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We present an exact solution for the height distribution of the KPZ equation at any time t in a half space with
flat initial condition. This is equivalent to obtaining the free-energy distribution of a polymer of length t pinned
at a wall at a single point. In the large t limit a binding transition takes place upon increasing the attractiveness
of the wall. Around the critical point we find the same statistics as in the Baik-Ben–Arous-Péché transition for
outlier eigenvalues in random matrix theory. In the bound phase, we obtain the exact measure for the endpoint
and the midpoint of the polymer at large time. We also unveil curious identities in distribution between partition
functions in half-space and certain partition functions in full space for Brownian-type initial condition.
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I. INTRODUCTION

The Kardar-Parisi-Zhang (KPZ) equation [1], which de-
scribes the growth of the height field of an interface driven
by white noise in the continuum, is a paradigmatic example of
stochastic nonequilibrium dynamics. It enjoys a remarkable
connection to the equilibrium problem of an elastic line in a
random potential, also called directed polymer (DP) [2]. In
one space dimension, i.e., for the DP in dimension d = 1 + 1,
some exact solutions for the height distribution at all time
t have been found in the last ten years. These finite time
solutions are valuable since they allow to study the crossover
in time from short times, where the growth is in the Edwards-
Wilkinson class [3,4], to the large time asymptotic behavior
which is common to a large number of systems in the so-called
KPZ class [5–7]. However, they have been found only for a
few specific initial conditions (IC), which are the important
ones: the droplet IC (point to point DP) [8–11], the flat IC
(point to line DP) [12,13] and the Brownian IC (which in-
cludes the stationary KPZ) [14–18]. The KPZ equation on
the half-line has also been studied, and is related to the DP
in a half-space with a wall, with a wall parameter A, which
can be repulsive A > 0 or attractive A < 0. It was found in
Ref. [19] that the polymer is bound to the wall for A < −1/2
and that it unbinds for A � −1/2 due to the competition with
bulk point disorder, a different mechanism from the usual
thermal wetting transition [20,21]. It is also different from the
full space version of the model with a single columnar defect
[22–24] (slow bond problem) where the DP is always pinned,
or the case where disorder in only on the column [25–27]. An
experimentally feasible realization of half-line KPZ growth
in turbulence liquid crystal was obtained in Ref. [28] from a
biregional geometry with two different growth rates. In these
types of experiments the aforementioned IC can be easily
prepared [29,30]. Although the transition at A = −1/2 has
been studied in details for other models in the KPZ class

[31–36], exact finite time solutions for the KPZ equation itself
have been obtained until now only for A � −1/2, for droplet
IC [37–40], and for stationary IC [41]. Furthermore, although
it is expected that the height fluctuations are Gaussian at large
time in the bound phase, as was found in Ref. [42] for droplet
IC, understanding of the fluctuations of the polymer config-
uration is still limited, despite the pioneering results of Ref.
[19].

In this paper, we obtain the “missing” exact solution for
the KPZ equation in the half-space, that is with flat IC. Our
solution is valid for any time and any wall parameter A,
hence it allows for a complete study of the two phases and
of the transition. While the solutions for (i) the flat IC in full
space and (ii) the other IC in half-space, are both complicated,
the combination of flat IC and half-space geometry leads to a
remarkable simplification, and to a simpler solution, in terms
of a Fredholm determinant. This unveils curious identities
in distribution between partition functions in half-space and
certain partition functions in full space for Brownian-type
IC. Around the critical point at A = −1/2 we find the same
statistics for the height fluctuations at large time as for the
outlier eigenvalues in the Baik-Ben Arous-Péché transition
[43] of random matrices. In the bound phase A < −1/2, the
fluctuations of the height (i.e., the free energy of the polymer)
are Gaussian. To characterize the fluctuations of the polymer
configuration we obtain the exact distribution of its endpoint
and of its midpoint for long polymers, and explicit formula
for their moments. We predict an unbinding transition under a
force applied to the endpoint. Interesting connections with the
ground state obtained in replica Bethe ansatz studies [19,42]
of the half-space delta Bose gas are analyzed.

This paper is organized as follows. In Sec. II we recall the
definitions of the KPZ equation on the half-line and of the
related model of the continuum directed polymer in the half
space. In Sec. III we derive the exact solution for all times of
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the KPZ equation with flat initial conditions. Some details are
provided in the Appendix A. We also obtain the large time
asymptotics, the details being provided in Appendix B. In
Sec. IV we study the stationary measure of the KPZ equation
on the half-line and apply it to obtain a detailed description
of the statistics of the endpoint in the polymer problem. The
connection with the replica method is given in Appendix E
and the calculations of the mean endpoint probability and its
correlations using Liouville quantum mechanics are described
in Appendix F. In Sec. V we generalize the identity in dis-
tribution obtained in Sec. III, relating solutions of half-space
KPZ equation to solutions with the full-space KPZ equation
with different initial data, some of the details are presented
in Appendix C. The matching with full space KPZ equa-
tion distributions uses the statistical tilt symmetry recalled
in Appendix D. In Sec. VI we point out the features which
we believe are universal near the unbinding transition and in
relation to the conjectured half-space KPZ fixed point.

II. HALF-SPACE KPZ EQUATION

Let us recall the KPZ equation for the height h(x, t ) field
of an interface

∂t h(x, t ) = ν∂2
x h + λ

2
(∂xh)2 +

√
Dξ (x, t ), (1)

where ξ (x, t ) is a space-time white noise. We use space-time
units so that ν = 1 and λ = D = 2. Here we study the prob-
lem in a half-line x � 0 with boundary conditions ∂xh = A
depending on a parameter A. From the Cole-Hopf mapping
it can be equivalently defined as h(x, t ) = log ZA(x, t ), where
ZA(x, t ) satisfies the stochastic heat equation (SHE)

∂t ZA(x, t ) = ∂2
x ZA(x, t ) +

√
2ZA(x, t )ξ (x, t ), x � 0, (2)

with boundary condition ∂xZA(x, t ) = AZA(x, t ) at x = 0 and
as yet unspecified initial condition at t = 0.

Let us denote by ZA(x, t |y, 0) the partition function of a
continuous DP of length t in a white noise random potential in
dimension d = 1 + 1 (at unit temperature), in the half-space
x � 0, with endpoints at (y, 0) and (x, t ); see Fig. 1. In par-
ticular ZA(x, t |y, 0) satisfies Eq. (2) with initial condition at
t = 0 given by a delta mass at the point y.

III. FLAT INITIAL CONDITION

A. Finite-time solution

In this section, we are interested in the solution of the KPZ
Eq. (1) with a flat initial condition h(x, 0) = 0. This is equiva-
lent to studying Eq. (2) with ZA(x, 0) = 1, i.e., a polymer with
one fixed endpoint at (y, t ) and one free endpoint, of partition
function

Z f
A (y, t ) =

∫ ∞

0
ZA(y, t |x, 0)dx, (3)

the KPZ field being retrieved as h(y, t ) = log Z f
A (y, t ), where

the superscript f stands for flat IC.
Consider now the case where the fixed endpoint is at the

position of the wall y = 0. We will calculate the moments
of Z f

A (0, t ) which will allow us to obtain an expression for
the Laplace transform of its distribution. From Eq. (3) and

FIG. 1. (a) Directed polymer path in 1 + 1 dimensions in a half-
space, pinned at the boundary wall at the point (0,0), with free
endpoint (x, t ) (point to line problem) in presence of a bulk white
noise random potential

√
2ξ (x, t ). We will discuss the fluctuations

of the position of the polymer endpoint. By reversing time, this
corresponds to the line to point partition function Z f

A (y = 0, t ) in
Eq. (3), which maps to the KPZ field at time t with flat IC. (b) We
will also consider the position of the midpoint of a DP with both
endpoints pinned at the boundary.

by symmetry, we can write the nth integer moment of the
partition sum as

E
[
Z f

A (0, t )n
] = n!

∫
x1�···�xn�0

E

[
n∏

i=1

ZA(xi, t |0, 0)

]
, (4)

where here and below, E denote expectation with respect to
the noise ξ . As shown in Ref. [38] the moments appearing
in the right-hand side (r.h.s) can be expressed as a multiple
contour integral. We have that, for general endpoint positions
x1 � · · · � xn � 0,

E

[
n∏

i=1

ZA(xi, t |0, 0)

]
= 2n

∫
r1+iR

dz1

2iπ
· · ·
∫

rn+iR

dzn

2iπ

×
n∏

i=1

zi

zi + A
etz2

i −xizi

×
∏

1�a<b�n

za − zb

za − zb − 1

za + zb

za + zb − 1
,

(5)

where the contours are chosen so that r1 > r2 + 1 > . . . >

rn + n − 1 > max{n − 1 − A, n − 1}, i.e., all contours are to
the right of −A. To obtain the result for the flat initial con-
dition we must now integrate over the endpoints xi over the
positive real axis. To this aim we use the identity

∫
x1�···�xn�0

n∏
i=1

e−xizi =
n∏

i=1

1

z1 + · · · + zi
, (6)
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which is a convergent integral, since all Re(zi) > 0 from our
choice of contour. One thus obtains

E
[
Z f

A (0, t )n
] = n!2n

∫
r1+iR

dz1

2iπ
· · ·
∫

rn+iR

dzn

2iπ

×
∏

1�a<b�n

za − zb

za − zb − 1
F (�z), (7)

where

F (�z) =
∏

1�a<b�n

za + zb

za + zb − 1

n∏
i=1

etz2
i

z1 + · · · + zi

zi

zi + A
. (8)

It is convenient to deform all the contours to the single contour
r + iR with r > max(−A, 0). During the deformation, one
encounters many poles of the integrand whose residues need
to be taken into account. This is done in a systematic way
using Ref. [38, Proposition 5.1] (see also Ref. [44]). We obtain
for Eq. (7)

n∑
�=1

n!2n

�!

∑
�m:
∑

mi=n

�∏
i=1

∫
r+iR

dwi

2iπ
det

(
1

wi + mi − w j

)�

i, j=1

× E (w1,w1 + 1, . . . ,w1 + m1

− 1, . . . ,w�, . . . ,w� + m� − 1), (9)

where the mi � 1 are integers with
∑�

i=1 mi = n, and

E (�z) =
∑
σ∈Sn

∏
1�b�a�n

zσ (a) − zσ (b) − 1

zσ (a) − zσ (b)
F [σ (�z)]. (10)

This sum over the symmetric group can be simplified. Note
that the factor

∏
1�a<b�n

za+zb
za+zb−1 in F (�z) is symmetric, so it

can be factored out. The remaining symmetrization can be
performed as in the solution for the full space flat initial
condition [45] (see also Ref. [46]), where it was found that

∑
σ∈Sn

∏
1�b�a�n

zσ (a) − zσ (b) − 1

zσ (a) − zσ (b)

n∏
i=1

1

zσ (1) + · · · + zσ (i)

=
∏

1�a<b�n

za + zb − 1

za + zb

n∏
i=1

1

zi
. (11)

Hence, the products over a < b perfectly cancel each other,
and we are left with the remarkably simple expression

E (�z) =
n∏

i=1

etz2
i

zi + A
. (12)

Due to the product structure of the function E , it can be
factored inside the determinant in Eq. (9). This leads to an
explicit formula for the integer moments, which we sum over
n to obtain the moment generating series, leading to the fol-
lowing Fredholm determinant expression (see Appendix A for
details) for u > 0

E[e−uZ f
A (0,t )e

t
12 ] = det(I − Ku,t )L2(0,+∞), (13)

where the kernel is given by

Ku,t (v, v′) =
∫
R

2u dr

e−r + 2u
φA,t (v + r)ψA,t (v

′ + r), (14)

φA,t (v) =
∫

az+iR

dz

2iπ
et z3

3 −vz

�(A + 1
2 + z)

, (15)

ψA,t (v) =
∫
Caw

dw

2iπ
e−t w3

3 +vw�(A + 1
2 + w). (16)

The contour for z is a vertical line with real part az > 0, and
the contour for w, denoted Caw

, is the union of two semi-
infinite rays leaving the point aw > −(A + 1

2 ) in the direction
±2π/3 to ensure convergence. This expression is one of our
main result and is valid for any value of the wall parameter A
and for all time t > 0.

B. Large-time limit

From the Laplace transform formula one can extract the
probability density function (PDF) of the KPZ height field
h(0, t ) = log Z f

A (0, t ) at arbitrary time. Let us now discuss its
large time limit, which depends on the value of A. The height
takes the form as t → +∞,

h(0, t ) = log Z f
A (0, t ) � v∞(A)t + tβχ, (17)

where the free energy per unit length exhibits a transition

v∞(A) =
{− 1

12 when A � − 1
2 ,

− 1
12 + (

A + 1
2

)2
when A < − 1

2 ,
(18)

χ is an O(1) random variable, and β the growth fluctuation
exponent

β = 1

3
for A � −1

2
, β = 1

2
for A < −1

2
. (19)

Let us turn to the distribution of χ .

