≡ − 1

4π

∫ +∞

−∞
dω ln[det(��)], (20b)

L1(λ) ≡ H−1
1 + H−1

1 H�
2 , (20c)

L2(λ) ≡ −H−1
1 H�

2 . (20d)

Here μ(λ) is the largest eigenvalue of the Fokker-
Planck operator Lλ (12), where in the integrand � ≡
2
τ

diag(Da
1, Da

2, . . . , Da
N , γLTL, γRTR) is the noise correlation

matrix appearing in the noise distributions in Eqs. (C15a)
and (C15b), and � ≡ �−1 + λτC [see Eq. (C6a) for C].1 The
matrices H1(λ), H2(λ), and H3(λ), respectively, are defined in
Eqs. (C20a), (C20b), and (C20c).

Computation of the determinant in the integrand on the
RHS of Eq. (20b) for arbitrary N appears to us a difficult task.
Nonetheless, for N = 1 and 2 (for k ≡ k1 = kL = kR) one can
show that

μ(λ) = − 1

4π

∫ +∞

−∞
dω

× ln

[
1 + 4λ(�β − λ)ω2γLγRTLTR|G1,N |2

− 4λ(1 + TLλ)γL

N∑
�=1

Da
�|G1,�|2

1 + (ωt a
� )−2

]
, (21)

for �β ≡ T −1
R − T −1

L . Further, Fig. 2 shows the indistin-
guishability of (21) and (20b) for N = 5 and 10. Thus, we
hypothesize that (21) is valid for any N .

1Here we converted the summation in the first term of Eq. (C17)
into an integral (20b) and thus dropped the subscript n from the
matrix Cn given in (C6a).

FIG. 2. Largest eigenvalue μ(λ) as a function of λ for N = 5
(a) and N = 10 (b). Circles: numerical computation of (20b). Solid
red curve shows Eq. (21). In both plots, γL = 0.58, γR = 0.75, TL =
1.58, TR = 0.11145. (a) kL = 0.1, k1 = 0.25, k2 = 0.2, k3 =
0.3, k4 = 0.4, kR = 0.5, m1 = 0.5, m2= 0.27, m3= 0.19, m4=1.48,

m5 = 1.5, Da
1= 0.154, Da

2= 0.1254, Da
3= 0.147, Da

4= 0.3259, Da
5=

0.6548, t a
1 = 1.154, t a

2 = 2.2254, t a
3 = 1.147, t a

4 = 0.39, t a
5 = 3.148.

(b) m� = 0.1�, t a
� = 0.3�, Da

� = 0.5�, k� = 0.05(� + 1), kL = 0.05,
and kR = 0.55.

When the particles composing the chain have no activity
(Da

� → 0), we recover the same μ(λ) shown in Ref. [77] for a
harmonic chain of passive particles. Further, in the limit t a

� →
0 and Da

� → ∞ such that (t a
� )2Da

� → 2A�, the OU force f� is
delta correlated in time, and Eq. (21) becomes

μ(λ) = − 1

4π

∫ +∞

−∞
dω

× ln

[
1 + 4λ(�β − λ)ω2γLγRTLTR|G1,N |2

− 8λ(1 + TLλ)γLω2
N∑

�=1

A�|G1,�|2
]
, (22)

where the third term can be understood as the contribution
coming from the Gaussian white noise with variance 2A�

acting on the �th particle in the chain. In what follows, unless
specified, we maintain the general case where t a

� is positive
and Da

� is finite.
When the variable λ conjugate to the heat QL is set to zero

in Z (λ,U, τ |U0) in Eq. (20a), both μ(λ) and H2(λ) vanish [see
Eqs. (20b) and (C20b)]. This gives the distribution for U at
time τ starting from U0, which in the large-τ limit approaches
the (unique) steady state,

PSS(U ) ≡ Z (0,U, τ→ ∞|U0) = e− 1
2 U �H−1

1 (0)U√
(2π )3N det H1(0)

. (23)

H1(0) can be obtained from Eq. (C20a) and shown equal to
M, thereby recovering Eq. (4).

Finally, we obtain the characteristic function Z (λ, τ ) ≡
〈e−λQL〉 by integrating Z (λ,U, τ |U0) [see Eq. (20a)] over the
steady-state distribution PSS(U0) [see Eq. (23)] of the initial
state vector U0 and the final state vector U , thereby identifying
the prefactor

g(λ) = (det[H1(λ)L1(λ)] det[I + H1(0)L2(λ)])−1/2, (24)

where I is the identity matrix.
In this section, we calculated the characteristic function for

the left heat flow QL(τ ) [Eq. (8)]. The characteristic function
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for the heat flow

QR(τ ) ≡
∫ τ

0
dt [ηR(t ) − γRvN (t )]vN (t ), (25)

from the right heat bath can be simply obtained from the
characteristic function Z (λ, τ ) for the left heat flow. This can
be done by making the transformations: γR ←→ γL, TR ←→
TL and relabelling the mass of particles, spring constants,
strength of the active forces, and active-forces relaxation time,
respectively, as

(m1, m2, . . . , mN ) −→ (mN , mN−1, . . . , m1), (26a)

(kL, k1, . . . , kN−1, kR ) −→ (kR, kN−1, . . . , k1, kL), (26b)(
Da

1, Da
2, . . . , Da

N

) −→ (
Da

N , Da
N−1, . . . , Da

1

)
, (26c)(

t a
1 , t a

2 , . . . , t a
N

) −→ (
t a
N , t a

N−1, . . . , t a
1

)
. (26d)

In this way, QL exactly maps onto QR. Applying these
transformations to Z (λ, τ ) gives the characteristic function
ZR(λ, τ ) ≈ gR(λ)eτμR (λ) for the heat flow from the right heat
bath (designated by the subscript “R” ), ultimately giving

μR(λ) = − 1

4π

∫ +∞

−∞
dω

× ln

[
1 − 4λ(�β + λ)ω2γLγRTLTR|G1,N |2

− 4λ(1 + TRλ)γR

N∑
�=1

Da
�|GN,�|2

1 + (ωt a
�

)−2

]
. (27)

V. EXAMPLES

So far, we have described how to compute the characteristic
function Z (λ, τ ) ≈ g(λ)eτμ(λ) for our N-particle system. As
discussed above, its inversion (15) gives the full probability
distribution P(QL, τ ) of heat fluctuations. In this section, we
consider two simple illustrative examples demonstrating our
method to exactly compute both μ(λ) and g(λ) at steady state.

A. Heat fluctuation for a harmonic oscillator

First, we specialize our general model to a single particle
without OU driving force (i.e., a passive particle). This recov-
ers the model previously used in Ref. [89] to study the heat
and work fluctuations for a Brownian oscillator. This particle
evolves according to [89]

ẋ(t ) = v(t ), (28a)

mv̇(t ) = kx(t ) − (γL + γR)v(t ) + ηL(t ) + ηR(t ), (28b)

for particle position x, velocity v, mass m, and trap stiffness k.
In this case, we aim to compute the characteristic function

Z (λ, τ ) ∼ g(λ)eτμ(λ) for heat flow QL into the system from the
left heat bath (8). Let us first compute μ(λ) [see the general
expression (20b) for N particles] in which � = �−1 + λτC.
Here the noise correlation matrix governing the noise distri-
butions ((C15a), (C15b)) is � = 2

τ
diag(γLTL, γRTR). Upon

identifying � = k, M = m, and � = γL + γR (see Sec. II), the
Green’s function (7) becomes

G = [k − mω2 + iω(γL + γR)]−1. (29)

In this case, the matrix C appearing in the Fourier decompo-
sition of the heat flow QL [see Eq. (C5)] can be deduced from
(C6a) for the special case of N = 1:

C =

⎛
⎜⎝

2γRω2|G|2︷ ︸︸ ︷
iω(G − G∗) − 2γLω2|G|2 −iωG∗ − 2γLω2|G|2

iωG − 2γLω2|G|2 −2γLω2|G|2

⎞
⎟⎠,

(30)

where |G|2 ≡ GG∗, and the first diagonal element of the ma-
trix is rewritten using a relation derived from Eq. (29),

