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Editors’ Suggestion

Active elasticity drives the formation of periodic beading in damaged axons
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In several pathological conditions, such as coronavirus infections, multiple sclerosis, Alzheimer’s and
Parkinson’s diseases, the physiological shape of axons is altered and a periodic sequence of bulges appears.
Experimental evidences suggest that such morphological changes are caused by the disruption of the micro-
tubules composing the cytoskeleton of the axon. In this paper, we develop a mathematical model of damaged
axons based on the theory of continuum mechanics and nonlinear elasticity. The axon is described as a cylinder
composed of an inner passive part, called axoplasm, and an outer active cortex, composed mainly of F-actin
and able to contract thanks to myosin-II motors. Through a linear stability analysis we show that, as the shear
modulus of the axoplasm diminishes due to the disruption of the cytoskeleton, the active contraction of the cortex
makes the cylindrical configuration unstable to axisymmetric perturbations, leading to a beading pattern. Finally,
the nonlinear evolution of the bifurcated branches is investigated through finite element simulations.
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I. INTRODUCTION

The current pandemic of Sars-Cov-2 is raising growing
concerns for its effects on the central nervous system. Dur-
ing the acute stage, signs of delirium, post-traumatic stress,
depression, encephalitis, and neurocognitive disorders have
been reported in patients affected by COVID-19 [1-3]. Other
coronavirus diseases, such as SARS and MERS, can cause
similar symptoms [4]. Experiments on mice have shown that
human coronaviruses can attack the central nervous system,
causing cytopathic effects on neurons [5], namely, the cells
of the nervous tissue. They are composed of the soma, that
is the central part containing the nucleus and the organelles,
the dendrites, and a single axon. Axons and dendrites are
structures which transmit electrochemical signals to and from
the soma, respectively. In particular, the axon is composed
of a long cylindrical filament, called axonal shaft, which can
bifurcate into many branches at its end, called telodendria.
In the experiments of Jacomy and co-workers [5], the hu-
man coronavirus OC43 triggers the formation of a periodic
peristaltic pattern along the axonal shaft (see Fig. 1). Such
a morphological change is not an exclusive manifestation of
coronavirus infections. Similar periodic swellings have been
observed in axons affected by other pathologies, such as mul-
tiple sclerosis [6], early stages of the Alzheimer’s [7] and
Parkinson’s disease [8], and in response to traumatic stretch
injuries [9]. The formation of periodic bulges in the axon
seems to diminish or even to inhibit its ability of transmitting
electrical signals [10].

In particular, it is believed that oxidative stress is impli-
cated in the genesis of several neurodegenerative pathologies,
such as Alzheimer’s disease [11], and through in vitro ex-
periments it has been observed the formation of swellings
along the axonal shaft after exposure to hydrogen peroxide
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(see Fig. 1). In this case, the accumulation of S-tubulin III in-
dicates that microtubules have been disrupted [12]. In healthy
neurons, microtubules are binded together composing the cy-
toskeleton, which is one of the main constituents of the inner
region of the axonal shaft, called axoplasm. The axoplasm is
surrounded by a cortex, mainly composed of F-actin filaments
and myosin motors. Furthermore, many neurodegenerative
pathologies (such as Alzheimer’s and Pick’s diseases) are
characterized by the presence of misfolded tau proteins
which can destabilize microtubules and disrupt their net-
work, reducing the elastic modulus of the axoplasm [13-15].
The importance of microtubule network integrity has been
confirmed by other experiments: after being exposed to noco-
dazole, a potent microtubule depolymerizer, axons undergo a
shape transition, exhibiting a periodic beading pattern along
the axonal shaft and, simultaneously, the number of micro-
tubules significantly decreases [16,17].

On these grounds, it has been suggested that axonal
beading may be the result of a mechanical instability trig-
gered by the coupling of the active contractility of the actin
cortex and microtubule depletion [16]. According to Datar
and coworkers, this is reminiscent of the elastic analog of
the Rayleigh-Plateau instability, where an elastic cylinder
can be destabilized by the presence of surface tension [18].
In the case of an axon, the cylinder represents the axoplasm
while the contractility of the F-actin cortex is modeled as
the action of the surface tension. From a linear analysis,
it is possible to prove that the critical wavelength of the
elastic Rayleigh-Plateau instability is infinite [18,19]. This
instability shares many similarities with phase-transition phe-
nomena [20] and it has been recently shown that the resulting
buckling configuration is characterized by a single localized
swelling [21-23] rather than a periodic beading as in damaged
axons. This suggests that some other mechanism is involved
in the buckling of axons. In this respect, it is important to
take into account some aspects. First, the elasticity of the
axoplasm seems to be fundamental in maintaining the shape
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FIG. 1. (Top left) Periodic swellings in a rat axon induced by
human coronavirus OC43, adapted from Ref. [5]. (Top, right) Axonal
beading induced by oxidative stress (40 mM of H,0,), adapted from
Ref. [12]. (Bottom) Beading of a PC12 neurite after the exposure to
10 ng/ml of nocodazole, adapted from Ref. [16].

of the axon [16,24]. Second, the cortex is composed of a
network of F-actin filaments connected together by myosin
motors and spectrin: it may be oversimplifying to model it
as a surface tension acting on the axoplasm, neglecting its
elasticity. Finally, the thickness of the actin cortex is about
80-100 nm [25] which is not negligible compared with the
radius of a human axon (about 300-500 nm [26]).