1. Case A > −1
2

We scale u as u = e−t1/3s with fixed s, so that

lim
t→∞E[e−uZ f

A (0,t )e
t

12 ] = P (χ � s). (20)

The limit of the Fredholm determinant in Eq. (13) is obtained
by the change of variables v = t1/3ṽ, v′ = t1/3ṽ′ and r = t1/3r̃
in Eq. (14), z = t−1/3z̃ in Eq. (15), and w = t−1/3w̃ in Eq. (16)
so that

lim
t→∞ t

1
3 Ku,t (t

1
3 ṽ, t

1
3 ṽ′) =

∫ ∞

s
Ai(r̃ + ṽ)Ai(r̃ + ṽ′)dr̃, (21)

leading to

P (χ � s) = det(I − KAi)L2(s,+∞) = F2(s), (22)

where KAi is the Airy kernel and F2(s) is the cumulative
distribution function (CDF) of the Tracy-Widom distribution
for the largest eigenvalue of a GUE random matrix.

2. Case A < −1
2

The condition that aw > −(A + 1
2 ) in Eq. (16) forbids

to use the same change of variables. In this case we scale
u = e−(A+ 1

2 )2t−t1/2s, and use the change of variables v = t1/2ṽ
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(and likewise for the variables v′), r = (A + 1
2 )2t + t1/2r̃, z =

−(A + 1
2 ) + t−1/2z̃ in Eqs. (15) and (16) we evaluate the inte-

gral by residues [the residue at w = −(A + 1
2 ) is dominant].

We obtain

lim
t→∞ t

1
2 Ku,t (t

1
2 ṽ, t

1
2 ṽ′) = 1√

4π |A + 1
2 |

e
− (s+ṽ)2

4|A+ 1
2 | , (23)

which implies that χ has a Gaussian distribution with variance
2|A + 1

2 |, see details in Appendix B.

3. Near the critical point

We may also scale A close to the critical point as A = −1
2 +

at−1/3. The asymptotics are similar as in the case A > −1
2 ,

except that (see Appendix B)

P (χ � s) = det(I − KBBP
a )L2(s,+∞) = F BBP

a (s), (24)

where the CDF F BBP
a (s) was introduced in Ref. [43] and gov-

erns the fluctuations of the eigenvalues of spiked Hermitian
matrices. It was also found to arise in the context of the KPZ
universality class in full-space models for half-Brownian-type
IC [14,15,47] and in other contexts [43,48–50]. In particular,
for a = 0, F BBP

0 (s) = [F1(s)]2 where F1 is the Tracy-Widom
distribution function for the largest eigenvalue of a GOE ran-
dom matrix.

IV. STATIONARY ENDPOINT DISTRIBUTION

A. Endpoint distribution

The previous results describe the behavior of the partition
function of a polymer of arbitrary length t in a white noise ran-
dom potential, with one endpoint fixed at x = 0 and another
endpoint free to move; see Eq. (3). It is natural to ask about
the distribution of the distance of the endpoint to the wall.
This information is contained in the endpoint PDF PA(x, t ) in
a given disorder realization, i.e.,

PA(x, t ) = ZA(x, t |00)∫
dyZA(y, t |00)

= ZA(x, t |00)

Z f
A (0, t )

(25)

and in its average PA(x, t ) = E[PA(x, t )]. Direct calculation
of this quantity is not available, however one can obtain it in
the limit of a large polymer length t in the bound phase A <

− 1
2 . For a large class of IC (see below), the distribution of

ratios ZA(x, t )/ZA(y, t ) converges at large time t to a stationary
distribution of polymer partition function ratios such that

x 	→ ZA(x, t )

ZA(0, t )
= x 	→ eB(x)+(A+ 1

2 )x. (26)

It is stationary in the sense that if at a time t the field of par-
tition function ratios is distributed as Eq. (26) where B(x) is
a standard Brownian motion, then at any later time t̃ , the field
of partition function ratios will still be distributed as Eq. (26),
with a new Brownian motion B̃(x) depending nontrivially on
B(x) and the disorder ξ (x, s) for t < s < t̃ . Therefore, at large
time,

lim
t→∞PA(x, t ) = pA(x) := eB(x)+(A+ 1

2 )x∫ +∞
0 dyeB(y)+(A+ 1

2 )y
, (27)

in the sense that both sides have the same multipoint distribu-
tion.

This result allows to obtain formulas for the moments
of the endpoint position which become time independent
at large t for fixed A < −1/2. One denotes the ther-
mal average in a given disorder configuration as 〈O(x)〉 =∫ +∞

0 dxO(x)PA(x, t ), and the thermal cumulants as usual,
e.g., 〈x2〉c = 〈x2〉 − 〈x〉2. Interpreting pA(x) in Eq. (27) as
the Gibbs measure of a particle (the endpoint) in a 1d
Brownian random potential (at unit temperature), it is nat-
ural to introduce [51] Z(v) = ∫ +∞

0 dyeB(y)+vy, for v < 0,
the generating function of the thermal cumulants, such that
〈xp〉c = ∂

p
v log Z(v)|v=A+ 1

2
. It is well-known that the ran-

dom variable Z(v) is distributed as the inverse of a Gamma
variable, Z(v) = 1/�(−2v, 1

2 ) [52,53]. In particular, using
E[log Z(v)] = log 2 − ψ (−2v), one obtains the disorder av-
eraged thermal cumulants of the polymer endpoint

E[〈xp〉c] = −(−2)pψ (p)(−2A − 1) (28)

for p � 1, where ψ (z) is the digamma function, e.g.,

E[〈x〉] = 2ψ ′(−2A − 1) � 2

(2A + 1)2
, (29)

E[〈x2〉c] = −4ψ ′′(−2A − 1) � 8

|2A + 1|3 , (30)

where we indicated the leading behavior for A → −1/2−,
using ψ (x) ∼ −1

x at small x. In the bound phase but near
the transition, i.e., for ε = −(A + 1

2 ) > 0 and small, the end-
point wanders very far. In terms of the rescaled endpoint
position y = ε2x one has eB(x)−εx = e

1
ε

(B̃(y)−y), i.e., ε can be
interpreted as an effective temperature which tends to zero.
The PDF of y thus concentrates around the optimum ym =
argmaxz>0[B̃(z) − z]. The explicit PDF of ym is known [54]

and reads P(y) =
√

2
πy e−y/2 − Erfc(

√
y
2 ), which implies the

leading behavior of the moments as A → −1/2−,

E〈xn〉 � cn

∣∣A + 1
2

∣∣−2n
, cn = 2n�(n + 1

2 )

(n + 1)
√

π
, (31)

where c1 = 1
2 agrees with Eq. (29). The PDF P(y) is expected

to be the limit a → −∞ of a family of distributions indexed
by a, universal within the KPZ class, which describes the end-
point distribution around the critical point (see Sec. VI). As
expected, the thermal fluctuations are subdominant as com-
pared to the disorder. Recall that for the polymer in full space,
with one endpoint fixed at 0, the cumulants are time dependent
with E[〈xp〉c] = tδp,2 for any t , see Appendix D, a behavior
very different from Eq. (28). For the half-space problem, near
the transition the first two average cumulants are expected
to take the following time dependent scaling form E〈x〉 �
t2/3 f1(a) and E〈x2〉c = t f2(a), where a = t1/3(A + 1

2 ) is the
critical scaling variable, with the asymptotics f1(a) � 1

2a2 and
f2(a) � 1/a3 for a → −∞, from Eqs. (29) and (30). Finally,
the result Eq. (31) is expected to hold provided t−1/3 
−(A + 1

2 )  1.
The polymer in the half-space can be also studied by the

replica method. It uses the relation between the nth moment
of the partition sum and the Lieb-Liniger Hamiltonian Hn for
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n bosons on the half-line, solvable via the Bethe ansatz. This
was pioneered by Kardar [19] who proposed an ansatz for the
ground state �0 of Hn, which is a bound state to the wall
for A < −1/2, and used it to predict E[〈x〉]. This calculation
assumes that the limits n → 0 and t → +∞ commute. We
checked that the result of Ref. [19] agrees with Eq. (29)
(using κ = 1/2 and λ = −A there), which indicates that this
assumption holds in the bound phase (while it does not hold
in the unbound phase, or in the full space). In Appendix E
we provide a detailed comparison of the two methods [replica
ground-state dominance, and Brownian stationary measure
Eq. (27)] and more details on the replica approach. Note
that the full spectrum of Hn is quite complicated and was
obtained recently in Ref. [42], see also Ref. [40], which con-
firms Ref. [19], and may allow to obtain subleading large time
behavior.

It is also possible to obtain exact formula for the m-point
averages E[pA(x1) . . . pA(xm)] of the Gibbs measure pA(x),
using the Liouville quantum mechanics developed in Refs.
[55–59]. The detailed calculations are presented in Appendix
F. For instance, in the case m = 1, we obtain

E[pA(x)] = 1

4�(2w)

∫ i∞

−i∞

dz(w2 − z2)

2iπ�(2z)�(−2z)
e

−x
2 (w2−z2 )

×�(w + z)2�(w − z)2

×�(1 − w − z)�(1 − w + z), (32)

which is valid for 0 < w = −(A + 1
2 ) < 1 and can be analyt-

ically continued to all w > 0 (see Appendix F where we also
checked that Eq. (32) is normalized to unity and reproduces
the first moment Eq. (29)).

B. Midpoint probability and unbinding by a force

Consider now a polymer with both endpoints fixed near the
wall at times t = 0 and 2t ; see Fig. 1. One may ask about the
PDF of the midpoint position x = x(t ) for a long polymer, i.e.,
for large t . In the bound phase A < −1/2, it is proportional to
(up to a normalization factor)

eB1(x)+B2(x)+2(A+ 1
2 )x, (33)

where B1,B2 are independent Brownian motions. Since

B1(x) + B2(x) has the same distribution as
√

2B(x)
(d )= B(2x)

(B being a standard Brownian motion), the PDF of the mid-
point equals 2pA(2x), i.e., the midpoint position is distributed
as half of the endpoint position [60].

Applying now a force f on the polymer endpoint in Fig. 1
results in the change ZA(x, t ) → efxZA(x, t ) to its partition
function (only at the final time t). In the stationary large time
limit Eq. (27) it amounts to shift A → A + f in all the above
results for the endpoint. An unbinding transition thus occurs at
f = fc = −(A + 1/2), with the same behavior as the transition
at f = 0 upon varying A (this is also equivalent to tilting the
wall). If the force is instead applied on the midpoint in Fig. 1,
then the unbinding transition then occurs at fc = −2(A + 1

2 ).

C. Convergence to the stationary distribution

So far we have not justified why the ratios of partition
functions converge to Eq. (26) in the bound phase. It was

FIG. 2. Domains of attraction of KPZ (conjectural) stationary
measures. The horizontal coordinate A is the boundary parameter
in the half-space SHE (2). The vertical coordinate means that we
start from an initial condition which behaves as a Brownian motion
with drift −(B + 1

2 ) at infinity. Then, the ratios of partition function
Z (x, t )/Z (0, t ) converge to one of the stationary measures μ. In
the blue region (low density phase in ASEP context) these ratios
converge to μA,−1−A, as stated in the text. In the green region (high
density phase) the ratios converge to μA,B, and in the yellow region
(maximal current phase), they converge to μA, −1

2
. Along the antidi-

agonal line B = −1 − A, the ratios always converge to the Brownian
stationary measures Eq. (26).

shown in Ref. [41] that this distribution of ratios is indeed
stationary. When A � −1

2 , we claim that for a large class of
initial condition such that the drift at infinity is less than
−(A + 1

2 ), that is

log ZA(x + y, 0) − log ZA(x, 0) � −(B + 1
2

)
y, (34)

for large x and y, with B � A (and even for more general
random initial conditions), then the ratios of partition func-
tions converge to Eq. (26). This class of initial conditions
includes the flat IC for the KPZ equation, as well as the fixed
endpoint for the DP (equivalently the droplet IC for KPZ). It is
important to note that there exist more general stationary dis-
tributions of partition function ratios than the ones described
in Eq. (26). They can be parametrized by (A, B), and denoted
μA,B, where A is the boundary parameter, and B is a drift pa-
rameter meaning that log ZA(x + y, t ) − log ZA(x, t ) behaves
as a Brownian motion in y with drift −(B + 1

2 ) for large x.
In the case B = −1 − A, the stationary measure μA,−1−A is
exactly the one described in Eq. (26). Depending on the value
of A and the drift at infinity of the initial condition, we expect
that the partition function ratios converge to one of these
stationary measures according to the phase diagram in Fig. 2,
based on a similar analysis performed for the asymmetric
simple exclusion process (ASEP) [61,62].