G − G∗ = −2iω(γL + γR)|G|2. (31)

Thus, μ(λ) given in Eq. (20b) becomes

μ(λ) = − 1

4π

∫ +∞

−∞
dω

× ln[1 + 4ω2|G|2γLγRTLTRλ(�β − λ)] (32a)

= γL + γR

2m
[1 − ν(λ)], (32b)

where again �β ≡ T −1
R − T −1

L , and

ν(λ) ≡
√

1 + 4
γLγR

(γL + γR)2
TLTRλ(�β − λ). (33)

To compute the prefactor g(λ), we compute the three matrices
H1(λ), H2(λ), and H3(λ) appearing in Eq. (C22) in exponents
of the CMGF, Z (λ, τ,U |U0). With the identification of

K1 = (��
1 , ��

2 )�, (34a)

K†
2 = (�∗

1, �
∗
2 ), (34b)

�1 = �2, (34c)

a�
1 = [(1 + 2iγLωG∗)R, 2iγLωG∗R], (34d)

a2 = [(1 − 2iγLωG)R†,−2iγLωGR†]�, (34e)

R = G(k,−imω)�, (34f)

H1(λ) given in Eq. (C20a) becomes

H1(λ) = τ

2π

∫ +∞

−∞
dω

�22 − �21 − �12 + �11

det[�]
�∗

1�
�
1 (35a)

= γLTL + γRTR

π

∫ +∞

−∞
dω

× |G|2
1 + 4ω2|G|2γLγRTLTRλ(�β − λ)

(
1 iω

−iω ω2

)
.

(35b)

In Eq. (35a), �i j is the (i, j)-th matrix element of �. The
second line is obtained using the relations �22 − �21 − �12 +
�11 = τ

2 [(γLTL)−1 + (γRTR)−1] and det � = τ 2

4γLγRTLTR
[1 +

4γLγRTLTRω2|G|2λ(�β − λ)]. The integrals of the off-
diagonal elements vanish because the integrands are odd.
Integrating the diagonal elements gives

H1(λ) = γLTL + γRTR

(γL + γR)ν(λ)

(
k−1 0
0 m−1

)
. (36)
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Similarly, H2(λ) [see Eq. (C20b)] becomes

H2(λ) = lim
ε→0

λ

π

∫ +∞

−∞
dω e−iωε γLTL(1 + 2iγLωG∗) + 2iωG∗γRTR(γL + λγLTL)

1 + 4ω2|G|2γLγRTLTRλ(�β − λ)

(
k ikω

−iωm mω2

)
(37a)

= λγLTL − 1
2 (γL + γR)[ν(λ) − 1]

(γL + γR)ν(λ)

(
1 0
0 1

)
, (37b)

and H3(λ) [see Eq. (C20a)] becomes

H3(λ) = λ

2π

∫ +∞

−∞
dω

RR†

det(�)

[
λτ 2

(
1

2γRTR
− 2γLω2|G|2(�β − λ)

)
+ 2γL det[�]

]
(38a)

= λ(γL + λγLTL)

π

∫ +∞

−∞
dω

|G|2
1 + 4ω2|G|2γLγRTLTRλ(�β − λ)

(
k2 iωmk

−iωmk m2ω2

)
(38b)

= λ(γL + λγLTL)

(γL + γR)ν(λ)

(
k 0
0 m

)
. (38c)

One can check that these matrices satisfy the condition
H3(λ) = [I + H2(λ)]H−1

1 (λ)H�
2 (λ), ensuring the factoriza-

tion of the CMGF into the product of factors that respectively
capture the entire dependence on U0 and U [see Eqs. (12) and
(20a)]. Substituting H1(λ) and H2(λ) in L1(λ) and L2(λ) given
in Eq. (20d) and Eq. (24) gives

g(λ) = 4ν(λ)

[1 + ν(λ)]2 − [2λγLTL(γL + γR)−1]2
. (39)

Finally, we write the characteristic function Z (λ, τ ) ≈
g(λ)eτμ(λ) [see Eq. (13)] using Eqs. (32b) and (39). Using
the inverse transform (15), one can find the distribution of
P(QL, τ ) as discussed in Ref. [89].

B. Work fluctuations for a Brownian particle driven by a
correlated external random force

Here we specialize our general model to N = 1, TL = TR =
T , and ki = 0. The equations of motion for the particle read
[92]

v̇(t ) = − 1

tγ
v(t ) + 1

m
f (t ) + 1

m
η(t ), (40a)

ḟ (t ) = − 1

t a
f (t ) + ζ (t ), (40b)

where tγ ≡ m/γ is the characteristic relaxation timescale of
a particle’s velocity, η(t ) is Gaussian thermal white noise
of mean zero and correlation 〈η(t )η(t ′)〉 = 2γ T δ(t − t ′), and
f (t ) is again an active OU force with mean zero and corre-
lation 〈 f (t ) f (t ′)〉 = Dat ae−|t−t ′|/t a

(see Sec. II). We use our
extended framework to obtain the characteristic function for
work done on the Brownian particle and show its consistency
with previous calculations on this model by Pal and Sabha-
pandit [92].

The work due to external forcing is [93] (using the
Stratonovich rule [94])

W ≡
∫ τ

0
dt f (t )v(t ). (41)

Multiplying Eq. (40a) by v and integrating from 0 to τ , the
first law of thermodynamics reads

m

2

(
v2

τ − v2
0

) =
∫ τ

0
dt f (t )v(t ) +

∫ τ

0
dt [η(t ) − γ v(t )]v(t ),

(42a)

�U = W + Q, (42b)

where the left-hand side and the second term on the RHS,
respectively, are the change in the internal energy and the heat
flow from the bath to the system. Following Ref. [92], we
define dimensionless work W ≡ βW , where β ≡ T −1 is the
inverse temperature: the work is measured in units of thermal
energy kBT (Boltzmann’s constant kB is one).

With a suitable mapping, we compute the distribution of
the dimensionless work W . The CMGF [see Eq. (10)] for W
can be written as

ZW (λ,U, τ |U0) ≡
〈
e−λWδ[U − U (τ )]

〉
U0

(43a)

= e−βmλ(v2
τ −v2

0 )/2

〈
eλβQδ[U − U (τ )]

〉
U0

(43b)

= e−βmλ(v2
τ −v2

0 )/2 Z (−βλ,U, τ |U0) (43c)

≈ eτμ(−βλ)e− βmλ

2 (v2
τ −v2

0 )√
(2π )2 det H1(−βλ)

(43d)

× e− 1
2 U �L1(−βλ)U e− 1

2 U �
0 L2(−βλ)U0 .

The second line follows from the first law of thermody-
namics (42b). Further, we write the boundary contributions in
the exponent in Eq. (43d) in the matrix form:

−βmλ

2

(
v2

τ − v2
0

)=1

2
U �L0(−βλ)U − 1

2
U �

0 L0(−βλ)U0,

(44)

where [L0(−βλ)]i, j ≡ −βmλδi,1δ j,1, for 1 � i, j � 2.
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Substituting this in Eq. (43d) yields

ZW (λ,U, τ |U0) ≈ eτμ(−βλ)e− 1
2 U �L3(−βλ)U e− 1

2 U �
0 L4(−βλ)U0√

(2π )2 det H1(−βλ)
,

(45)

where we have identified the modified exponents relating the
exponents obtained from the CMGF of the (dimensionless)
heat dissipated (−βQ) to the bath from the system, to that
of the work on the particle by the external force: L3(−βλ) ≡
L1(−βλ) − L0(−βλ) and L4(−βλ) ≡ L2(−βλ) + L0(−βλ).
We emphasize that the matrix H1(−βλ) corresponding to the
work W remains the same as that of the heat dissipated to the
bath −βQ.