In this paper, we show how axonal beading can be ex-
plained as the result of a purely elastic instability using a sim-
ple mathematical model based on continuum mechanics. The
model is constructed in Sec. II, while the stability of the cylin-
drical shape of the axon is investigated through a linear analy-
sis in Sec. III. In Sec. IV we report the outcomes of the numer-
ical postbuckling analysis. Finally, the main results are sum-
marized in Sec. V together with some concluding remarks.

II. THE MODEL

We denote by 2 the reference domain of the axonal shaft,
which is modeled as a cylinder of radius R,. Let X € € be
the material position vector, whose cylindrical coordinates are
(R, ®, Z). Within this reference configuration, we identify
two subregions,

Q) ={XeQ|0<R<R},
Q={XeQ|R <R <R,},

which are the subdomains representing the axoplasm and the
peripheral region occupied by the F-actin cortex, respectively.
Let x = x(X) = X+ u(X) be the actual position vector,
where (r, 6, z) are the actual cylindrical coordinates, while
x and u are the deformation and the displacement fields, re-
spectively. We denote by 2 = x(£2¢) the actual configuration
and let F = Grady be the deformation gradient. The active
contraction of the cortex is modeled through the so called
active strain approach [27-29]. In particular, a multiplicative
decomposition of the deformation gradient is assumed, i.e.,

F= FeFay

FIG. 2. Representation of the reference configuration 2, the
relaxed state Qg, and the actual configuration € according to the
active strain theory.

where F, is the active strain tensor describing the micro-
structural reorganization caused by the cortex contractility
and maps the reference configurations to the relaxed state
Qg, while F, accounts for the local elastic distortion; see
Fig. 2. We remark that the tensor F, represents a remodeling
of the material: no mass is added or subtracted during the
contraction of the cortex, so that the mass density remains
constant. Mathematically, this can be enforced by requiring
that det F, = 1 [30]. Furthermore, since actin filaments are
mainly directed along the axial and the hoop direction [31], a
possible choice for the active strain tensor is given by

E_ | in Qf, |
T\ Bk ®Fx+ (- Er@Ey ingp (D

where | is the identity tensor, A, € (0, 1] is the active stretch,
and (Eg, Eg, Ez) is the cylindrical vector basis in the ref-
erence configuration. According to Eq. (1), the axoplasm is
passive while the actin cortex contracts isotropically along the
directions orthogonal to Eg.

Furthermore, since the axon is mainly composed of wa-
ter [32], it is reasonable to assume that it is incompressible. In
particular, we describe it as an elastic body composed of an
incompressible neo-Hookean material, whose strain energy is
given by

v="Lu(FIF)-3]. p=i.o @

where p; and u, are the shear moduli of the axoplasm and of
the cortex, respectively. The balance of linear momentum in
quasi-static conditions is given by

DivP =0, 3)

where Div is the divergence operator and P is the nominal
stress tensor. Exploiting the Clausius-Duhem inequality, we
get
ow
= — —pF !,
oF P

where p is the Lagrange multiplier enforcing the incompress-
ibility constraint

P “

detF = 1. (5)
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Furthermore, the external surface is assumed to be stress free,
i.e.,

P"Eg =0, (6)

and the total length of the axonal shaft is kept fixed during the
deformation. Finally, the continuity of the displacement and
of the normal stress at the interface between the cortex and
the inner core is enforced, namely,

[ul=0 atR=R;, [P'Eg]=0 atR=R; (7)

where [[-] denotes the jump operator.

It is straightforward to show that the reference configura-
tion is in mechanical equilibrium. In fact, the balance of the
linear momentum reduces to

dPrr ~ Prr — Poo
— =0. 8
dR R ®)
Since in this case F = I, using Egs. (2) and (4) the nominal
stress tensor can be written as
_ juil =pl 0<R<R;
P= {MOFalFaT —pl R <R<R, ©

Substituting Eq. (9) into Eq. (8), one obtains
pP(R) =C,

po(hq — 1) log(R)
¥ *

when 0 < R < R;,

p(R) =

C, whenR; <R <R, (10)

where C; and C; are constants that are to be fixed by enforcing
the boundary and the interface conditions Egs. (6) and (7).
More explicitly, from Eq. (6) it is possible to get an analytical
expression for C,

Ho[A§ = 15 10g(R,) + log(R,)]

G = 22 ,

while imposing the continuity of Pgg at R = R;, we obtain

(18 — 1) o[log(R;) — log(R,)]
A2 ’

Cr=pu;+

In the next section, we study the stability of the reference
configuration with respect to axisymmetric perturbations.