V. IDENTITIES IN DISTRIBUTION

Equation (13), which characterizes the distribution of
Z f

A (0, t ), matches with a known formula characterizing the
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distribution of another quantity. Let Z (A)(x, t ) be the solution
to the stochastic heat equation

∂t Z (x, t ) = ∂2
x Z (x, t ) +

√
2Z (x, t )ξ (x, t ), x ∈ R, (35)

on the full line, with “half-Brownian” initial condition given
by 1x�0eB(x)−(A+ 1

2 )x, where B is a standard Brownian motion.
It was shown in Ref. [15] (see also Refs. [14,47]) that the
Laplace transform of Z (A)(0, t ) is given by the same Fredholm
determinant as the one that we obtained in Eq. (13). Matching
parameters and notations between Ref. [15] and the present
paper (see Appendix C) we find the following surprising iden-
tity in distribution: for all fixed t > 0 and any A ∈ R,

Z f
A (0, t ) = 2Z (A)(0, t ), (36)

where Z f
A (0, t ) was defined in Eq. (3). Remarkably, an identity

of a similar flavour as Eq. (36) can be deduced from Ref.
[32, Eq. (7.59)] for a model of last passage percolation [63].
We stress that Eq. (36) is also valid in the phase A < −1

2 ,
where in the left-hand side (l.h.s.), the polymer is bound to
the wall. In the r.h.s., Z (A)(0, t ) is the partition function of
polymer paths in the full space, weighted by 1x�0eB(x)−(A+ 1

2 )x

(x being the starting point) which, for A < −1/2, is dominated
by x = O(t ) so that the fluctuations of the Brownian motion
are dominant over KPZ-type fluctuations. We do not know
whether Eq. (36) extends at several times. Nevertheless, we
may generalize Eq. (36) by introducing a spatial parameter,
though we cannot simply replace the point 0 by an arbitrary
point X > 0 in Eq. (36). Let us define

Zshifted
A (X, t ) =

∫
x�X

ZA(0, t |x, 0)dx. (37)

This corresponds to the value at the origin of the solution to
the half-line SHE (2) with initial condition Z (x, 0) = 1x�X .
Then, we may readily adapt Eqs. (6), (7), (9), (12), and
(13) (see details in Appendix C) and match the result with
Ref. [15]. We obtain that for any fixed time t > 0, X � 0 and
A ∈ R, we have the identity in distribution

Zshifted
A (X, t ) = 2Z (A)(−X, t ). (38)

Note that Z (A)(−X, t ) has the same law as e− X2

4t Z (A+ X
2t )(0, t )

from the tilt symmetry (see Appendix D), hence we also have

Zshifted
A (X, t ) = e− X2

4t Zshifted
A+ X

2t
(0, t ) in law.

An even more general identity in distribution holds. Let us
denote ZA,B(x, t ) the solution to Eq. (2) on the half line x � 0
with initial condition given by eB(x)−(B+ 1

2 )x. The moments of
ZA,B(x, t ) are given in Ref. [41, Sec. 4.4] in a very similar
form as in Eq. (5). Thus, we may still apply the same steps:
we define

Zshifted
A,B (X, t ) =

∫
x�X

ZA,B(x, t )dx, (39)

and compute the Laplace transform of Zshifted
A,B (X, t ). Then, for

t > 0, X � 0, and parameters A, B such that A + B + 1 > 0
and B > −1

2 , we have the identity in distribution

Zshifted
A,B (X, t ) = 2Z (B|A,B)(−X, t ), (40)

where the quantity Z (B|A,B)(−X, t ) is again the solution
to full-line SHE (35) with some specific IC, that we obtain in

Appendix C 3 using exact formulas valid for the exactly
solvable log-gamma polymer model. To describe it, let
W1,W2,W3 be three independent Brownian motions with
respective drifts −(B + 1

2 ), −(A + 1
2 ) and −(B + 1

2 ). Let w

be an independent inverse Gamma random variable with pa-
rameter (2B + 1). Then for x � 0,

Z (B|A,B)(x, 0) = weW1(−x), (41)

and for x � 0,

Z (B|A,B)(x, 0) = eW3(x)

(
w +

∫ x

0
eW2(y)−W3(y)dy

)
. (42)

When B → +∞, then B Zshifted
A,B (X, t ) goes to Zshifted

A (X, t ) and
B Z (B|A,B)(X, t ) goes to Z (A)(X, t ) (see Appendix C 4), so that
we recover Eq. (38). When A → +∞, we obtain yet another
identity in law,

Zshifted
+∞,B (X, t ) = 2wZ̃ (B|B)(−X, t ), (43)

where the l.h.s. is related to half-line solution to Eq. (2)
with eB(x)−(B+ 1

2 )x IC and Dirichlet boundary condition (this
solution was studied in Refs. [40,64]), and Z̃ (B|B)(X, t ) is the
full-line solution to Eq. (35) with eB(x)−(B+ 1

2 )|x| IC, indepen-
dent on w. This solution was studied in Refs. [16–18] and one
checks that the Fredholm determinant obtained here charac-
terizing the law of Zshifted

A,B (X, t ) for A → +∞ matches the one
in Ref. [17], see Appendix C 2. Going back to the solution
Z (B|A,B)(−X, t ) in Eq. (40), its distribution was not obtained
in the literature, though its moments can be computed using
known methods, and we explain in Appendix C 3 how they
match with the moments of Zshifted

A,B (X, t ) for generic parame-
ters A, B.

VI. UNIVERSALITY

In this paper we studied the continuum directed poly-
mer model. We found that in the bound phase, taking
the limit t → +∞ first, very near the transition, with 0 <

ε = −(A + 1/2)  1, the PDF of the scaled endpoint posi-
tion y = x(A + 1/2)2 concentrates around the optimum ym =
argmaxz>0(B̃(z) − z). Hence, in that limit this scaled position
is distributed with

P(y) =
√

2

πy
e−y/2 − Erfc

(√
y

2

)
, (44)

a PDF which behaves as P(y) �
√

2
πy for y  1 and as P(y) �√

2
π

y−3/2e−y/2 for y � 1.
One can argue that this result holds for finite but very large

time as well, as long as the critical parameter a = (A + 1
2 )t1/3

is very large negative −a � 1. In fact one can surmise that
there is a scaling function which describes the endpoint posi-
tion x(t ) in the critical region as follows:

lim
t→+∞ Prob

[
x(t )(A + 1/2)2 < y

∣∣∣A + 1
2 = a

t1/3

]
= P (y, a).

(45)
To match the previous result one would need that
lima→−∞ P (y, a) = ∫ y

0 dzP(z). However, one can conjecture
the existence of a (critical) half-space Airy process, denoted
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Aa(x̂) continuously depending on the parameter a. It would
describe in particular the simultaneous limit t → +∞ and
A → −1/2 of the continuum directed polymer model, with
fixed a = t1/3(A + 1

2 )

log ZA(x, t |0, 0) � t1/3(Aa(x̂) − x̂2), x̂ = x

2t2/3
. (46)

By universality, this process should be the same as the limit
process obtained from half-space last passage percolation, so
that the finite dimensional marginals of Aa(x̂) are described in
Ref. [35, Theorem 1.7]. The main result of this paper (solution
for the flat IC) can be stated in terms of this process Aa(x̂),

max
x̂>0

[(Aa(x̂) − x̂2)]
(d )= BBPa, (47)

where
(d )= denotes the equality of distributions and BBPa de-

notes the BBP distribution defined in Eq. (24). More generally,
from the identity Eq. (37) obtained in this paper, one would
conclude that, for fixed X̂ � 0,

max
x̂>X̂

[(Aa(x̂) − x̂2)]
(d )= a2 + 2aX̂ (48)

+ [A2→BM (−X̂ − a) − (X̂ + a)2], (49)

where A2→BM was introduced in Ref. [65] (see also
Refs. [14,66]). For Eq. (46) to match our results on the sta-
tionary large time limit requires that for x̂  1,

Aa(x̂) �
√

2B(x̂) + 2ax̂. (50)

Finally, the endpoint PDF scaling function P (y, a) defined
in Eq. (45) would be obtained from this process as the PDF
of y = argmax{[Aa(x̂) − x̂2]}. It is then natural to conjecture
the universality of the above distributions at a half-space KPZ
fixed point.

In the context of last passage percolation, an identity rem-
iniscent of Eq. (36) relating the distribution of the point to
point energy in a full-space model and the point to line energy
in a half-space model, was stated as Ref. [32, Eq. (7.59)]. In
the large scale limit (studied in Ref. [33]) both distributions
converge to the BBP distribution (the limiting distribution
function was denoted F�(x; w) in Ref. [33], it coincides with
the BBP distribution defined later in Ref. [43]). Our asymp-

totic results at large time for the KPZ equation in Sec. III B
thus confirm universality predictions. Let us stress, however,
that the identity in distribution from Ref. [32] cannot be scaled
to the KPZ equation: one cannot deduce from it our finite time
identities in distribution Eqs. (36), (38), (40), and (C17).

VII. CONCLUSION

We obtained the solution for all times to the KPZ equation
on a half-line with flat IC, i.e., the distribution of the height
at the origin for any wall parameter A. Thanks to remarkable
algebraic cancellations it is simpler than the solution for flat
IC on the full line. In fact, we find that it is related to the
half-Brownian IC on the full line, and uncover further curious
relations between full and half-line problems. Equivalently it
gives the free energy of a DP of any length t in a half-space,
with one free endpoint and the other pinned at the wall. We
showed that its critical behavior at the unbinding transition
at A = −1/2 is identical to the BBP critical behavior for
outliers of GUE random matrices. For A < −1/2 the poly-
mer is bound to the wall and at large t its endpoint position
fluctuates as a particle at equilibrium in a one-sided Brown-
ian plus linear confining potential. This considerably extends
early predictions within the replica Bethe ansatz. These results
open questions such as generalization of the aforementioned
identities to several points or times, studying the rate of con-
vergence to the stationary measure μA that we determined,
possibly in relation to excited states within the replica Bethe
ansatz, and properties of the non Gaussian stationary measures
μA,B (their analogues in finite volume were recently studied
in Ref. [67]). Our results near criticality are part of a larger
universal KPZ fixed point structure in half-space, yet to be
fully characterized.
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APPENDIX A: FLAT INITIAL CONDITION: DETAILS

1. Explicit formula for the moments

Computing the factor E (w1,w1 + 1, . . . ,w1 + m1 − 1, . . . ,w�, . . . ,w� + m� − 1) in Eq. (9) using Eq. (12) one finds

E
[
Z f

A (0, t )n
] = n!2n

n∑
�=1

1

�!

∑
�m:
∑�

i=1 mi=n

�∏
i=1

∫
r+iR

dwi

2iπ
det

(
1

wi + mi − w j

)�

i, j=1

�∏
i=1

�(A + wi )

�(A + wi + mi )
et (G(wi+mi )−G(wi )), (A1)

where we used that
∑m−1

k=0 (w + k)2 = G(w + m) − G(w) and G(w) is defined as G(w) := w3

3 − w2

2 + w
6 . We recall that the real

part of integration contours is such that r > −A. One can check that the integrals over w j are convergent.

2. Laplace transform

Let us now consider the generating function 1 +∑+∞
n=1

(−u)n

n! E[Z f
A (0, t )n]. The summation over n allows to eliminate the

constraint
∑�

i=1 mi = n in the sum over the variables mi in Eq. (A1). Although it is a divergent series, after rearrangements of the

terms and use of a Mellin Barnes representation of the sums, it yields an expression for the Laplace transform E[e−uZ f
A (0,t )] which
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FIG. 3. The contours Caw
and Cas [w] are shown in the figure. The contour Cas [w] depends on the location of w. For the w depicted in the

figure, the contour consists of the union of the vertical line with real part as and small negatively oriented circles around w + 1 and w + 2,
since w + 1 and w + 2 lie to the left of the vertical line with real part as.

in all known cases has given the correct result. The Mellin-Barnes representation replaces the sum over the integer variables mi

by integrals, for each i

+∞∑
m=1

(−1)m f (m) =
∫
C

dz

2iπ
π

sin(−πz)
f (z), (A2)

where C = a + iR with 0 < a < 1, oriented from bottom to top. Introducing a variable z j for each mj and performing the change
from z j to s j = w j + z j , this leads to

E[e−uZ f
A (0,t )] =

+∞∑
�=0

1

�!