Integrating over the final state vector U and the initial state
vector U0 with respect to the initial steady-state distribution
PSS(U0), gives the characteristic function (see Sec. III),

ZW (λ, τ ) ≈ gW (λ)eτμW (λ), (46a)

μW (λ) ≡ μ(−βλ), (46b)

gW (λ) ≡ (det[H1(−βλ)L3(−βλ)])−1/2

× (det[I + H1(0)L4(−βλ)])−1/2. (46c)

Let us now compute μW (λ) and gW (λ). In this exam-
ple, there is no harmonic confinement (k = 0), so � = 0,
� = γ , and M = m (see Sec. II). Thus, the Green’s func-
tion (7) becomes G = [iωγ − mω2]−1. The diagonal matrix
� in the noise distributions in Eqs. (C15a) and (C15b) is
� = 2

τ
diag(Da, D).

In the integrand of μ(λ) defined in Eq. (20b), � = �−1 +
λτC, where the Hermitian matrix C can be obtained from
Eq. (C6a) for one particle:

C =

⎛
⎜⎜⎜⎝

−2γ |G|2
1 + (ω2t a )−2

G∗

1 + (iωt a )−1

−G

−1 + (iωt a )−1
0

⎞
⎟⎟⎟⎠. (47)

Substituting � and � in μ(λ) in Eq. (20b) and making the
transformation λ → −βλ gives

μW (λ) = − 1

4π

∫ +∞

−∞
dω ln

[
1 + 4λ(1 − λ)θ(

δ2t2
γ ω2 + 1

)(
t2
γ ω2 + 1

)]
(48a)

= 1

2tγ
[1 − ν̄(λ)], (48b)

for

ν̄(λ) ≡ 1

δ

[√
1 + δ2 + 2δν(λ) − 1

]
, (49a)

ν(λ) ≡
√

1 + 4θλ(1 − λ). (49b)

Following [92], we introduced two dimensionless param-
eters, the relative strength θ ≡ (t a )2Da/(γ T ) of the external
force with respect to thermal fluctuations, and the ratio δ ≡
t a/tγ of the relaxation time of the external forcing and the
relaxation time tγ of the particle’s velocity.

To compute gW (λ), we first compute matrices H1(λ),
H2(λ), and H3(λ) appearing in exponents of the CMGF
Z (λ, τ,U |U0) in Eq. (C22), and then make the transformation
λ → −βλ [see Eq. (46c)]. In order to proceed further, we
identify the following vectors which are helpful in computa-
tion of these matrices:

K1 = [(iω + 1/t a )−1q�
1 , ��

1 ]�, (50a)

K†
2 = [(−iω + 1/t a )−1q∗

1, �
∗
1], (50b)

��
1 = (iωG, 0), (50c)

a�
1 =

[
2γ G∗R

−1 + (iωt a )−1
, (1 + 2iγωG∗)R

]
, (50d)

R =
[

− iωmG,
−G

1 + (iωt a )−1

]�
, (50e)

a2 =
[ −2γ GR†

1 + (iωt a )−1
, (1 − 2iγωG)R†

]
, (50f)

q�
1 = (iωG, 1). (50g)

Therefore, the matrices H1(λ), H2(λ), H3(λ), respectively
given in Eqs. (C20a), (C20b), and (C20c), can be simplified
as

H1(λ) = τ

2π

∫ +∞

−∞

dω

det[�]

[
�22q∗

1q�
1

ω2 + 1/(t a )2
− �21�

∗
1q�

1

iω + 1/t a
+ �11�

∗
1�

�
1 − �12q∗

1�
�
1

−iω + 1/t a

]
,

(51a)

H2(λ) = lim
ε→0

λτ

2π

∫ +∞

−∞

dω e−iωε

det[�]

[
2iγωG∗�22Rq�

1

ω2 + 1/(t a )2
− 2γ G∗�12R��

1

−1 + (iωt a )−1
− (1 + 2iωγ G∗)�21Rq�

1

iω + 1/t a
+ (1 + 2iγωG∗)�11R��

1

]
,

(51b)

H3(λ) = λ

2π

∫ +∞

−∞

dω

det[�]

[
4γ 2|G|2

1 + (ω2t a )−2
�22 − 2γ G∗(1 − 2iωγ G)

−1 + (iωt a )−1
�12 + 2γ G(1 + 2iωγ G∗)

1 + (iωt a )−1
�21 + �11 + 2γ det[�]

]
RR†.

(51c)
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FIG. 3. Numerical comparison of gW (λ) (circles) given in
Eq. (46c) and the prefactor (solid curve) in Eq. (31) from Ref. [92].
The parameters for the plot are tγ = 1.548, θ = 0.1457, δ =
0.3484, m = 0.14744, T = 0.78, and ε = 10−4 in Eq. (51b).

Using the above integrals (51a)–(51c), we verify the con-
dition H3(λ) = [I + H2(λ)]H−1

1 (λ)H�
2 (λ) which ensures the

factorization of the CMGF in terms of left and right eigen-
functions (see Appendix C). We substitute H1(λ) and H2(λ),
respectively, given in Eqs. (51a) and (51b), in gW (λ) shown

in (46c), and numerically compute the latter for a given pa-
rameters for comparison with the prefactor shown in Eq. (31)
of Ref. [92]. Figure 3 shows that there is excellent agreement.

Thus, we write the characteristic function ZW (λ, τ ) [see
Eq. (46a)] using μW (λ) and gW (λ) given in Eqs. (48b) and
(46c), respectively. One can invert the former using the inverse
Fourier transform defined in Eq. (15) and obtain P(W, τ ) as
discussed in Ref. [92].

Therefore, in this section, using two different examples, we
have shown how our general framework can be employed to
exactly calculate CMGFs for non-Gaussian observables in the
long-time limit.

VI. CUMULANTS OF HEAT FLOW

In Sec. IV, we computed the characteristic function Z (λ, τ )
for the heat entering the left end of the harmonic chain of
N AOUPs in the steady state. For a given number N of
particles, one can, in principle, compute both μ(λ) and g(λ)
as discussed in Sec. V, and invert Z (λ, τ ) ∼ g(λ)eτμ(λ) using
the inverse Fourier transform (15) to give the full distribution
for QL. Since Z (λ, τ ) is the moment-generating function,
its logarithm gives the cumulant-generating function. In the

FIG. 4. Cumulants of the left heat flow in the two-AOUP chain. (a) Analytical calculation [Eq. (55), solid curve] and numerical simulation
(squares and circles, respectively, at τ = 30 and τ = 300) of heat current for activities Da

1 = 0.5 and Da
2 = 0.75. (b) Analytical calculation

[Eq. (56), solid curve] and numerical simulation (squares and circles, respectively, at τ = 30 and τ = 300) of scaled heat variance for Da
1 = 0.5

and Da
2 = 0.75. (c, d) Analytical results given in Eqs. (55) and (56), respectively, as functions of activity Da

1, for TL − TR = 0.2 and Da
2 = 0.75,

2.25, and 4.5 (curve color intensity increases with Da
2). In all plots, γL = 0.7, γR = 0.8, TR = 0.1, t a

1 = t a
2 = 0.15, m1 = 0.1, m2 = 0.15,

kL = 0.75, k1 = 0.85, kR = 0.7. Numerical simulations are performed for dt = 10−4 and averaged over 104 realizations.
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long-time limit,

1

τ
ln Z (λ, τ ) = 1

τ
ln〈e−λQL〉 = μ(λ) + 1

τ
ln g(λ). (52)

If g(λ) is an analytic function of λ, differentiating on both
sides and setting λ to zero gives the first scaled cumulant
(mean) of the heat flow (i.e., the left heat current)

−∂μ(λ)

∂λ

∣∣∣∣
λ=0

= 〈QL〉
τ

≡ JL. (53)

Similarly, differentiating twice and setting λ = 0 gives

∂2μ(λ)

∂λ2

∣∣∣∣
λ=0

= 1

τ
(〈QL〉2 − 〈Q2

L〉). (54)

Higher-order cumulants can be obtained similarly. Notice that
in the long-time limit, the contributions from g(λ) are lower
order in τ and so vanish in both Eqs. (53) and (54). This is
even true if g(λ) has singularities. For example, consider a

case in which g(λ) = g0(λ)∏
i(λi − λ)αi

, where g0(λ) is an ana-

lytic function of λ and the singularities are on the right-side of
the origin: λi > 0. (Here αi need not be integers.) Substituting
in Eq. (52), in the long-time limit there is no contribution
from g(λ) in Eqs. (53) and (54) (and similarly for higher
cumulants).