III. LINEAR STABILITY ANALYSIS

To characterize the bifurcations exhibited by the elastic
body, we exploit the theory of incremental deformations [33].

J

In particular, we introduce a small perturbation of the ref-
erence state: let Su be the incremental displacement field,
we denote by T its gradient. We introduce the incremental
nominal stress tensor, given by

SP=A:T+pl—épl,
8P;j = Aijulmn + pLij — 8pdij. (11)

where summation over repeated indices is assumed, §p is the
increment of the Lagrange multiplier p, §;; is the Kronecker §,
and A is the fourth-order tensor of elastic moduli. It is defined
as

R\ R\

A= ——=| , Aiju=—77| -
oFoF |, il OF;i0F |,

From the expression of the strain energy Eq. (2), one obtains
Aijn = mp(Fe)ia (F)ned 1. By linearization of the fully nonlin-
ear Egs. (3) and (5) we get the incremental form of the balance
of linear momentum and of the incompressibility constraint

DivéP =0, tT =0. (12)

These partial differential equations are complemented by the
following interface and boundary conditions

SPTEx =0 forR=R,,
[SPTER] =0 forR =R,
[bu] =0 forR =R, (13)
Let $u be an axisymmetric field such that Su = u(R, Z)Eg +

w(R, Z)Ez. The following variable separation of the incre-
mental displacement and pressure is assumed:

u(R, Z) = U(R)cos(kZ/R,),
w(R, Z) = W(R) sin(kZ/R,),
3p(R, Z) = P(R)cos(kZ/R,). (14)

We first solve analytically the incremental equation in the
axoplasm. Since A, ji; = idaxdj; and the pressure p is con-
stant for R < R; [see Eq. (10)], the incremental Egs. (12)
reduce to

RR,[kpRW' — RR,P" + R,(1; + p)U' + RR,(11; + p)U"1 — U[K*wiR* + R (1; + p)] = 0,
— K*pRW — k* 1;RW + kRR,P — kpRR,U" — kpR,U + (t;R*W' + ,RR2W" = 0,

kRW + RR,U' + R,U =0,

where ’ denotes the derivative with respect to the radial co-
ordinate. Following the procedure exposed in Ref. [34], it is
possible to prove that a set of independent solutions, which
are continuous at R = 0 and bounded, is given by

1 kR ) kR
Ul=n(—). U*=Ri(=).
R, R,

1 kR , 2R, (kR kR
Wi=—h|\- ), W =——-Ih| 5 |)—RL| %)
R, k "\ R, R,

5 kR
P =2/,L,'I() R_ N (15)

where [; is the modified Bessel function of the first kind of
order j.
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While it is possible to solve analytically the incremental
problem in the axoplasm, in the cortex the pressure field p
depends on R, making the differential equations much more
complicated. Nevertheless, they can still be solved numeri-
cally. However, the incremental problem given by Egs. (12)
and (13) is numerically stiff and it is convenient to reformulate
it in a more suitable form. In particular, we exploit the Stroh
formalism [35] to recast the problem into a system of first
order differential equations. The Hamiltionian structure of this
formulation [36] allows us to construct a robust numerical
procedure. Among the different algorithms that have been
proposed in the literature, here we use the impedance matrix
method [37], which allows us to write the incremental prob-
lem as a differential Riccati equation. Finally, a bifurcation
criterion is constructed by enforcing the continuity of the in-
cremental stress and displacement at the interface between the
cortex and the axoplasm for non trivial incremental displace-
ments. The details and the explicit computations are reported
in the Appendix. In the next section, we show and discuss the
outcomes of the stability analysis.

A. Results of the linear stability analysis

The problem is nondimensionalized with respect to the
length scale R, and the shear modulus y;, introducing the
aspect ratio p = R;/R, and the stiffness ratio u = u,/u;.
When microtubules are depolymerized, the shear modulus of
the axoplasm decreases, so that the ratio  increases. Thus, it
is natural to adopt p as control parameter of the bifurcation.