∫
Caw

dw1

2iπ
· · ·
∫
Caw

dw�

2iπ

∫
Cas [w1]

ds1

2iπ
· · ·
∫
Cas [w�]

ds�

2iπ
det

(
1

si − w j

)�

i, j=1

×
�∏

j=1

[
etG(s j )

etG(w j )

π

sin(−π (s j − w j )
(2u)s j−w j

] �∏
j=1

�(A + w j )

�(A + s j )
. (A3)

The contour for variables wi, denoted Caw
, is the union of two semi-infinite rays leaving the point aw > −A in the direction

±2π/3, oriented from bottom to top. The contour for variables si, denoted Cas [w] is formed by the union of the vertical line
as + iR and the union of negatively oriented circles around the poles at w + 1,w + 2, . . . when these lie to the left of the vertical
line (see Fig. 3). The vertical line is oriented from bottom to top. Furthermore, a sufficient condition for the integrals over si to
be convergent is that as − 1/2 > 0. We choose the real numbers as and aw so that

−A < aw < as. (A4)

Since from the choices of integration contours one has Re(si − w j ) > 0 in Eq. (A3), we can use the representation

1

si − w j
=
∫ +∞

0
dve−v(si−w j ) (A5)

inside the determinant. After some simple manipulations one recognizes the expansion of a Fredholm determinant

E[e−uZ f
A (0,t )] = Det(I + Ku,t )L2(R+ ), (A6)

with the kernel

Ku,t (v, v′) =
∫
Caw

dw

2iπ

∫
Cas [w]

ds

2iπ
π

sin[−π (s − w)]
(2u)s−we−vs+v′w etG(s)

etG(w)

�(A + w)

�(A + s)
. (A7)

This provides an expression of the generating function in terms of a kernel involving two contour integrals. We will now
transform this formula to obtain an alternative expression in terms a second kernel, as given in the main text in Sec. III. Let
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us use the identity for �λ > 0,

(2u)λ
π

sin(−πλ)
= −

∫
R

dr
2u

e−r + 2u
e−λr, (A8)

and perform the shift w j → w j + 1/2 and change of variables s j = z j + 1/2. This leads to our final formula

E[e−uZ f
A (0,t )e

t
12 ] = det(I − Ku,t )L2(0,+∞), (A9)

with the kernel

Ku,t (v, v′) =
∫
R

dr
2u

e−r + 2u
φA,t (v + r)ψA,t (v

′ + r), (A10)

φA,t (v) =
∫

az+iR

dz

2iπ
et z3

3 −vz

�(A + 1
2 + z)

, (A11)

ψA,t (v) =
∫
Caw

dw

2iπ
e−t w3

3 +vw�(A + 1
2 + w), (A12)

where the contour for z is a vertical line such that az > 0 and the contour for w, denoted Caw
, is the union of two semi-infinite

rays leaving the point aw > −(A + 1
2 ) in the direction ±2π/3.

APPENDIX B: ASYMPTOTICS: DETAILS

1. Case A > −1
2

Using the rescalings indicated in Sec. III, we have the limits

lim
t→∞ �

(
A + 1

2

)
t1/3φA,t (t

1/3ṽ) = lim
t→∞

t1/3ψA,t (t1/3ṽ)

�(A + 1
2 )

= Ai(ṽ) =
∫

1+iR

dz

2iπ
e

z3

3 −ṽz. (B1)

We also have, with u = e−t1/3s and r = t1/3r̃,

2u

e−r + 2u
= 2

2 + et1/3(s−r̃)
−−−→
t→∞ θ (r̃ − s), (B2)

which leads to Eqs. (21) and (22) in the main text.

2. Case A < −1
2

When A < −1
2 , we use the following change of variables in Eqs. (A10)–(A12):

r =
(

A + 1

2

)2

+ t1/2r̃, v = t1/2ṽ, z = −
(

A + 1

2

)
+ t−1/2z̃, (B3)

so that

φA,t

[(
A + 1

2

)2

t + t1/2(ṽ + r̃)

]
� 1

t
e

2t (A+ 1
2 )3

3 e(A+ 1
2 )t1/2(ṽ+r̃)

∫
dz̃

2iπ
z̃e−(A+ 1

2 )z̃2−(ṽ+r̃)z̃. (B4)

To take the asymptotics of ψA,t , we first shift the contour to the left of the pole at w = −(A + 1
2 ) and we obtain

ψA,t (v) = e
t (A+ 1

2 )3

3 −v(A+ 1
2 ) +

∫
Ca′

w

dw

2iπ
e−t w3

3 +vw�(A + 1
2 + w), (B5)

where now, Ca′
w

is the union of two semi-infinite rays in direction ±φ where φ ∈ ( π
2 , 5π

6 ) (so that Re[w3] > 0), which intersect
the horizontal axis at a′

w with −A − 3
2 < a′

w < −(A + 1
2 ). We obtain

ψA,t

[(
A + 1

2

)2

t + t1/2(ṽ′ + r̃)

]
� e− 2t (A+ 1

2 )3

3 e−(A+ 1
2 )t1/2(ṽ′+r̃)

[
1 +

∫
Caw̃

dw̃

2iπ
e(A+ 1

2 )w̃2+(ṽ′+r̃)w̃

w̃

]
, (B6)

where we have chosen φ ∈ ( 3π
4 , 5π

6 ) (so that Re[w̃2] > 0), and we have used the change of variables w = −(A + 1
2 ) + t−1/2w̃

and we scale a′
w = −(A + 1

2 ) + aw̃t−1/2 with aw̃ < 0. Notice that in the integral in the r.h.s. of Eq. (B6), the contour can be

freely shifted to the left to −∞, so that the integral is zero. We now set u = e−(A+ 1
2 )2t−st1/2

, so that

2u

e−r + 2u
= 2

2 + et1/2(s−r̃)
−−−→
t→∞ θ (r̃ − s) (B7)
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and

E[e−uZ f
A (0,t )e

t
12 ] −−−→

t→∞ P

[
log Z f

A (0, t ) + t
12 − (A + 1

2 )2t

t1/2
� s

]
. (B8)

Putting all terms together, there are cancellations of the prefactors from ψA,t and φA,t , so that t1/2Ku,t (v, v′) −−−→
t→∞ K̃s(ṽ, ṽ′) and

we obtain that

lim
t→∞ det(I − Ku,t )L2(0,+∞) = det(I − K̃s)L2(0,+∞), (B9)

where

K̃s(ṽ, ṽ′) =
∫ +∞

s
dr̃
∫

dz̃

2iπ
z̃e−(A+ 1

2 )z̃2−(ṽ+r̃)z̃ =
∫

dz̃

2iπ
e−(A+ 1

2 )z̃2−(ṽ+s)z̃ = 1√
4π |A + 1

2 |
e
− (s+ṽ)2

4|A+ 1
2 | , (B10)

so that, at large time

log Z f
A (0, t ) �

[
− 1

12
+
(

A + 1

2

)2]
t + t1/2χ, (B11)

with

P (χ < s) = det(I − K̃s)L2(0,+∞) = 1 −
∫ ∞

0
K̃s(ṽ, ṽ)d ṽ = P (G � s), (B12)

where G is a centered Gaussian random variable with variance 2|A + 1
2 |, as announced in the main text. In Eq. (B12) the

Fredholm determinant is simple to evaluate since K̃s is a rank one kernel (i.e., a projector). Note that the variance of the random
variable χ has the same value as for the droplet IC, as found by a more heuristic method in Ref. [42].

3. Critical case A = −1
2 + at−1/3

We use the same scalings as indicated in Sec. III for A > −1
2 , and we obtain

lim
t→∞ t2/3φA,t (t

1/3ṽ) = φa(ṽ) :=
∫

1+iR

dz̃

2iπ
(z̃ + a)e

z̃3

3 −ṽz̃, (B13)

lim
t→∞ ψA,t (t

1/3ṽ) = ψa(ṽ) :=
∫
Caw̃

dw̃

2iπ
e

−w̃3

3 +ṽw̃

w̃ + a
, (B14)

where the contour Caw̃
in Eq. (B14) is the union of two semi-infinite rays in direction ±2π/3 which intersect the horizontal axis

at aw̃ is such that aw̃ > −a. Putting all together we obtain, as announced in the main text,

P (χ � s) = det
(
I − KBBP

a

)
L2(s,+∞) = F BBP

a (s), (B15)

with the kernel

KBBP
a (v, v′) =

∫ +∞

0
drφa(v + r)ψa(v′ + r), (B16)

where the functions φa and ψa are defined in Eqs. (B13) and (B14). This distribution was introduced in Ref. [43] and the form
that we obtained in Eq. (24) [i.e., Eq. (B15)] can be matched with the original definition from Ref. [43] using, e.g., Ref. [47].

APPENDIX C: GENERALIZATION TO THE SHIFTED PARTITION FUNCTION
WITH X � 0 AND ARBITRARY PARAMETERS A, B

1. Moment formulas

The starting point is the following formula from Ref. [41, Sec. 4.4] for the moments of ZA,B(x, t ), that is the solution to the
half-space SHE (2) with Brownian IC eB(x)−(B+ 1

2 ). For B > n − 1, A + B > n − 1, and x1 � x2 � · · · � xn,

E

[
n∏

i=1

ZA,B(xi, t )

]
= 2n �(A + B + 1)

�(A + B + 1 − n)

∫
r1+iR

dz1

2iπ
· · ·
∫

rn+iR

dzn

2iπ

∏
1�a<b�n

za − zb

za − zb − 1

za + zb

za + zb − 1

×
n∏

i=1

zi

zi + A

1

B2 − z2
i

etz2
i −xizi , (C1)
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where the contours are chosen so that B > r1 > r2 + 1 > . . . > rn + n − 1 > max{n − 1 − A, n − 1}, i.e., all contours are to the
right of −A and to the left of B. Recall the definition of Zshifted

A,B (X, t ) from Eq. (39). Using the same steps as in the main text
around Eq. (6), we have

E
[
Zshifted

A,B (X, t )n
] = n!2n �(A + B + 1)

�(A + B + 1 − n)

∫
r1+iR

dz1

2iπ
· · ·
∫

rn+iR

dzn

2iπ

∏
1�a<b�n

za − zb

za − zb − 1
F (�z), (C2)

where now,

F (�z) =
∏

1�a<b�n

za + zb

za + zb − 1

n∏
i=1

etz2
i −Xzi

z1 + · · · + zi

zi

zi + A

1

B2 − z2
i

. (C3)

As in the main text, we may use Ref. [38, Proposition 5.1] to obtain that Eq. (C1) becomes

n!2n �(A + B + 1)

�(A + B + 1 − n)

n∑
�=1

1

�!

∑
�m:
∑

mi=n

∫
r+iR

dw1

2iπ
· · ·
∫

r+iR

dw�

2iπ
det

(
1

wi + mi − w j

)�

i, j=1

× E (w1,w1 + 1, . . . ,w1 + m1 − 1, . . . ,w�, . . . ,w� + m� − 1), (C4)

where now, the real part of contours is such that max{−A, 0} < r < B and the function E is given in terms of the function F in
Eq. (C3) by the same formula as in as in Eq. (10). It is computed as in the main text using the same symmetrization Eq. (11),
and we obtain that

E (�z) =
n∏

i=1

etz2
i −Xzi

zi + A

1

B2 − z2
i

. (C5)

At this point, we may use Ref. [38, Proposition 5.1] backwards, and obtain that the moments of Zshifted
A,B (X, t ) are given by the

relatively simple nested contour formula:

E
[
Zshifted

A,B (X, t )n
] = 2n �(A + B + 1)

�(A + B + 1 − n)

∫
r1+iR

dz1

2iπ
· · ·
∫

rn+iR

dzn

2iπ

∏
1�a<b�n

za − zb

za − zb − 1

n∏
i=1

zi

zi + A

1

B2 − z2
i

etz2
i −Xzi , (C6)

where the contours are chosen so that B > r1 > r2 + 1 > . . . > rn + n − 1 > max{n − 1 − A, n − 1}.

2. Laplace transform

We may also use Eq. (C4) to form the moment generating series as in Appendix A 2 and obtain a Fredholm determinant
formula. The main difference with Appendix A is that there is a prefactor �(A+B+1)

�(A+B+1−n) in the moment Eq. (C4). This is
the reason why it is convenient to introduce an inverse gamma random variable W with parameter A + B + 1, i.e., of PDF
P(w) = 1

�(A+B+1)w
−A−B−2e−1/wθ (w) and moments E[W n] = �(A+B+1−n)

�(A+B+1) , independent from Zshifted
A,B (X, t ), so that the moments

of W Zshifted
A,B (X, t ) satisfy the same formula as Eq. (C4) without the ratio of Gamma functions. At this point we may reproduce

the steps detailed above in Appendix A 2. We use
∏m−1

i=0
1

w+i+A = �(A+w)
�(A+w+m) and

∏m−1
i=0

1
B2−(w+i)2 = �(B+w)�(B−w−m+1)

�(B−w+1)�(B+w+m) . We obtain

E[e−uW Zshifted
A,B (X,t )] =

+∞∑
�=0

1

�!