Therefore, substituting μ(λ) [given in Eq. (21)] in Eqs. (53)
and (54), the first two cumulants can be obtained in the inte-
gral form:

JL = TL − TR

4π

∫ +∞

−∞
dω 4γLγRω2|G1,N |2 − 1

4π

∫ +∞

−∞
dω 4γL

N∑
�=1

Da
�|G1,�|2

1 + (ωt a
�

)−2 , (55)

1

τ

[〈
Q2

L

〉− 〈QL
〉2] = 1

4π

∫ +∞

−∞
dω

[{
4γLγR(TL − TR)ω2|G1,N |2 − 4γL

N∑
�=1

Da
�|G1,�|2

1 + (ωt a
�

)−2

}2

+ 8γLγRTLTRω2|G1,N |2 + 8γLTL

N∑
�=1

Da
�|G1,�|2

1 + (ωt a
�

)−2

]
, (56)

where the first integral in Eq. (55) corresponds to the heat current observed in Ref. [79] for a harmonic chain when the particles
have no activity. Similarly, the limit Da

� → 0 yields the second cumulant as shown in Ref. [79]. An alternative derivation for
first and second cumulants shown in Appendix D gives the same cumulants as in Eqs. (55) and (56). Similarly we use the scaled
cumulant-generating function μR(λ) (27) to obtain the first and second scaled cumulants of the right heat flow QR:

JR = −TL − TR

4π

∫ +∞

−∞
dω 4γLγRω2|G1,N |2 − 1

4π

∫ +∞

−∞
dω 4γR

N∑
�=1

Da
�|GN,�|2

1 + (ωt a
�

)−2 , (57)

1

τ

[〈
Q2

R

〉− 〈QR
〉2] = 1

4π

∫ +∞

−∞
dω

[{
4γLγR(TL − TR)ω2|G1,N |2 + 4γR

N∑
�=1

Da
�|GN,�|2

1 + (ωt a
�

)−2

}2

+ 8γLγRTLTRω2|G1,N |2 + 8γRTR

N∑
�=1

Da
�|GN,�|2

1 + (ωt a
�

)−2

]
. (58)

Figures 4(a) and 4(b) show increasing observation time
increases the agreement of analytical expressions for the first
two scaled cumulants of left heat flow for a two-AOUP chain
with numerical simulations performed using Langevin dy-
namics. Figure 4(c) shows that as the particle activities Da

i
increase, the current JL decreases and eventually changes
sign. This is because the active forces perform work on the
particles, so these particles dissipate heat to the reservoir to
maintain steady state. Therefore, there is a competition be-
tween two currents: the current due to thermal forces [first
term of Eq. (55)] and that due to active forces [second term of
Eq. (55)]. Figure 4(d) shows that these active forces enhance
heat fluctuations. In summary, with increasing AOUP activity
the distribution of the left heat flow shifts to lower mean and
its width increases.

Similarly, Figs. 5(a) and 5(b), respectively, compare the an-
alytical expressions for the first and second scaled cumulants
of right heat flow given in Eqs. (57) and (58) with numerical

simulations performed using Langevin dynamics. In this case
(for TL > TR), the right current remains negative (leaving the
chain and entering the bath) and decreases with the particle
activity [see Fig. 5(c)]. This current’s sign can be physically
understood as follows. There are two currents that enter into
the right heat bath: the thermal current due to the temperature
gradient [first term of Eq. (57)] and the current due to the
active forces [second term of Eq. (57)]. Each makes a negative
contribution to JR. (Notice that for JL, the thermal current has
opposite sign and competes with the active-force current, so
the left current’s sign depends on the dominant contribution.)
Similar to the left heat flow, here also the active forces enhance
the fluctuations of the right heat flow; therefore, as the particle
activity increases, the distribution shifts toward lower mean
and broadens [see Fig. 5(d)].

Figure 6 shows for the three-AOUP chain the analytical
ratios of left and right heat currents [Eqs. (55) and (57)] and
of the heat-flow variances [Eqs. (56) and (58)], as functions
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FIG. 5. Cumulants of the right heat flow in the two-AOUP chain. (a) Analytical calculation [Eq. (57), solid curve] and numerical simulation
(squares and circles, respectively, at τ = 30 and τ = 300) of heat current for activities Da

1 = 0.5 and Da
2 = 0.75. (b) Analytical calculation

[Eq. (58), solid curve] and numerical simulation (squares and circles, respectively, at τ = 30 and τ = 300) of scaled heat variance for Da
1 = 0.5

and Da
2 = 0.75. (c, d) Analytical results given in Eqs. (57) and (58), respectively, as functions of activity Da

1, for TL − TR = 0.2 and Da
2 = 0.75,

2.25, and 4.5 (curve color intensity increases with Da
2). Other parameters are same as in Fig. 4.

of the leftmost particle’s activity Da
1 at fixed Da

2 for three
different values of Da

3. These cumulants are clearly neither
antisymmetric nor symmetric.

To gain more insight, Fig. 7 shows these ratios when all
particles have identical activity (Da

i = Da ∀ i), as a function
of the activity strength Da. As expected, in the limit Da →
0, JL → −JR and [〈Q2

L〉 − 〈QL〉2] → [〈Q2
R〉 − 〈QR〉2]. In the

opposite limit (Da → ∞), these ratios saturate to particu-
lar values (see dashed lines) obtained from the dominating
contributions in the limit Da → ∞ of analytical expressions
(55), (57), (56), and (58). This can be physically understood
as follows. When particle activity is sufficiently high that in
Eqs. (55) and (57) the active-force current (second integral)
dominates the thermal current (first integral), a majority of the
heat current is due to the active forces and flows toward both
heat baths, giving a positive ratio of currents. Similarly, in this
limit the heat-flow fluctuations are mostly due to the active
forces and their ratio saturates to its limiting behavior [dashed
horizontal line in Fig. 7(b)] obtained from the dominating
contribution. Even when each particle has distinct activity,
we expect the ratio of cumulants of left and right heat flow
in the limit of large activity strength of the particles (i.e.,
Da

i → ∞∀ i) to saturate (similar to Fig. 7) as long as the
integrals in Eqs. (55), (57), (56), and (58) containing Da

i are
dominating.

VII. SUMMARY

In this paper, we considered a harmonic chain of N active
Ornstein-Uhlenbeck particles. Each particle is influenced by
a persistent stationary-state Ornstein-Uhlenbeck active force
which has an exponential correlation in time. The chain ends
are connected via different friction constants to two heat
reservoirs of different temperatures. Due to the temperature
difference, heat generally flows through the system. We com-
puted the steady-state heat flow entering each end of the chain,
in the long-time limit analytically obtaining the characteristic
function for this heat flow. We demonstrated two exam-
ples where one can compute the characteristic function for
non-Gaussian observables. Finally, we used the characteristic
function to compute the scaled cumulants for the heat flow
and observed the effect of the activity on the heat current and
its fluctuations. In particular, we found the activity of particles
produces heat flow out the left end, thereby counteracting the
rightward heat flow at the leftmost particle in the absence of
activity. At the same time, it also enhances the fluctuations
of the heat flow. In brief, activity of the particles reduces the
mean and broadens the distribution of the left heat flow.