∫
Caw

dw1

2iπ
· · ·
∫
Caw

dw�

2iπ

∫
Das [w1]

ds1

2iπ
· · ·
∫
Das [w�]

ds�

2iπ
det

(
1

si − w j

)�

i, j=1

×
�∏

j=1

⎡⎣ etG(s j )−X
(s j −1/2)2

2

etG(w j )−X
(w j −1/2)2

2

π

sin(−π (s j − w j )
(2u)s j−w j

⎤⎦ �∏
j=1

�(A + w j )�(B + w j )�(B − s j + 1)

�(A + s j )�(B + s j )�(B − w j + 1)
. (C7)

The contours are chosen similarly as in Appendix A 2. More precisely, the contour for variables wi, denoted Caw
, is the union

of two semi-infinite rays leaving the point aw > max{−A,−B} in the direction ±2π/3. The contour for variables si, denoted
Das [w] is formed by the union two parts: (1) a wedge shaped contour, that is the union of two semi-infinite rays leaving the point
as with aw < as < B + 1, and (2) the union of negatively oriented circles around the poles at w + 1,w + 2, . . . when these lie
to the left of the wedge; see Fig. 4. All infinite contours are oriented from bottom to top. The moment Eq. (C7) leads to

E[e−uW Zshifted
A,B (X,t )e

t
12 ] = det

(
I − KA,B

u,t

)
L2(0,+∞), (C8)
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FIG. 4. The contours Caw
and Das [w] are shown in the figure. The contour Das [w] depends on the location of w. For the w depicted in

the figure, the contour consists of the union of the wedge crossing the real axis at the point as < B + 1 and small negatively oriented circles
around w + 1, w + 2 and w + 3, since w + 1, w + 2 and w + 3 lie to the left of the wedge.

with the kernel

KA,B
u,t (v, v′) =

∫
R

dr
2u

e−r + 2u
φA,B,t (v + r)ψA,B,t (v

′ + r), (C9)

φA,B,t (v) =
∫
Daz

dz

2iπ
et z3

3 −X z2

2 −vz �(B + 1
2 − z)

�(A + 1
2 + z)�(B + 1

2 + z)
, (C10)

ψA,B,t (v) =
∫
Caw

dw

2iπ
e−t w3

3 +X w2

2 +vw
�(A + 1

2 + w)�(B + 1
2 + w)

�(B + 1
2 − w)

, (C11)

where the contours for z, denoted Daz is the union of two semi-infinite rays leaving the point az < B + 1
2 in the direction ±π/3,

and the contour for w, denoted Caw
, is the union of two semi-infinite rays leaving the point aw > max{−(A + 1

2 ),−(B + 1
2 )} in

the direction ±2π/3.
Limit as A → +∞. In this limit, ZA,B(x, t ) converges to ZDir,B(x, t ), the solution to the half-space SHE (2) with Brownian

IC eB(x)−(B+ 1
2 )x and Dirichlet boundary condition, that is it satisfies the boundary condition ZDir,B(0, t ) = 0 for all t > 0. Then,

defining

Zshifted
Dir,B (X, t ) =

∫
x�X

ZDir,B(x, t )dx, (C12)

as in Eq. (39), Eqs. (C8) and (C9) become

E[e−uZshifted
Dir,B (X,t )e

t
12 ] = det(I − K∞,B

u,t )L2(0,+∞), (C13)

where

K∞,B
u,t (v, v′) =

∫
R

dr
2u

e−r + 2u
φ∞,B,t (v + r)ψ∞,B,t (v

′ + r), (C14)

φ∞,B,t (v) =
∫

az+iR

dz

2iπ
et z3

3 −X z2

2 −vz �(B + 1
2 − z)

�(B + 1
2 + z)

, (C15)

ψ∞,B,t (v) =
∫
Caw

dw

2iπ
e−t w3

3 +X w2

2 +vw
�(B + 1

2 + w)

�(B + 1
2 − w)

. (C16)

Note that when performing the limit A → +∞ the prefactor �(A+B+1)
�(A+B+1−n) in the moment Eq. (C4) is replaced by An which is

compensated by the total factor A−n from the Gamma functions inside the integrals. Hence there is no need anymore for the
variable W and one obtains the finite limit in Eq. (C13).
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This kernel K∞,B already appeared in Ref. [17, Prop. 1] and Ref. [18, Th. 2.9] in the context of the full space KPZ with two
sided Brownian IC. This implies that we have the equality in distribution, for fixed X, t and B > −1

2 ,

Zshifted
Dir,B (X, t ) = 2Z (B|B)(−X, t ) = 2wZ̃ (B|B)(−X, t ), (C17)

where Z (B|B)(X, t ) is the solution to the full-space SHE (35) with initial condition weB(x)−(B+ 1
2 )|x| where B(x) is a two-sided

Brownian motion with B(0) = 0 and w is an independent inverse Gamma random variable with parameter 2B + 1. The last
identity is trivial since w can be put in factor at all x, t and Z̃ (B|B)(−X, t ) has the same IC but without the w factor, as defined in
the main text. As we explained in the main text, the identity in law Eq. (C17) can be seen as the limit of Eq. (40) as A goes to
infinity.

3. Mapping to full-space KPZ with specific initial condition

In this section, we explain the identity in law Eq. (40) (which in particular implies the identity in distribution Eq. (38) after
letting B go to +∞). Recall the definition of Z (B|A,B)(X, t ), that is the solution to full-line SHE (35) with IC depending on
parameters A, B and specified by Eqs. (41) and (42). It seems that for this quantity, moment formulas have not been written
down previously, nor a Fredholm determinant representation for the moment generating function. Thus, we cannot immediately
compare its distribution with Eq. (C6) or Eq. (C8).

Nevertheless, the moments of Z (B|A,B)(X, t ) can be obtained from methods that are available in the literature. For this, we first
need to establish a moment formula for certain partition functions of the log-gamma polymer, a directed polymer model on the
lattice Z2 introduced in Ref. [68]. Then we will take the continuous limit to the KPZ equation along the lines of Ref. [41], and
find that the moments match with Eq. (C6), up to a factor 2 that accounts for the factor 2 in Eq. (40).

Remark: Note that for the same log-gamma polymer model, Fredholm determinant formulas are available in Refs. [18,69,70],
and after taking the limit to the KPZ equation, this should allow to match with Eq. (C8) but this route is more technical and we
will not pursue it here.

We need to briefly define the log-gamma polymer partition function that we will be working with, and we refer to Refs. [68,71]
for details. Consider a sequence of random variables (wi, j )i, j�1 distributed as independent inverse Gamma random variables
with parameter αi + β j , where αi and β j are arbitrary sequences of real numbers such that αi + β j > 0. We define the partition
function

Z (n, m) =
∑

π :(1,1)→(n,m)

∏
(i, j)∈π

wi, j, (C18)

where the sum runs over upright paths π in Z2 going from (1,1) to (n, m). For n1 � · · · � nk � 1 and 1 � m1 � · · · � mk, we
have

E

[
k∏

i=1

Z (ni, mi )

]
=
∮

dw1

2iπ
· · ·
∮

dwk

2iπ

∏
a<b

wa − wb

wa − wb − 1

k∏
j=1

( n j∏
i=1

1

αi − 1/2 + w j

m j∏
i=1

1

βi − 1/2 − w j

)
, (C19)

where all integration contours are positively oriented and enclose the −αi + 1/2 but not the β j − 1/2, and are nested such
that for i < j, the wi-contour encloses the w j-contour shifted by 1. These conditions can be satisfied only for small enough
k. The contours may be taken as closed curves or be deformed to become infinite vertical lines. It seems that Eq. (C19) has
not been written anywhere in the literature (though Fredholm determinant formulas for the Laplace transform are given in
Refs. [18,69,70]). This moment formula can be obtained by taking appropriate specializations and limits in Ref. [72, Theorem
4.6] (the appropriate specializations and limits that one needs to take are explained in many references, see, e.g., Ref. [44, Secs.
4 and 5.3]).

Now, we are ready to take the continuous limit. The fact that the partition function Z (n, m) converges to the solution to the
SHE (35) was originally proved in Refs. [73,74] for general directed polymer models (see also Ref. [75] for the application to
the log-gamma polymer), but we will follow the arguments from the physics work [41, Sec. 4]. Assume that we scale αi and β j

such that

β1 = 1
2 + B, βi = 1

2 + √
n, (i � 2), (C20)

and

α1 = 1
2 + A, α2 = 1

2 + B, αi = 1
2 + √

n, (i � 3). (C21)

The rescaled partition function

Zn(x, t ) = ntnZ (tn − x
√

n/2, tn + x
√

n/2) (C22)

converges as n goes to infinity [41, Claim 4.6] to the solution of Eq. (35) with initial condition given as follows. Let W1,W2

and W3 be independent Brownian motions with respective drifts −(B + 1
2 ),−(A + 1

2 ),−(B + 1
2 ). Let w11 be an inverse Gamma

random variable with parameter A + B + 1 and w21 be an inverse Gamma random variable with parameter 2B + 1. For x � 0,
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the initial condition is given by

Z (x, 0) = w11w21eW1(−x), (C23)

and for x � 0,

Z (x, 0) = w11w21eW3(x) + w11

∫ x

0
eW2(y)+W3(x)−W3(y)dy. (C24)

Let us briefly explain how this initial condition is obtained. Note that under Eqs. (C20) and (C21), the weights w11 and w22

are independent and inverse Gamma distributed with parameters A + B + 1 and 2B + 1. We have that for i � 3 αi + β1 =
B + 1 + √

n, so that under the scaling given in Eq. (C22), products of weights along the first row converge to eW1(−x), where
x < 0 and W1 has drift −(B + 1

2 ) (see Ref. [41, Eq. (4.12)] for details). Since paths need to go through the vertices (1,1) and
(2,1) before continuing along the first row until location (−x

√
n, 1), this explains Eq. (C23). Along the first columns, we have

that for j � 2, α1 + β j = A + 1 + √
n, and α2 + β j = B + 1 + √

n, so that products of weights along the first row converge to
eW2(x) and products of weights along the second row converge to eW3(x). We need to consider two types of paths: those going
through vertices (1,1), (2,1), and collecting a number of weights on the second column until the location (1, x

√
n), hence the first

term in Eq. (C24); those going through vertex (1,1), then collecting a number of weights along the first column until a location
close to (1, y

√
n) then collecting a number of weights on the second columns between locations (1, y

√
n) and (1, x

√
n), hence

the second term in Eq. (C24).
Note that the weight w11 is in factor of the IC Z (x, 0) for any x, so that the solution of the full-space SHE (35) with such

initial condition that we have obtained as a limit of the log-gamma polymer model can be written as Z (x, t ) = w11Z (B|A,B)(x, t ),
and w21 = w, using the notations in the main text in Sec. V. Assuming the convergence of moments, and taking the limit of the
integral Eq. (C19) under the scalings Eqs. (C20), (C21), and (C22), we obtain the following moment formula: For x1 � · · · � xn,

E

[
n∏

i=1

Z (B|A,B)(xi, t )

]
= �(A + B + 1)

�(A + B + 1 − n)

∫
r1+iR

dz1

2iπ
· · ·
∫

rn+iR

dzn

2iπ

∏
a<b

za − zb

za − zb − 1

n∏
j=1

(
1

A + z j

1

B2 − z2
j

etz2
j +x j z j

)
, (C25)

where the contours are such that

B > r1 > r2 + 1 > . . . > rk + k − 1, with rk > −A,−B, (C26)

and we have used that the moments of w11 are given by E[wk
11] = �(A+B−k+1)

�(A+B+1) . Comparing with Eq. (C6), we have that for x � 0,
and any integer n � 1,

2nE[Z (B|A,B)(−x, t )n] = E
[
Zshifted

A,B (x, t )n
]
, (C27)

from which we deduce the equality in distribution Eq. (40) (strictly speaking, an equality of moments does not imply an equality
in distribution but we will ignore this mathematical subtlety).

4. Degeneration as B → +∞
In the B → +∞ limit, we need to multiply both members of Eq. (C27) by Bn before taking the limit. Then, the full space

solution in the l.h.s. of Eq. (C27) has half-Brownian IC (in the limit), as can be seen from Eqs. (41) and (42), that is, on R+
the initial condition is the exponential of a Brownian motion with drift −(A + 1

2 ) and on R+ the initial condition is zero. The
half-space solution involved in the r.h.s. of Eq. (C27) has Robin-type boundary condition with parameter A, and delta at 0 IC in
the limit (i.e., droplet initial condition). Hence, we obtain the identity in distribution Eq. (38).