The results presented in this paper are based on the frame-
work of stochastic thermodynamics [1,93] and give us an
understanding of steady-state thermal conduction in an active-
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FIG. 6. Ratio of left and right scaled cumulants of heat flow for three-AOUP chain. (a–c) Ratio of the left (55) and right heat currents
(57), as a function of Da

1. (d–f) Ratio of variances of left heat flow (56) and of right heat flow (58), as a function of Da
1. Da

3 = (0.1, 0.3, 0.5)
(curve color intensity increases with Da

3). Inset shows the zoom of the corresponding region of the main plot. Horizontal dashed lines in
(a)–(c) correspond to JL/JR = −1 and JL/JR = 0 and in (d)–(f) for Var[QL]/Var[QR] = 1. Throughout, TL = 1, TR = 0.1, γL = 0.7, γR = 0.8,
t a
i = 0.15 ∀ i, m1 = 0.5, m2 = 0.3, m3 = 0.2, kL = 0.5, k1 = 0.3, k2 = 0.2, and kR = 0.4.

matter harmonic chain. Recent research has shown that the
first two cumulants for an arbitrary current are constrained
by the thermodynamic uncertainty relation [13]: fluctuations
of the current are bounded by entropy production. Therefore,
these two cumulants will be useful in the thermodynamic
uncertainty relation [13] to infer the dissipation of this active-
matter system. It would also be interesting to see the effect of
active run-and-tumble particles and active Brownian particles
on these first two cumulants and the related thermodynamic
uncertainty relation.

We emphasize that the large-deviation function for a
stochastic observable (such as the heat flow) is related to the
cumulant-generating function through the Legendre transform
[19] (see Sec. III), where tails of the distribution are identified
by the cutoffs within which μ(λ) is a real function. (See
Refs. [78,96–98] for the computation of these cutoffs.) The
prefactor g(λ) also importantly affects the tails of the distribu-
tions when g(λ) has singularities [21,24,89,90,92,95]. Given
our framework, one can consider simple examples permitting
analytical computation of μ(λ) and g(λ), and carefully invert
the characteristic function to obtain the probability density
function using methods discussed in Refs. [24,89,92,95].

In this paper, we have considered a harmonic chain where
only the ends are connected to thermal reservoirs of differ-
ent temperatures. Extending our system of active particles
to connect each particle to a different temperature [99,100]
would be interesting. Additionally, departures from Fourier’s

law for a harmonic chain composed of pinned active particles
(where each particle is additionally confined in its own distinct
potential) and the role of boundary conditions and system
size on the heat conduction are interesting topics for future
investigation [101].
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APPENDIX A: THE FOKKER-PLANCK EQUATION

Here we derive the Fokker-Planck equation for the
conditional moment-generating function Z (λ,U, τ |U0),
where U ≡ [x1, x2, . . . , xN , v1, v2, . . . , vN , f1, f2, . . . , fN ]�.
We first write the evolution equation for the conditional
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joint density function ρ(QL,U, τ |U0) [2]:

∂ρ

∂t
= −

N∑
i=1

[
∂

∂xi

( 〈�xi〉
�t

ρ

)
+ ∂

∂vi

( 〈�vi〉
�t

ρ

)
+ ∂

∂ fi

( 〈� fi〉
�t

ρ

)]

+ 1

2

∑
i, j

[
∂2

∂xi∂x j

( 〈�xi�x j〉
�t

ρ

)
+ ∂2

∂vi∂v j

( 〈�vi�v j〉
�t

ρ

)
+ ∂2

∂ fi∂ f j

( 〈� fi� f j〉
�t

ρ

)]

+ 1

2

∑
i, j

[
∂2

∂xi∂v j

( 〈�xi�v j〉
�t

ρ

)
+ ∂2

∂xi∂ f j

( 〈�xi� f j〉
�t

ρ

)
+ ∂2

∂vi∂ f j

( 〈�vi� f j〉
�t

ρ

)]
(A1)

− ∂

∂QL

( 〈�QL〉
�t

ρ

)
+ 1

2

∂2

∂Q2
L

( 〈�Q2
L〉

�t
ρ

)

+
N∑

i=1

[
∂2

∂QL∂xi

( 〈�xi�QL〉
�t

ρ

)
+ ∂2

∂QL∂vi

( 〈�vi�QL〉
�t

ρ

)
+ ∂2

∂QL∂ fi

( 〈� fi�QL〉
�t

ρ

)]
.

To evaluate the RHS, we discretize the dynamical equations (2a)–(2c) and (following the Stratonovich rule) (8), and compute
the moments in the limit of vanishing time-increment (�t → 0). Substituting these moments, we find

∂ρ

∂t
= −

N∑
i=1

[
vi

∂ρ

∂xi
+ 1

mi

∂

∂vi

({
−

N∑
j=1

�i, jx j + fi − γLv1δi,1 − γRvNδi,N

}
ρ

)
− 1

t a
i

∂

∂ fi
( fiρ)

]

+ γLTL

m2
1

∂2ρ

∂v2
1

+ γRTR

m2
N

∂2ρ

∂v2
N

+
N∑

i=1

Da
i

∂2ρ

∂ f 2
i

−
(

γLTL

m1
− γLv2

1

)
∂ρ

∂QL
+ γLTLv2

1
∂2ρ

∂Q2
L

+ 2γLTL

m1

∂2

∂QLv1
(v1ρ). (A2)

Fourier transforming ρ to Z (λ,U, τ |U0) ≡ ∫ +∞
−∞ dQL ρ(QL,U, τ |U0) e−λQL gives the evolution equation (11) for the conditional

moment-generating function Z (λ,U, τ |U0), in which the Fokker-Planck operator is

Lλ ≡ −
N∑

i=1

[
vi

∂

∂xi
+ 1

mi

∂

∂vi

(
−

N∑
j=1

�i, jx j + fi − γLv1δi,1 − γRvNδi,N

)
− 1

t a
i

∂

∂ fi
fi

]

+ γLTL

m2
1

∂2

∂v2
1

+ γRTR

m2
N

∂2

∂v2
N

+
N∑

i=1

Da
i

∂2

∂ f 2
i

− λ

(
γLTL

m1
− γLv2

1

)
+ λ2γLTLv2

1 + 2λγLTL

m1

∂

∂v1
v1. (A3)

APPENDIX B: DETAILED DERIVATION
OF STEADY-STATE DISTRIBUTION PSS(U )

Here we compute the steady-state distribution [see Eq. (4)]
for the full dynamics given in Eqs. (2a)–(2c). Fourier trans-
forming Eqs. (2a)–(2c) using Eq. (18a) gives

iωnX̃ (ωn) = Ṽ (ωn) − �X

τ
, (B1a)

(iωnM + �)Ṽ (ωn) = −�X̃ (ωn) + F̃ (ωn) + B̃(ωn) − M�V

τ
,

(B1b)

(iωnI + R−1)F̃ (ωn) = Z̃ (ωn) − �F

τ
, (B1c)

where [�X,�V,�F ] ≡ [X (τ ) − X (0),V (τ ) − V (0),
F (τ ) − F (0)]. Notice that the phase space of our system
is unbounded; therefore, these boundary terms cannot be
neglected even in the long-time limit. In Eq. (B1c), I is the
identity matrix.

Substituting Eqs. (B1a) and (B1c) in Eq. (B1b) gives

(iωnM + �)Ṽ (ωn) = − �

iωn

[
Ṽ (ωn) − �X

τ

]

+ [iωnI + R−1]−1

[
Z̃ (ωn) − �F

τ

]

+ B̃(ωn) − M�V

τ
, (B2)

or, solving for Ṽ :

Ṽ (ωn) = iωnG(ωn)[[iωnI + R−1]−1Z̃ (ωn) + B̃(ωn)]

+ G(ωn)

τ
[��X − iωnM�V

− iωn[iωnI + R−1]−1�F ], (B3)

where G(ωn) ≡ [� − ω2
nM + iωn�]−1 is the Green’s function

matrix.
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FIG. 7. Ratios of left and right heat flow currents [Eqs. (55)
and (57)] and variances [Eqs. (56) and (58)] for 4-AOUP chain
with identical particle activities (Da

i = Da ∀ i). Horizontal dashed
lines: asymptotic values obtained from the dominating contributions
of ratio of Eqs. (55) and (57) for (a) and Eqs. (56) and (58) for
(b) at large Da. Throughout, TL = 1, TR = 0.1, γL = 1.7, γR = 0.8,
t a
i = 0.15 ∀ i, m1 = 0.2, m2 = 0.2, m3 = 0.3, m4 = 0.5, kL = 0.2,

k1 = 0.4, k2 = 0.2, k3 = 0.1, and kR = 0.1.

Using Eq. (B1c), the force vector at time τ can be
computed using the inverse Fourier transform (18b) and sub-
stituting t = τ − ε (for ε > 0), giving [77,79,95]

F (τ ) = lim
ε→0

+∞∑
n=−∞

F̃ (ωn) eiωn (τ−ε) (B4a)

= lim
ε→0

+∞∑
n=−∞

F̃ (ωn) e−iωnε (B4b)

for τ = 2πn/ωn. In the limit of large τ , we can convert
the second summation into an integral over ω. The matrix
[iωnI + R−1]

−1
has only diagonal entries, and each entry gives

a pole ω = i/t a
� which lies in the upper half of the complex

ω-plane. Therefore, using the Cauchy residue theorem [102],
the second term (containing boundary terms) vanishes in that
limit, giving

F (τ ) = lim
ε→0

+∞∑
n=−∞

e−iωnε[iωnI + R−1]−1Z̃ (ωn). (B5)

Similar to Eq. (B4b), inverse Fourier transforming Eq. (B3)
gives V (τ ), and we find that the term

+∞∑
n=−∞

e−iωnε
G(ωn)

τ
[��X − iωnM�V

− iωn[iωnI + R−1]−1�F ] (B6)

vanishes in the τ → ∞ limit since all the poles lie in the upper
half of the complex ω-plane. Thus, the velocity vector at time
τ is

V (τ ) = lim
ε→0

+∞∑
n=−∞

e−iωnε iωnG(ωn)[[iωnI + R−1]−1Z̃ (ωn)

+ B̃(ωn)]. (B7)

Substituting Eq. (B3) in Eq. (B1a) gives the Fourier-space
position vector

X̃ (ωn) = G(ωn)[[iωnI + R−1]−1Z̃ (ωn) + B̃(ωn)]

+ G(ωn)

iωnτ
[��X − iωnM�V

− iωn[iωnI + R−1]−1�F ] − �X

iωnτ
. (B8)

Following the same argument, in the limit of large τ the
position vector at time τ is

X (τ ) = lim
ε→0

+∞∑
n=−∞

e−iωnε G(ωn)[[iωnI + R−1]−1Z̃ (ωn)

+ B̃(ωn)]. (B9)

Therefore, considering the contribution from X (τ ), V (τ ),
and F (τ ), the full state vector is

U �(τ ) = lim
ε→0

+∞∑
n=−∞

e−iωnε ([Z̃�(ωn)[iωnI + R−1]−1 + B̃�(ωn)]G�(ωn), (B10a)

iωn[Z̃�(ωn)[iωnI + R−1]−1 + B̃�(ωn)]G�(ωn), Z̃�(ωn)[iωnI + R−1]−1),

= lim
ε→0

+∞∑
n=−∞

e−iωnε

[
N∑

j=1

ζ̃ j (ωn)q�
j

iωn + 1/t a
j

+ η̃L(ωn)��
1 + η̃R(ωn)��

N

]
, (B10b)
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where (for j = 1, . . . , N)

q�
j ≡ (G1, j, G2, j, . . . , GN, j, iωnG1, j, iωnG2, j, . . . , iωnGN, j, δ1, jδ2, j, . . . , δN, j ), (B11a)

��
j ≡ (G1, j, G2, j, . . . , GN, j, iωnG1, j, iωnG2, j, . . . , iωnGN, j,

N︷ ︸︸ ︷
0, 0, . . . , 0). (B11b)

The first N components correspond to positions, the next N to velocities, and the last N to OU forces.
U (τ ) has average zero and correlation

〈U (τ )U �(τ )〉 = lim
ε→0

+∞∑
n=−∞

+∞∑
m=−∞

e−iωnε e−iωmε

[ N∑
j=1

N∑
p=1

q j (ωn)〈ζ̃ j (ωn)ζ̃p(ωm)〉q�
p (ωm)

(iωn + 1/t a
j )(iωm + 1/t a

p )

+ �1(ωn)〈η̃L(ωn)η̃L(ωm)〉��
1 (ωm) + �N (ωn)〈η̃R(ωn)η̃R(ωm)〉��

N (ωm)

]
(B12a)

= 2

τ

+∞∑
n=−∞

[ N∑
j=1

Da
jq jq

†
j

ω2
n + 1/(t a

j )2
+ γLTL�1�

†
1 + γRTR�N�

†
N

]
(B12b)

= 1

π

∫ +∞

−∞
dω

[ N∑
j=1

Da
jq jq

†
j

ω2 + 1/(t a
j )2

+ γLTL�1�
†
1 + γRTR�N�

†
N

]
, (B12c)

for Fourier-space noise correlations

[〈η̃i(ω)η̃ j (ω
′)〉, 〈ζ̃i(ω)ζ̃ j (ω

′)〉]� = 1

τ 2

∫ τ

0
dt1

∫ τ

0
dt2 e−iωt1 e−iω′t2 [〈ηi(t1)η j (t2)〉, 〈ζi(t1)ζ j (t2)〉]� (B13a)

= 2

τ
δi, jδω,−ω′ [γiTi, Da

i ]�. (B13b)

A Gaussian with zero mean and correlation (B12c) gives the reported steady-state distribution (4).

APPENDIX C: DETAILED DERIVATION OF EQ. (20a)

Here we present the detailed derivation of Eq. (20a), helpful for computing the characteristic function for the heat QL entering
the leftmost particle from the left bath. Fourier transforming (18b) the RHS of QL in Eq. (8) gives

QL = τ

2

+∞∑
n=−∞

[η̃L(ωn)ṽ1(−ωn) + η̃L(−ωn)ṽ1(ωn) − 2γLṽ1(ωn)ṽ1(−ωn)]. (C1)

Using Eq. (B3), we can write the Fourier-space velocity of the leftmost particle as

ṽ1(ωn) = iωn

[
N∑

�=1

G1,�(ωn)ζ̃�(ωn)

iωn + 1/t a
�

+ G1,1(ωn)η̃L(ωn) + G1,N (ωn)η̃R(ωn)

]
+ R��U

τ
, (C2)

for

R� ≡
[

[G(ωn)�]1,1, [G(ωn)�]1,2, . . . , [G(ωn)�]1,N , −iωn[G(ωn)M]1,1,

− iωn[G(ωn)M]1,2, . . . ,−iωn[G(ωn)M]1,N ,−iωn

(
G1,1(ωn)

iωn + 1/t a
1

,
G1,2(ωn)

iωn + 1/t a
2

, . . . ,
G1,N (ωn)

iωn + 1/t a
N

)]
, (C3a)

�U ≡ [�x1,�x2, . . . ,�xN ,�v1,�v2, . . . ,�vN ,� f1,� f2, . . . ,� fN ]�. (C3b)

Similarly, replacing ωn in Eq. (C2) by −ωn,

ṽ1(−ωn) = −iωn

[ N∑
�=1

G1,�(−ωn)ζ̃�(−ωn)

−iωn + 1/t a
�

+ G1,1(−ωn)η̃L(−ωn) + G1,N (−ωn)η̃R(−ωn)

]
+ R†�U

τ
. (C4)

Substituting Eq. (C2) and (C4) in Eq. (C1) gives

QL = 1

2

+∞∑
n=−∞

[
τ ξ̃�

n Cnξ
∗
n + ξ̃�

n αn + α�
−nξ̃

∗
n − 2γL

�U �RR†�U

τ

]
, (C5)
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where ξ̃�
n ≡ [ζ̃1(ωn), . . . , ζ̃N (ωn), η̃L(ωn), η̃R(ωn)] is the