The identity in distribution can also be obtained by a comparison of Fredholm determinant formulas. Indeed, the kernel Ku,t

already appeared in Ref. [15]. This paper was considering the solution Z (A)(x, t ) to the full-space SHE (35) with half-Brownian
IC Z (A)(x, 0) = eB(x)−(A+ 1

2 )x for x > 0 and Z (A)(x, 0) = 0 for x < 0. In fact, the solution was obtained there for any x but in the
absence of the drift (i.e., for A = −1/2); however, it is immediate to extend it to arbitrary drift, using the statistical symmetry (see
Appendix D). Comparing Eq. (A9) with Ref. [15, Prop. 2], we obtain the identity in distribution Eq. (36). The correspondence
of notations is as follows: one must set α = 1, γt = t1/3 there, and here u = e−t1/3s

APPENDIX D: TILT SYMMETRY

Let us consider the SHE on the full line Eq. (35) with standard space time white noise ξ (x, t ). Suppose that {Z (x, t )}x∈R,t>0

is a solution with IC Z (x, 0) = Z0(x). Consider now for any fixed real a

Z̃ (x, t ) = eax+a2t Z (x + 2at, t ). (D1)

Since ξ̃ (x, t ) = ξ (x + 2at, t ) is also a standard space time white noise, Z̃ (x, t ) is also a solution of the SHE (35), with IC
Z̃ (x, 0) = Z̃0(x) = eaxZ0(x) in another realization of the noise. Hence the (statistical) tilt symmetry (STS) relates the statistics of
the solutions of the SHE with “tilted” initial conditions. In the particular case of the droplet IC, Z̃0(x) = Z0(x) = δ(x) these IC
are identical and the statistics of {Z (x, t )}x∈R,t>0 and {Z̃ (x, t )}x∈R,t>0 are thus identical (as space time processes).
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1. Half-Brownian IC

Let us denote now Zv (x, t ) the solution with the half Brownian IC with drift v, i.e., Zv (x, 0) = eB(x)+vxθ (x). The solution
Zv+a(x, t ) with a half Brownian IC with drift v + a, i.e., Zv+a(x, 0) = eB(x)+(v+a)xθ (x) can thus be constructed using the STS,
i.e., one has in law

Zv+a(x, t ) = eax+a2t Zv (x + 2at, t ). (D2)

This is an identity between space time processes. We want now to focus only on the distribution at a single fixed space-time
point (x, t ). Then we can choose a = −x/(2t ) and v = w − a and obtain the equality in law

Zw(x, t ) = e− x2

4t Zw+ x
2t

(0, t ). (D3)

Setting w = −(A + 1
2 ) and x = −X we obtain the identity in law Z (A)(−X, t ) = e− X2

4t Z (A+ X
2t )(0, t ) given in the main text.

2. Droplet IC

Consider now the solution Z (x, t ) = Z (x, t |0, 0) of the full line SHE with the droplet IC. Let us define G(f, t ) =∫ +∞
−∞ dxefxZ (x, t ). It is the partition sum of a directed polymer with one fixed endpoint at (0,0) and one free endpoint (x, t )

but with an applied force f on that endpoint. From the STS property we have that G(f, t ) has the same distribution as∫ +∞

−∞
dxefxeax+a2t Z (x + 2at, t ) = G(f + a, t )e−(a2+2af)t . (D4)

Hence, choosing a = −f

E log G(f, t ) = E log G(0, t ) + f2t . (D5)

It follows, by differentiation, that the averaged thermal cumulants of the free endpoint (x, t ) in the absence of the force, i.e., for
f = 0, are simply E〈xp〉c = ∂

p
f E log G(f, t ) = 2tδp,2 on the full line, as mentioned in the main text. Similar remarkable identities

for thermal fluctuations occur in a larger class of disordered models [76]. While it is valid for any t , for large t this result is
usually interpreted within the droplet picture [51,77]. The typical Gibbs measure of the endpoint is localized, i.e., the thermal
fluctuations of the endpoint are typically δx = O(1). However, with probability p(t ) ∼ T/t1/3 (where the temperature is T = 1
here) there exists two distant states, almost degenerate in energy (within O(T )): the Gibbs measure is splitted between them and
that leads to a much larger δx ∼ t2/3. Putting these factors together leads to E〈x2〉c ∼ T t−1/3t4/3 ∼ T t

Note that by the tilt symmetry the polymer configurations are mapped into each others. In the case of the half-space the STS
maps a problem with a vertical wall to a problem with a tilted wall, so a priori one cannot readily use it. In the main text we have
found the curious relation Eq. (38) and used on the r.h.s. the STS for the half-Brownian in full space (shown above) to deduce

the equality in law Zshifted
A (X, t ) = e− X2

4t Zshifted
A+ X

2t
(0, t ). Although it has a flavor of STS in half space, it is not, and in fact there is

no simple correspondence between the polymer trajectories on both sides of this relation.
A similar puzzle occurs upon applying a force f to the endpoint in the half space. A tilt transformation which removes the

force would also tilt the wall, so no obvious consequence can be obtained. Nevertheless, as shown in the main text, the force
induces an additional drift in the drifted Brownian stationary measure leading to the simple shift A → A + f. There also, it does
not seem to exist any simple picture in terms of tilted polymer paths.

APPENDIX E: REPLICA BETHE ANSATZ APPROACH

In this Appendix we explore the interplay between the energy spectrum of the replica delta Bose gas in the half-space and the
stationary measure of increments of partition function that is used in the main text in Sec. IV to study endpoint distributions of
polymers.

1. Moments of partition sum

The replica Bethe ansatz method (RBA) allows to write the multipoint equal time moments of Z (x, t ), solution of the SHE
equation (in full or half space), as a quantum mechanical expectation [denoting �x = (x1, . . . , xn)]

E[Z (x1, t ) · · · Z (xn, t )] = 〈�x|e−tHn |�(t = 0)〉 =
∑

μ

�μ(x1, . . . , xn)〈�μ|�(t = 0)〉 e−tEμ

||�μ||2 , (E1)

i.e., a sum over the unnormalized eigenfunctions �μ (of norm denoted ||�μ||) of the n-body Lieb-Liniger (LL) Hamiltonian

Hn = −
n∑

j=1

∂2

∂x2
j

− 2
∑

1�i< j�n

δ(xi − x j ), (E2)
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with eigenenergies Eμ. In Eq. (E1), we have denoted �μ(x1, . . . , xn) = 〈�x|�μ〉 and the initial state |�(t = 0)〉 encodes the
initial condition of the SHE, with 〈�x|�(t = 0)〉 = ∏n

i=1 Z (xi, 0) for a deterministic IC and 〈�x|�(t = 0)〉 = E[
∏n

i=1 Z (xi, 0)] for
a random IC. These initial conditions being symmetric in (x1, · · · , xn) only the symmetric, i.e., bosonic, eigenstates contribute
to the sum in Eq. (E1). The representation Eq. (E1) is valid in full space and half space. The sum Eq. (E1) is weighted by the
overlaps 〈�μ|�(t = 0)〉 = ∫ ∏

i dxi�
∗
μ(�x)〈�x|�(t = 0)〉.

In the half space case Hn acts on wave-functions which satisfy the boundary conditions ∂xi�(�x)|xi=0 = A�(�x)|xi=0, i = 1 . . . , n
(hence the eigenstates �μ satisfy this condition). The n body spectrum of the half-space problem is complicated and was obtained
from the Bethe ansatz in Ref. [42]. We also refer to Ref. [42] for a more detailed presentation and for the references to the
literature on the Bethe ansatz for the half-space LL model. In addition to the usual bulk string bound states which exist in the full
space problem and have an arbitrary center of mass momentum, there are also n body boundary bound states which are localized
at the boundary.

The ground state (lowest energy state) was found by Kardar in Ref. [19], and this was confirmed in Ref. [42]. One has
(1) For n � 1 + 2A the ground state is a state made of a single bulk string with a vanishing momentum. Far from the boundary

its wave-function behaves like the ground state of the full-space problem

�0(�x) ∼ e− 1
2

∑
1�i< j�n |xi−x j | = e

1
2

∑n
j=1(n+1−2 j)x j , for large x1 � · · · � xn. (E3)

The ground-state energy is E0(n) = − 1
12 n(n2 − 1).

(2) For n > 1 + 2A the ground state is made of a single boundary string. The ground state energy is E0(n) = −n[A + 1
2 (1 −

n)]2 − 1
12 n(n2 − 1). It has the form

�0(�x) ∝ e
∑n

j=1(A− j+1)x j , for any 0 � x1 � x2 � · · · � xn, (E4)

and its norm was computed in Ref. [42]. Note that shifting all xi → xi + x̄ the wave-function decays as e− x̄
2 n[n−(1+2A)].

Exactly at the transition for n = 1 + 2A, the two states are identical as the r.h.s. of Eqs. (E3) and (E4) match. This state should
be considered as a bulk string ground state as its center of mass is delocalized in the full volume. The ground-state energy is
continuous across the transition.

In the limit t → +∞, for any fixed positive integer n, the sum over states is dominated by the ground state �0(�x). It is thus
tempting to follow the following two steps:

(i) write

E[ZA(x1, t ) · · · ZA(xn, t )] � �0(�x)

||�0||2 〈�0|ψ (t = 0)〉e−E0 (n)t , (E5)

where ZA(x, t ) solves the half-space SHE (2),
(ii) postulate that the form of the expression found for positive integer n can be extended to real n > 0 in the limit n → 0 to

calculate moments.
This is what was done by Kardar in Ref. [19] to predict E(〈x〉) in the bound phase. In the following it will be convenient to

rewrite Eq. (E5) as

E[ZA(x1, t ) · · · ZA(xn, t )] � cn(t )�̃0(�x), cn(t ) = E[ZA(0, t )n], �̃0(�x)|x1�···�xn = e
∑n

j=1(A− j+1)x j . (E6)

In that form it is clear that the continuation of cn(t ) to n = 0 is simply unity.
It is well known that in the full space problem (and we can expect the same in the unbound phase for the half-space problem),

in step (i) the amplitude in Eq. (E5) is not correct since the spectrum is gap-less and one must further integrate over the low lying
center of mass excitations, but this integration can be performed for a given initial condition. In step (ii), more severely, the limit
t → +∞ and n → 0 do not commute (i.e., one would need to perform the limit n → 0 on the full sum and then take the limit
t → +∞). However, once these two issues are addressed, this program enables to obtain the right tails of the free-energy log Z
[78,79].

In the bound phase however, for A < −1/2, step (i) is more reasonable as there are no center of mass excitations and there is
a finite gap between the ground state and the excited states [42], so Eq. (E5) should give the correct asymptotics. In step (ii) it is
quite likely that the limits t → +∞ and n → 0 commute in that case: for A < −1/2 the ground state holds for any n > 0, and
it is a system of effectively finite size. Indeed our results below confirm that.

2. Thermal cumulants of the endpoint position via the RBA

Let us recall the definition of the endpoint distribution (in a given noise realization) and of the thermal averages

P (x, t ) = ZA(x, t )

Z
, Z =

∫ +∞

0
dyZA(y, t ), 〈O(x)〉 =

∫ +∞

0
dxO(x)P (x, t ), (E7)

where the time dependence of the averages is implicit. Note that we have not specified the initial condition, so it can be fixed
endpoint at t = 0 in some position, or more general. Let us first calculate the thermal cumulants.
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The generating function f (v) of the averaged thermal cumulants can be written as

f (v) = E

[
log

∫ +∞

0
dxevxZA(x, t )

]
= ∂nE

[(∫ +∞

0
dxevxZA(x, t )

)n]∣∣∣∣∣
n→0

(E8)

= ∂n

∫ +∞

0
d�xev

∑n
i=1 xiE[ZA(x1, t ) · · · ZA(xn, t )]

∣∣∣
n→0

. (E9)

Thus, in the large time limit (under the above assumptions) it becomes

E[〈xp〉c] = ∂ p
v f (v)

∣∣
v=0, f (v) = ∂n(cn(t )In(v))

∣∣
n=0, In(v) :=

∫
d�xev

∑n
i=1 xi�̃0(�x). (E10)

Let us calculate the integral

In(v) = n!
∫

0<x1<···<xn

e
∑n

j=1(A+v− j+1)x j = n!
n∏

j=1

−2

j(1 + 2A + 2v + j − 2n)
= 2n�(−2A + n − 2v − 1)

�(−2A + 2n − 2v − 1)
, (E11)

where we have used the identity ∫
0<y1<···<yp

e
∑p

j=1 z j y j =
p∏

j=1

−1

zp + · · · + zp− j+1
. (E12)

We see that I0(v) = 1 as expected, and recall that c0(t ) = 1, so that

f (v) = ∂ncn(t ) + ∂nIn(v)
∣∣
n=0 = E[log ZA(0, t )] + log(2) − ψ (−2A − 2v − 1). (E13)

Note that this is exactly compatible with what was obtained in the main text around (28) since

E

[
log

∫ +∞

0
dxevxZA(x, t )

]
− E[log ZA(0, t )] = E

[
log

∫ +∞

0
dxevx ZA(x, t )

ZA(0, t )

]
, (E14)

where the limit ZA(x,t )
ZA(0,t ) was shown to converge to the exponential of the Brownian with drift A + 1

2 . So the RBA method reproduces
exactly the result Eq. (28) for the general averaged thermal cumulant. In the case p = 1 this is the result obtained by Kardar
[19]. This coincidence between the results of the RBA and of the method used in the main text appears to extend to all moments
as we now discuss.