Fourier-space noise vector, and the Hermitian matrix Cn and
vectors α�

−n are, respectively,

Cn ≡ C(1)
n − 2γLC(2)

n , (C6a)

α�
−n ≡ A�

−n − 2γLB�
−n. (C6b)

In Eq. (C6a), the upper-triangle matrix elements (for 1 �
i � j � N) of Hermitian matrices C(1)

n and C(2)
n , respectively,

are [
C(1)

n

]
i, j = 0, (C7a)

[
C(1)

n

]
i,N+1 = G1,i

1 + (iωnt a
i )−1

, (C7b)

[
C(1)

n

]
i,N+2 = 0, (C7c)[

C(1)
n

]
N+1,N+1 = iωn[G1,1 − G∗

1,1], (C7d)[
C(1)

n

]
N+1,N+2 = −iωnG∗

1,N , (C7e)[
C(1)

n

]
N+2,N+2 = 0, (C7f)

and

[
C(2)

n

]
i, j = ω2

nG1,iG∗
1, j

(iωn + 1/t a
i )(−iωn + 1/t a

j )
, (C8a)

[
C(2)

n

]
i,N+1 = ω2

nG1,iG∗
1,1

iωn + 1/t a
i

, (C8b)

[
C(2)

n

]
i,N+2 = ω2

nG1,iG∗
1,N

iωn + 1/t a
i

, (C8c)

[
C(2)

n

]
N+1,N+1 = ω2

nG1,1G∗
1,1, (C8d)[

C(2)
n

]
N+1,N+2 = ω2

nG1,1G∗
1,N , (C8e)[

C(2)
n

]
N+2,N+2 = ω2

nG1,N G∗
1,N . (C8f)

Further, the two vectors in α�
−n in Eq. (C6b) are

A�
−n ≡ (0, 0, . . . , 0︸ ︷︷ ︸

N

, 1, 0)�U �R, (C9a)

B�
−n ≡

( −G∗
1,1

−1 + (iωnt a
1 )−1

,
−G∗

1,2

−1 + (iωnt a
2 )−1

,

. . . ,
−G∗

1,N

−1 + (iωnt a
N )−1

,−iωnG∗
1,1,−iωnG∗

1,N

)
�U �R.

(C9b)

We now compute the conditional characteristic function for
QL defined as [see Eq. (10)]

Z (λ,U, τ |U0) ≡ 〈e−λQLδ[U − U (τ )]〉U0 (C10a)

=
∫

d3Nσ

(2π )3N
eiσ�U 〈eE (τ )〉U0 , (C10b)

where E (τ ) ≡ −λQL − iU �(τ )σ . The second line results
from substituting the integral representation of the Dirac

delta function. The state vector U (τ ) can be rewritten using
Eq. (B10b) as

U �(τ ) = lim
ε→0

+∞∑
n=−∞

e−iωnε

[
N∑

j=1

ζ̃ j (ωn)q�
j

iωn + 1/t a
j

+ η̃L(ωn)��
1 + η̃R(ωn)��

N

]
(C11a)

≡ lim
ε→0

+∞∑
n=−∞

e−iωnε ξ̃�
n K1, (C11b)

U (τ ) = lim
ε→0

+∞∑
n=−∞

e−iωnε

[
N∑

j=1

q j ζ̃ j (ωn)

iωn + 1/t a
j

+ �1η̃L(ωn) + �N η̃R(ωn)

]
(C11c)

≡ lim
ε→0

+∞∑
n=−∞

e−iωnε K�
2 ξ̃n, (C11d)

where the inner products in (C11b) and (C11d) are defined
using the respective column and row vectors,

K1 ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(iωn + 1/t a
1 )−1q�

1

(iωn + 1/t a
2 )−1q�

2
...

(iωn + 1/t a
N )−1q�

N

��
1

��
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (C12a)

K�
2 ≡ [(iωn + 1/t a

1

)−1
q1,
(
iωn + 1/t a

2

)−1
q2,

. . . ,
(
iωn + 1/t a

N

)−1
qN , �1, �N

]
, (C12b)

in which the first N components correspond to active noise
and the last two to thermal noise. Substituting U �(τ ) in E (τ )
leads to

E (τ ) =
+∞∑
n=1

[
−λτ ξ̃�

n Cnξ̃
∗
n + ξ̃�

n βn + β�
−nξ̃

∗
n + 2γLλ

τ
|�n|2

]

− 1

2
λτ ξ̃�

0 C0ξ̃0 + ξ̃�
0 β0 + λγL

τ
|�0|2, (C13)

for

|�n|2 ≡ �U �RR†�U, (C14a)

βn ≡ −λαn − ie−iωnε (K1σ ). (C14b)

The average appearing in Eq. (C10b), 〈eE (τ )〉U0 , can be
computed as follows. We first note that E (τ ) [given in
Eq. (C13)] is quadratic in ξ̃n and in ξ̃0. Since ξ̃0 and each ξ̃n

(n = 1, 2, . . . ,∞) are independent and identically distributed
noise vectors,

P(ξ̃n) = e−ξ̃�
n �−1 ξ̃∗

n

πN+2 det[�]
, n � 1, (C15a)

P(ξ̃0) = e− 1
2 ξ̃�

0 �−1 ξ̃0√
(2π )N+2 det[�]

, (C15b)
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we write 〈eE (τ )〉U0
in product form:

〈eE (τ )〉U0 =
∞∏

n=1

〈e−λτ ξ̃�
n Cn ξ̃

∗
n +ξ̃�

n βn+β�
−n ξ̃

∗
n + 2γLλ

τ
|�n|2〉U0

×〈e− 1
2 λτ ξ̃�

0 C0 ξ̃0+ξ̃�
0 β0+ λγL

τ
|�0|2〉U0 . (C16)

In (C15a) and (C15b), the diagonal matrix � ≡
2/τ diag(Da

1, Da
2, . . . , Da

N , γLTL, γRTR) carries information
about the strength of thermal and active noises.

We compute each average by Gaussian integration, simpli-
fying Eq. (C16) to

〈eE (τ )〉U0 = exp

(
−1

2

+∞∑
n=−∞

ln[det(��n)]

)

× exp

( +∞∑
n=∞

[
1

2
βT

−n�
−1
n βn + λγL

τ
|�n|2

])
,

(C17)

for �n ≡ �−1 + λτCn.

In the limit of large τ , these summations become integrals,
converting (C17) to

〈eE (τ )〉U0 ≈ eτμ(λ)e− 1
2 σ�H1(λ)σ+i�U �H2(λ)σ+ 1

2 �U �H3(λ)�U .

(C18)

The exponent μ(λ) in the integral form is

μ(λ) ≡ − 1

4π

∫ +∞

−∞
dω ln[det(��)], (C19)

and the matrices are

H1(λ) ≡ τ

2π

∫ +∞

−∞
dω K†

2 �−1K1, (C20a)

H2(λ) ≡ lim
ε→0

λτ

2π

∫ +∞

−∞
dω e−iωε a�

1 �−1K1, (C20b)

H3(λ) ≡ λτ

2π

∫ +∞

−∞
dω

[
λa�

1 �−1a2 + 2γL

τ
RR†

]
, (C20c)

for vectors

a�
1 ≡

(
2γLG∗

1,1R
−1 + (iωnt a

1 )−1
,

2γLG∗
1,2R

−1 + (iωnt a
2 )−1

, . . . ,
2γLG∗

1,NR
−1 + (iωnt a

N )−1
, [1 + 2γLiωnG∗

1,1]R, 2γLiωnG∗
1,NR

)
, (C21a)

a2 ≡
( −2γLG1,1R†

1 + (iωnt a
1 )−1

,
−2γLG1,2R†

1 + (iωnt a
2 )−1

, . . . ,
−2γLG1,NR†

1 + (iωnt a
N )−1

, [1 − 2γLiωnG1,1]R†, −2γLiωnG1,NR†

)�
. (C21b)

Note that in a�
1 and a2, the first N elements correspond to

active noises and the last two to thermal noises.
Substituting Eq. (C18) in Eq. (C10b) and integrating over

σ yields

Z (λ,U, τ |U0) ≈ eτμ(λ) e
1
2 �U �H3(λ)�U√

(2π )3N det H1(λ)

× e− 1
2 [U �+�U �H2(λ)] H−1

1 (λ) [U+H�
2 (λ)�U ].