3. Comparison of the two methods and general moments

Let us put side by side the results of the two methods. In the method based on stationary measures of increments described in
the main text in Sec. IV, one states that

E

[
ZA(x1, t )

ZA(0, t )
· · · ZA(xn, t )

ZA(0, t )

]
−−−−→
t→+∞ �0(�x) := E[e

∑n
i=1 B(xi )+(A+ 1

2 )xi ],�0(�x)|x1�···�xn = e
∑n

j=1(n− j+ 1
2 )x j+(A+ 1

2 )x j , (E15)

while in the RBA method, one obtains

E[Z (x1, t ) · · · Z (xn, t )] �t→+∞ E[Z (0, t )n] �̃0(�x), �̃0(�x)|x1�···�xn = e
∑n

j=1(A− j+1)x j . (E16)

The functions �0(�x) and �̃0(�x) are both fully symmetric in their arguments and very similar, although different.

4. General moments

The multipoint average of the endpoint distribution can be written as

E[P (x1, t ) · · ·P (xp, t )] = E

[
1

Z p
ZA(x1, t ) · · · ZA(xp, t )

]
= lim

n→0
E

[∫ +∞

0
dxp+1· · ·

∫ +∞

0
dxnZA(x1, t ) · · · ZA(xn, t )

]
, (E17)

where we used that 1
Z p = limn→0 Zn−p, and we recall that Z = ∫ +∞

0 dyZA(y, t ).
Using the RBA result Eq. (E16), in the large time limit it thus becomes

E[P (x1, t ) · · ·P (xp, t )] � lim
n→0

∫ +∞

0
dxp+1· · ·

∫ +∞

0
dxn �̃0(�x). (E18)

Upon multiplication by O1(x1) . . . Op(xp) and integration, it implies in particular for the most general type of moment

E[〈O1(x)〉 · · · 〈Op(x)〉] � lim
n→0

∫ +∞

0
dx1· · ·

∫ +∞

0
dxnO1(x1) . . . Op(xp) �̃0(�x). (E19)
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FIG. 5. Illustration of the geodesics γ1 = [γ1(s), s]0�s�t and γ2 = [γ2(s), s]0�s�t .

Within the method based on the stationary measure, one has from Eq. (27), limt→∞ PA(x, t ) = pA(x) with pA(x) =
1
Z eB(x)+(A+ 1

2 )x and Z = ∫ +∞
0 dyeB(y)+(A+ 1

2 )y. Using the same steps as in Eq. (E17) with 1
Zp = limn→0 Zn−p one obtains using

Eq. (E15)

E[pA(x1) · · · pA(xp)] = lim
n→0

∫ +∞

0
dxp+1· · ·

∫ +∞

0
dxn�0(�x), (E20)

which provides a starting formula for the evaluations of the many point correlations of the stationary measure via the replica
method.

We can now compare Eqs. (E20) and (E18) and use that �0(�x) and �̃0(�x) are very similar. More precisely, �0(�x) =
en
∑n

i=1 xi�̃0(�x), i.e., they differ by a term which contains n explicitly and vanishes at n = 0. This indicates that the results of
the two methods for the endpoint probability correlations, and thus for all the moments, are the same.

5. Correlation between endpoint positions and free energy

The RBA ground state �̃0(�x) thus seems to contain the information about the stationary measure of the partition sum ratios.
However, it should contain more, and encode also for some information about the correlations between Z (0, t ) and these ratios,
or with the endpoint distribution, which remains to be explored. Indeed putting together Eqs. (E15) and (E16) we obtain that at
large time

E[Z (0, t )nZt (x1) . . . Zt (xn)] � e−n
∑n

i=1 xiE[Z (0, t )n]E[Zt (x1) . . . Zt (xn)], (E21)

where we denoted the ratios as Zt (x) = Z (x, t )/Z (0, t ). Taking xi = x for i = 1, . . . , p and xi = 0 for i = p + 1, . . . , n, it gives
E[Z (0, t )nZt (x)p] = e−npxE[Z (0, t )n]E[Zt (x)p] for all positive integers n � p. This suggest that at large time the only non zero
joint cumulant between log Z (0, t ) and log Zt (x) is the two-point covariance

Cov[log Z (0, t ), log Zt (x)] = −x. (E22)

It is possible to obtain some understanding of how this relation (which is a conjecture at this stage) could come about. At large
t and large x we may approximate the polymer partition functions by the exponential of the energy collected along geodesics
(i.e., paths with maximal energy). Consider the geodesics γ1(t ) from (0,0) to (0, t ) and γ2(t ) from (0,0) to (x, t ). They first
coincide and then split at some point M of coordinate (x′, t − τ ); see Fig. 5. In the bound phase A < −1/2, γ1(t ) remains close
to the wall, and x′ remains bounded. Let us call E12 the energy of the common segment (that is E12 = ∫ t−τ

0 ξ (γ1(s))ds), E1

the one of the segment from M = (x′, t − τ ) to (0, t ), and E2 from M to (x, t ). At large t , one has log Z (0, t ) � E1 + E12 and
log Z (x, t ) � E2 + E12. Conditionally on the position of M, E12 is independent from E1 and E2, and for large t and x, E1 and E2

are asymptotically independent. Hence the left hand side of Eq. (E22) is thus

Cov(E12 + E1, E2 − E1) = Cov(E1, E2 − E1) � −Var(E1). (E23)

We have obtained in the main text, see also Ref. [42], that for large τ , we have VarE1 � 2τ |A + 1
2 |. Further one expects that

for large τ and x, the length τ is proportional to x. If one equates the elastic energy x2/(4τ ) with (A + 1
2 )2τ , then one obtains
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τ � x/(2|A + 1
2 |), which makes Eq. (E23) consistent with Eq. (E22) in the limit of large x. A similar understanding when x is

not going to infinity seems more difficult.
Remark: Midpoint. The partition function with two fixed endpoints in x = 0 at times 0 and 2t and a given midpoint position

x(t ) = x is given by Z (0, 2t |x, t )Z (x, t |0, 0), which has the same law as two independent copies of Z (x, t |0, 0). The moments
of this partition function will thus be the square of the moments of Z (x, t |0, 0). Within the RBA it will thus amount to the same
formula as above, replacing �̃0(x) → �̃0(x)2. From (E16) it is an exponential linear in the xi, hence this replacement amounts
to change xi → 2xi. This agrees with the result of the main text.

Remark: Basin of attraction. We expect that the property of “ground-state dominance” Eq. (E5) in the RBA will hold
in the bound phase upon some condition on the initial condition (i.e., on the behavior of the overlaps). The condition for the
convergence to the stationary measure for the ratios was discussed in the main text in Sec. IV. It would be interesting to see
whether it can also be obtained with the RBA.

APPENDIX F: CORRELATIONS OF pA(x) VIA LIOUVILLE QUANTUM MECHANICS

The stationary measure for the endpoint position at large time in the bound phase is pA(x) given in Eq. (27). It is possible
to compute its m-point correlations (and therefore all the moments) using methods developped in Refs. [56,58] and in Ref.
[55] based on stochastic processes, replica, and most notably on Liouville quantum mechanics. Other works addressed similar
questions in various contexts [80–82], often motivated by multifractal properties of eigenfunctions of random Dirac type
operators. Although it is a simple extension of these works (which often focus on periodic boundary conditions) the formula for
the case of the Brownian (i.e., with free boundary conditions) and in presence of a drift have not been given, so we display them
here (for details of the method we refer to Refs. [55] and [56]).

1. Moments of pA(x)

Let us denote w = −(A + 1
2 ) > 0. As in these works we consider a finite L truncation, denoting Zw

L = ∫ L
0 dxeB(x)−wx, and we

take L → +∞ at the end. A simple but useful observation [55,58] is that pA(x) in Eq. (27) can be rewritten as

pA(x) = lim
L→∞

1∫ L
0 dyeB(y)−B(x)−w(y−x)

= lim
L→∞

1

Z−w
x + Z̃w

L−x

= 1

Z−w
x + Z̃w∞

, (F1)

where Z̃ contains an independent realisation of the Brownian. This is obtained splitting the integral over y on the two interval
[0, x] and [x, L] and performing the change of variable y = x − z on the first and y = x + z on the second, with z positive. In
the last equation we used the property that Zw

L converges for L → +∞ to an inverse Gamma random variable Z̃w
∞ = �(2w, 1

2 )
where here 1/2 is the scale parameter, i.e., z = Z̃w

∞ has PDF p(z) = 1
2�(2w) ( 2

z )1+2we−2/z. Thus, the moments of pA(x) are given
by

E[pA(x)n] =
∫ +∞

0
d p

pn−1

�(n)
E[e−pZ−w

x ]E[e−pZw
∞ ] = 2

�(2w)

∫ +∞

0
d p

pn−1

�(n)
φμ=−2w(p, x)(2p)wK2w(2

√
2p), (F2)

where we inserted the exact result for Zw
∞, and the function φμ(p, x) was obtained in Ref. [56, Eq. (3.6)] (setting β = σ = 1,

α = 1/2 there),

φμ=−2w(p, x) = E[e−pZ−w
x ] = (2p)−w

4π2

∫ +∞

−∞
dqq sinh(πq)

∣∣∣∣�(w + iq
2

)∣∣∣∣2Kiq(2
√

2p)e− x
8 (q2+4w2 ). (F3)

Inserting into Eq. (F2) the factors (2p)w and (2p)−w cancel. Let us specialize now to n = 1. For w < 1 we can interchange the
integrals and use that∫ +∞

0
d pK2w(2

√
2p)Kiq(2

√
2p) =

∫ +∞

0

du

4
uK2w(u)Kiq(u) = π2(q2 + 4w2)

16[cosh(πq) − cos(2πw)]
, (F4)

leading to our first result, valid for 0 < w � 1, w = −(A + 1
2 ),

E[pA(x)] = 1

32�(2w)

∫ +∞

−∞
dqe− 1

8 (q2+4w2 )xq sinh(πq)

∣∣∣∣�(w + iq
2

)∣∣∣∣2 q2 + 4w2

cosh(πq) − cos(2πw)
. (F5)

Under the change of variables iq = 2z, and after using some trigonometric identities and Euler’s reflection formula, Eq. (F5) can
be rewritten as

E[pA(x)] = 1

4�(2w)

∫ i∞

−i∞

dz

2iπ
(w2 − z2)e

−x
2 (w2−z2 )�(w + z)2�(w − z)2�(1 − w − z)�(1 − w + z)

�(2z)�(−2z)
. (F6)

We may now analytically continue this formula for all w > 0 by subtracting and adding the necessary residues when w > 1 (see
Fig. 6).
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FIG. 6. We consider a function I (w) such that for 0 < w < 1, we have I (w) = ∫
iR f (z, w), and f (z,w) is analytic in both z and w

except at some isolated poles. In particular it has poles at z = w − 1, w − 2, w − 3, . . . and z = 1 − w, 2 − w, 3 − w, . . . . Then, its analytic
continuation to w such that n < w < n + 1 is

∫
C f (z, w) where C is the contour shown above (in the case n = 1). This contour is such that

1 − w, . . . , n − w still lie on the right of the contour (as when 0 < w < 1), and the poles at w − 1, . . . , w − n still lie on the left of the contour
(as when 0 < w < 1). Since the poles do not cross the contour, the formula remains analytic in w. This contour can be then deformed to the
union of a vertical line and small circles around simple poles whose contribution can be computed by the residue Theorem.

The analytic continuation of the r.h.s. of Eq. (F6) to w > 1 is

1

4�(2w)

∫ i∞

−i∞

dz

2iπ
(w2 − z2)e

−x
2 (w2−z2 )�(w + z)2�(w − z)2�(1 − w − z)�(1 − w + z)

�(2z)�(−2z)
+ 1

4�(2w)

∑
1�n<w

(Rw−n − Rn−w ),

(F7)
where Rw−n and Rn−w are residues of the integrand at z = w − n and z = n − w, respectively. We have

Rw−n = −Rn−w = 2(−1)n−1n!e
−x
2 (2wn−n2 )(w − n)

�(2w)�(1 − 2w)

�(n − 2w)
, (F8)

so that, for w = −(A + 1
2 ) > 0,

E[pA(x)] = 1

4�(2w)

∫ i∞

−i∞

dz

2iπ
(w2 − z2)e

−x
2 (w2−z2 )�(w + z)2�(w − z)2�(1 − w − z)�(1 − w + z)

�(2z)�(−2z)

+
∑

1�n<w

n!(−1)n−1e
−x
2 (2wn−n2 )(w − n)

�(1 − 2w)

�(n − 2w)
. (F9)

Note that for large w the finite series dominates and the integral can be neglected for most averages.
Remark: Normalization. Let us first check that Eq. (F9) obeys the normalization condition

∫ +∞
0 dxE[pA(x)] = 1. By

analyticity, it suffices to check it for 0 < w < 1. Then, using Eq. (F6), this is equivalent to the identity∫ i∞

−i∞

dz

2iπ
�(w + z)2�(w − z)2�(1 − w − z)�(1 − w + z)

�(2z)�(−2z)
= 2�(2w), (F10)

which is a particular case of the known identity [83, Eq. (3.6.1)]∫ i∞

−i∞

dz

2iπ
�(a + z)�(a − z)�(b + z)�(b − z)�(c + z)�(c − z)

�(2z)�(−2z)
= 2�(a + b)�(a + c)�(b + c), (F11)

valid for a, b, c with positive real part.
Remark: First moment. We may also check that Eq. (F6) is consistent with the result Eq. (29) for the first thermal cumulant

given in Sec. IV, i.e., E〈x〉 = ∫ +∞
0 xE[pA(x)]dx = 2ψ ′(2w). Indeed, from Eq. (F6), we have∫ +∞

0
xE[pA(x)]dx = 1

�(2w)

∫ i∞

−i∞

dz

2iπ
�(w + z)2�(w − z)2�(−w − z)�(−w + z)

�(2z)�(−2z)
. (F12)

The integral in Eq. (F12) cannot be simplified directly using Eq. (F11), but we may use that

Eq. (F12) = lim
ε→0

1

�(2w)

∫ i∞

−i∞

dz

2iπ
�(w + z)2�(w − z)2�(ε − w − z)�(ε − w + z)

�(2z)�(−2z)
. (F13)
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When 0 < w < 1, this integral above is analytic in ε ∈ (0,+∞), and the expression for 0 < ε < w can be obtained by an
analytic continuation from the expression when ε > w, which is given by Eq. (F11). More precisely, for 0 < ε < w,

1

�(2w)

∫ i∞

−i∞

dz

2iπ
�(w + z)2�(w − z)2�(ε − w − z)�(ε − w + z)

�(2z)�(−2z)
= 1

�(2w)
[2�(2w)�(ε)2 + Rε−w − R−ε+w], (F14)

where R±ε∓w are residues of the integrand at z = ±ε ∓ w, which can be computed as

Rε−w = −Rw−ε = −�(2w − ε)2�(ε)2

�(2w − 2ε)
. (F15)

Finally, taking the limit ε → 0, we obtain∫ +∞

0
xE[pA(x)]dx = lim

ε→0

1

�(2w)

(
2�(2w)�(ε)2 − 2

�(2w − ε)2�(ε)2

�(2w − 2ε)

)
= 2ψ ′(2w). (F16)

Remark: Value of E[pA(0)]. Letting x = 0 in Eq. (F6) and using the identity (F11) yields E[pA(0)] = w. This result has a
simple origin: when x = 0 pA(0) = (

∫∞
0 eB(x)−wxdx)−1 ∼ �(2w, 1/2) and E[�(2w, 1/2)] = w.

Remark: Decay for large x. Let us start with 0 < w < 1. Saddle point analysis and rescaling in formula (F6) gives that at
large x the decay is exponential with a −3/2 power law prefactor, E[pA(x)] � cwx−3/2e−w2x/2, with cw = π3/2 csc2(πw)�(w+1)2√

2�(2w)
. For

w > 1 however the decay at large x is dominated by the term n = 1 in the discrete series in Eq. (F9) and E[pA(x)] ∼ e
−x
2 (2w−1)

for w > 1, i.e., a much slower decay than e
−x
2 w2

.
Remark: Limit w = −(A + 1

2 ) → 0. In the limit w → 0, it is easy to check, upon rescaling q → wq and x → y/w2 in
Eq. (F5) that as w → 0+ one has E[pA(x)]dx → P(y)dy where P(y) is the probability given in the main text (of moments given

by (31)). In that limit the large x tail obtained above matches the tail of P(y) at large y, since cw ∼
√

2
π
/w for w → 0. The −3/2

exponent, ubiquitous in this types of problems [55,57], is known to originate from quasi-degenerate extrema of the Brownian
[84].

2. m-point correlations

To compute the m point correlations with m � 2 one uses the Liouville quantum mechanics. One introduces the Liouville
Hamiltonian Hp on the real axis U ∈ R, and its eigenfunctions ψk (U ) which are real and indexed by k � 0

Hp = −1

2

d2

dU 2
+ peU , Hpψk (U ) = k2

8
ψk (U ), ψk (U ) = 1

π

√
k sinh(πk)Kik (2

√
2peU/2). (F17)

These eigenfunctions form a continuum orthonormal basis (we use the conventions in Ref. [55] with β = σ = 1 and α = p). It
allows to compute our observables of interest. The first one is expressed as follows, using the path integral representation for
the Brownian motion with drift, U (x) = B(x) − wx, with U0 = U (0) = 0 and free U (L) = UL, followed by the Feynman-Kac
formula

φμ=2w(p, L) = E[e−pZw
L ] = e− w2L

2

∫ +∞

−∞
dULe−wUL 〈UL|e−LHp |U0 = 0〉

=
∫ +∞

0
dk
∫ +∞

−∞
dULψk (UL )ψ∗

k (0)e−wUL− L
8 (k2+4w2 ), (F18)

where the dependence in the drift −w is made explicit through a trivial shift. In the last equation we have used the spectral
decomposition of Hp in terms of its eigenvectors, 〈U |k〉 = ψk (U ) introduced above. For w < 0 one can use the identity∫ +∞

−∞
dUe−wU Kik (2

√
2peU/2) = (2p)w

2

∣∣∣∣�(−w + ik
2

)∣∣∣∣2 (F19)

and one checks that Eq. (F18) yields Eq. (F3) after the change w → −w.
The m-point correlation can be written following closely [55] upon adding the drift w. Upon exponentiation of the

denominators 1
Zm = ∫ +∞

0 dq qm−1

�(m) e
−qZ and using the same path integral representation, one obtains for L � x1 � . . . xm � 0,

E[pA(x1) . . . pA(xm)] =
∫ +∞

0
dq

qm−1

�(m)
e− w2L

2

∫ +∞

−∞
dULe−wUL 〈UL|e−Hq (L−x1 )eÛ e−Hq (x1−x2 )eÛ . . . e−Hqxm |U0 = 0〉

= e− w2L
2 pm

�(m)

∫ +∞

−∞
dU0

∫ +∞

−∞
dULe−w(UL−U0 )〈UL|e−Hp(L−x1 )eÛ e−Hp(x1−x2 )eÛ . . . e−Hpxm |U0〉, (F20)

where eÛ = ∫ +∞
−∞ dU |U 〉eU 〈U |. The second line is obtained after the standard trick in Liouville theory, i.e., the change of variable

q = peU0 followed by the shift U (x) → U (x) − U0. Introducing the eigenbasis of Hp, and choosing p = 1/2 for convenience,
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one obtains (here w = −(A + 1
2 ) > 0)

E[pA(x1) . . . pA(xm)] = 1

2m�(m)
e− w2L

2

∫ +∞

−∞
dU0

∫ +∞

−∞
dULe−w(UL−U0 )

∫ +∞

0
dkψk (UL ) (F21)

×
m∏

j=1

∫ +∞

0
dk jF (k, k1)F (k1, k2) . . . F (km−1, km)ψ∗

km
(U0)e− k2

8 (L−x1 )− k2
1
8 (x1−x2 )−···− k2

m
8 xm , (F22)

where we have defined the matrix elements [55]

F (k, k′) = 〈k|eÛ |k′〉 =
∫ +∞

−∞
dUψ∗

k (U )eU ψk′ (U ) = 1

8

√
kk′ sinh(πk) sinh(πk′)

k2 − (k′)2

cosh(πk) − cosh(πk′)
. (F23)

Examination of the calculations in Ref. [56] [Sec. 5, in particular Eq. (5.6)] for a simpler quantity, indicates that the limit
L → +∞ is controlled by setting k = −2iw (the integral

∫ +∞
−∞ dULe−wUL ψk (UL ) is divergent for w > 0, but one can extract the

residue of its analytic continuation). This amount to use that as L → +∞

e− w2L
2

∫ +∞

−∞
dULe−wUL

∫ +∞

0
dkψk (UL )F (k, k1)e− k2

8 L −−−→
L→∞

2π

�(2w)

F (k, k1)√
k sinh(πk)

∣∣∣∣
k=−2iw

(2p)w (F24)

valid for p arbitrary, and recalling our choice p = 1/2. Using further Eq. (F19) (with w → −w) to integrate over U0 this leads
to the final result, for 0 < w � 1 and x1 � x2 · · · � xm � 0

E[pA(x1) . . . pA(xm)] = 1

2m�(2w)�(m)

m∏
j=1

∫ +∞

0

dk j

8
k j sinh(πk j )

×
m−1∏
j=1

k2
j − k2

j+1

cosh(πk j ) − cosh(πk j+1)

k2
1 + 4w2

cosh(πk1) − cos(2πw)

∣∣∣∣�(w + ikm

2

)∣∣∣∣2e− w2

2 x1− k2
1
8 (x1−x2 )−···− k2

m
8 xm ,

(F25)

which for m = 1 agrees with Eq. (F5) obtained by a different method. The normalization is checked below. For m = 2, we have
checked numerically using Mathematica, using also Eq. (F5), that

∫ +∞
0 dxx2E[pA(x)] − ∫ +∞

0 dx1
∫ +∞

0 dx2x1x2E[pA(x1)pA(x2)]
agrees numerically with the result Eq. (30) for the thermal cumulant E[〈x2〉c].

Using similar manipulations as around Eq. (F6), we may write (with the convention xm+1 = 0)

E[pA(x1) . . . pA(xm)] = 1

22m�(2w)�(m)

∫
iR

dz1

2iπ
· · ·
∫

iR

dzm

2iπ

m∏
j=1

e

(
z2

j
2 − w2

2

)
(x j−x j+1 )

�(2z j )�(−2z j )

× �(w + zm)�(w − zm)
(
w2 − z2

1

)
�(w + z1)�(w − z1)�(1 − w + z1)�(1 − w − z1)

×
m−1∏
j=1

�(1 + z j+1 − z j )�(1 + z j+1 + z j )�(1 − z j+1 + z j )�(1 − z j+1 − z j ). (F26)

A similar analytic continuation as in Eq. (F9) can be performed on Eq. (F26) to obtain a formula when w > 1.

3. Verification of the normalization

Let us compute

Cm = m!
∫

x1�x2···�xm�0
E[pA(x1) . . . pA(xm)]dx1 . . . dxm (F27)

and check that Cm = 1. We use the change of variables y j = x j − x j+1 and compute the integrals over y1, z1, y2, z2 . . .

sequentially. We will need the identity [83, Th. 3.6.2]∫
iR

dz

2iπ
�(a + z)�(a − z)�(b + z)�(b − z)�(c + z)�(c − z)�(d + z)�(d − z)

�(2z)�(−2z)

= 2�(a + b)�(a + c)�(a + d )�(b + c)�(b + d )�(c + d )

�(a + b + c + d )
, (F28)
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valid for a, b, c, d with positive real part. Performing the integration over y1 and z1 using Eq. (F28) with {a, b, c, d} = {w, 1 −
w, 1 + z2, 1 − z2}, we obtain

Cm = �(m + 1)

22(m−1)�(2w)�(m)

∫
iR

dz2

2iπ
· · ·
∫

iR

dzm

2iπ

m∏
j=2

e

(
z2

j
2 − w2

2

)
(x j−x j+1 )

�(2z j )�(−2z j )

× �(w + zm)�(w − zm)
(
w2 − z2

2

)
�(w + z2)�(w − z2)�(2 − w + z2)�(2 − w − z2)

�(1)�(2)

�(3)

×
m−1∏
j=2

�(1 + z j+1 − z j )�(1 + z j+1 + z j )�(1 − z j+1 + z j )�(1 − z j+1 − z j ). (F29)

Then we integrate over y2 and z2 using Eq. (F28) with {a, b, c, d} = {w, 2 − w, 1 + z3, 1 − z3}, we integrate over y3 and z3 using
Eq. (F28) with {a, b, c, d} = {w, 3 − w, 1 + z4, 1 − z4}, and we continue until we are left with variables ym, zm, where we use
Eq. (F11) with {a, b, c} = {w,w, m − w}. Keeping track of all the Gamma factors involved at each step, we find that

Cm = �(m + 1)

�(m)�(2w)
× �(2)�(1)

�(3)

�(2)�(2)

�(4)

�(2)�(3)

�(5)
. . .

�(2)�(m − 1)

�(m + 1)
× �(2w)�(m)2 = 1. (F30)
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