(C22)

The formal long-time solution of the Fokker-Planck equa-
tion (see Sec. III) is Z (λ,U, τ |U0) ≈ eτμ(λ)χ (U0, λ)�(U, λ).
Therefore, to identify the left and right eigenfunctions, we fac-
torize the RHS of Eq. (C22) into separate factors that capture
the respective dependence on U and U0. This identification
can be achieved by setting (H−1

1 H�
2 − H3 + H2H−1

1 H�
2 ) +

(H2H−1
1 − H3 + H2H−1

1 H�
2 )� = 0, giving (20a).

APPENDIX D: ALTERNATIVE DERIVATION OF FIRST
AND SECOND SCALED CUMULANT FOR

LEFT HEAT FLOW

Here we derive the first two scaled cumulants for the
left heat flow, starting from its Fourier representation (C1).
This calculation verifies the cumulants obtained from the
cumulant-generating function μ(λ) [see Eq. (21)]. The com-
putation of higher cumulants (above second) using the
following method becomes complicated, and therefore it is
convenient to compute the cumulants from μ(λ).

We first obtain the first scaled cumulant. In (C1), we will
substitute the Fourier-transformed velocity ṽ1(ωn) of the first
particle (C2). We first recall from Sec. VI that in the long-
time limit the cumulant-generating function is independent
of g(λ), which generally captures the boundary contributions.
Therefore, dropping the boundary contributions in this limit
simplifies ṽ1(ωn) to

ṽ1(ωn) ≈ iωn

[
N∑

�=1

G1,�(ωn)

iωn + 1/t a
�

ζ̃�(ωn)

+ G1,1(ωn)η̃L(ωn) + G1,N (ωn)η̃R(ωn)

]
. (D1)

Substituting this in Eq. (C1) and averaging over both thermal
and active noise gives

〈QL〉 ≈
+∞∑

n=−∞

{
−iωn[G1,1(−ωn) − G1,1(ωn)]γLTL − 2γLω2

n

×
( N∑

�=1

Da
�|G1,�|2

ω2
n + 1/(t a

� )2
+ |G1,1|2γLTL

+ |G1,N |2γRTR

)}
. (D2)

Using the definition of the Green’s function matrix (7),

G(−ωn) − G(ωn) = 2iωnG(−ωn)�G(ωn), (D3)
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thus

G1,1(−ωn) − G1,1(ωn) = 2iωn

∑
�,m

G1,�(−ωn)��,mGm,1(ωn) (D4a)

= 2iωn

∑
�,m

G1,�(−ωn)δ�,m[δ�,1γL + δm,NγR]Gm,1(ωn) (D4b)

= 2iωn

∑
�

G1,�(−ωn)[δ�,1γL + δ�,NγR]G�,1(ωn) (D4c)

= 2iωn(|G1,1|2γL + |G1,N |2γR), (D4d)

where the last line follows from the symmetry of the Green’s function matrix (29). Substituting (D4d) in the first term inside
curly brackets in (D2), and converting the summation into a time integral in the long-time limit, gives JL as in (55).

Next, we compute the second scaled cumulant for the left heat flow. We square both sides of Eq. (C1) to write

Q2
L = τ 2

4

+∞∑
n,m=−∞

[η̃L(ωn)ṽ1(−ωn) + η̃L(−ωn)ṽ1(ωn) − 2γLṽ1(ωn)ṽ1(−ωn)]

× [η̃L(ωm)ṽ1(−ωm) + η̃L(−ωm)ṽ1(ωm) − 2γLṽ1(ωm)ṽ1(−ωm)]

(D5a)

= τ 2

4

+∞∑
n,m=−∞

[η̃L(ωn)ṽ1(−ωn)η̃L(ωm)ṽ1(−ωm) + η̃L(−ωn)ṽ1(ωn)η̃L(−ωm)ṽ1(ωm)

− 4γLη̃L(ωn)ṽ1(−ωn)ṽ1(ωm)ṽ1(−ωm) − 4γLη̃L(−ωn)ṽ1(ωn)ṽ1(ωm)ṽ1(−ωm)

+ 2η̃L(ωn)ṽ1(−ωn)η̃L(−ωm)ṽ1(ωm) + 4γ 2
L ṽ1(ωn)ṽ1(−ωn)ṽ1(ωm)ṽ1(−ωm)]. (D5b)

Averaging over the noise distributions gives

〈Q2
L〉 − 〈QL〉2 = τ 2

4

+∞∑
n,m=−∞

[〈η̃L(ωn)η̃L(ωm)〉〈ṽ1(−ωn)ṽ1(−ωm)〉 + 〈η̃L(−ωn)η̃L(−ωm)〉〈ṽ1(ωn)ṽ1(ωm)〉

− 4γL〈η̃L(ωn)ṽ1(ωm)〉〈ṽ1(−ωn)ṽ1(−ωm)〉 − 4γL〈η̃L(−ωn)ṽ1(ωm)〉〈ṽ1(ωn)ṽ1(−ωm)〉
+ 2〈η̃L(ωn)η̃L(−ωm)〉〈ṽ1(−ωn)ṽ1(ωm)〉 + 4γ 2

L 〈ṽ1(ωn)ṽ1(ωm)〉〈ṽ1(−ωn)ṽ1(−ωm)〉
+ 〈η̃L(ωn)ṽ1(−ωm)〉〈η̃L(ωm)ṽ1(−ωn)〉 + 〈η̃L(−ωn)ṽ1(ωm)〉〈η̃L(−ωm)ṽ1(ωn)〉
− 4γL〈η̃L(ωn)ṽ1(−ωm)〉〈ṽ1(ωm)ṽ1(−ωn)〉 − 4γL〈η̃L(−ωn)ṽ1(−ωm)〉〈ṽ1(ωm)ṽ1(ωn)〉
+ 2〈η̃L(ωn)ṽ1(ωm)〉〈η̃L(−ωm)ṽ1(−ωn)〉 + 4γ 2

L 〈ṽ1(ωn)ṽ1(−ωm)〉〈ṽ1(ωm)ṽ1(−ωn)〉], (D6)

where we have used Wick’s theorem [103] for multivariate Gaussian distributions. We substitute ṽ1(ωn) from Eq. (D1) on the
RHS of (D6), then write the average over thermal and active noise in each term utilizing Eq. (B13b). This eventually leads to

〈Q2
L〉 − 〈QL〉2

τ
≈ 1

τ

+∞∑
n=−∞

[
(1 − 4ω2

nγ
2
L |G1,1|2 − 4ω2

nγLγR|G1,N |2)

×
( N∑

�=1

4γLTLω2
nDa

�|G1,�(ωn)|2
ω2

n + (t a
� )−2

+ 4γ 2
L T 2

L ω2
n|G1,1(ωn)|2 + 4γLTLγRTRω2

n|G1,N (ωn)|2
)

+ 2

( N∑
�=1

2γLω2
nDa

�|G1,�(ωn)|2
ω2

n + (t a
� )−2

+ 2γ 2
L TLω2

n|G1,1(ωn)|2 + 2γLγRTRω2
n|G1,N (ωn)|2

)2

− 2ω2
nγ

2
L T 2

L

{
[G1,1(−ωn)]2 + [G1,1(ωn)]2

}]
. (D7)

In the long-time limit, the summation becomes a time integral, giving Eq. (56).
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