Figure 3 shows the marginal stability curves obtained for
several values of the active stretch A,. The critical wave
number k. and the critical stiffness ratio u. are defined
as the coordinates of the minima of the stability curves.
Interestingly, in contrast to the elastic Rayleigh-Plateau in-
stability [18,23], the linear analysis predicts a finite critical
wave number; see Fig. 4: as the inner shear modulus pu;
diminishes due to microtubule disruption, the straight axon
buckles exhibiting a periodic peristaltic pattern. The critical
wave number appears to depend linearly on the aspect ratio p
and, as one could intuitively expect, the critical stiffness ratio
diminishes as A, decreases (i.e., when the actin cortex is more
contracted). In general, the critical wave number belongs to
the interval [0.5, 0.76] for all the considered values of p and
Aq. This means that, depending on p and A,, the wavelength
of the pattern ranges between 8.37 R, and 12.56 R,,.

Datar and coworkers [16] observed that the wavelength of
the pearling pattern induced by nocodazole on PC12 neurites
increases linearly with the radius of the axon. In particu-
lar, the experimentally measured wavelength is >~ (11.7761 +
0.7060) R,, in agreement with the outcomes of the stability
analysis. It is to be remarked that human axon exposed to
nocodazole seems to exhibit a longer wavelength [16]. This
behavior may be caused by the spatially inhomogeneous de-
polymerization of the cytoskeleton induced by nocodazole:
this drug first disrupt the microtubules close to the axonal
growth cone, so that only the final part of the axonal shaft
exhibits the formation of beads. The study of axonal beading
induced by a spatially inhomogeneous depolymerization is
beyond the scope of this paper and will be addressed in a
future work.
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FIG. 3. Marginal stability curves showing the control parameter
= [,/ 1; versus the dimensionless wave number k for p = 0.8
(top) and p = 0.9 (bottom), A, = 0.2, 0.3, 0.4, 0.5, 0.6. The arrow
denotes the direction in which X, grows.

The linear analysis presented in this section can be eas-
ily generalized to arbitrary, non axisymmetric perturbations
following an analogous procedure. The computations are not
reported explicitly but, when the symmetry is broken by the
perturbation, the axon appears to be stable.

Compared with previous works on the buckling of lay-
ered elastic cylinders, the instability investigated in this paper
shows some interesting features. Indeed, the formation of
periodic patterning in cylindrical structures induced by active
processes, such as growth [38,39] or swelling [40], has been
widely investigated: the surface instability is usually triggered
by a coating where the hoop [41] or the axial stress [42]
is compressive. Conversely, in this paper the F-actin cortex
contracts in both these directions.

While the linear analysis detects the stability threshold, it
does not provide information on the behavior of the buckled
axons far away from the bifurcation point. In the next Sec-
tion, a numerical approximation of the nonlinear problem is
proposed to overcome this limitation.

IV. POSTBUCKLING ANALYSIS

To study the postbuckling evolution of the bifurcated
branches, the fully nonlinear equations are discretized by
means of the finite element method. The Python library
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FIG. 4. Plot of u., and k. versus A, and p.

FEniCS is used to implement the numerical code. Assuming
axisymmetry, for fixed values of A, and p, we use as compu-
tational domain the rectangle

{X, Y) = (Z/Ro, R/R,) € (0, 27 [ker) x (0, D},

where k., is the theoretical critical wave number arising from
the linear stability analysis. Periodic boundary conditions are
imposed for X = 0 and X = 2x /k,. Furthermore, the posi-
tion of the origin is fixed to avoid rigid displacements.

Using a structured triangular mesh, the displacement
and the pressure fields are discretized by using piecewise
quadratic polynomials and piecewise constant functions, re-
spectively. Such a mixed formulation is numerically stable
for problems arising from incompressible elasticity [43]. The
maximum diameter of the elements is 0.0354. A small sinu-
soidal imperfection (having an amplitude of 2.5 x 107°) is
applied to the mesh to trigger the instability.

The code is implemented using the parameter continua-
tion library developed in Ref. [44]: starting from u = 1, the
control parameter u is iteratively incremented of a quantity
Ap. The nonlinear problem is solved for using a Newton
method, adopting the solution obtained for w as initial guess
for u + Ap.

A. Results of the numerical simulations

Let Ar be the amplitude of the beading pattern at the free
surface, that is

Ar = ma Ry, Z) —

= X r r(R,, Z).
Z€l0, 2R, /ker]

min
Z€[0, 2R, [ker]
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FIG. 5. Bifurcation diagram showing the normalized beading
amplitude Ar/R, versus the control parameter p. The solid and
dashed lines correspond to two distinct simulations where p = 0.8
and p = 0.9, respectively, while A, = 0.5 in both the cases. The
orange circles denote the theoretical stability thresholds arising from
the linear analysis.

In Fig. 5, we depict the bifurcation diagram obtained from
the numerical simulations for o = 0.8 and p = 0.9 when the
active stretch A, is 0.5 [45]. We observe that the bifurcation
diagrams exhibit the typical shape of a supercritical pitchfork
bifurcation, with a continuous increase of Ar/R, at the onset
of the instability. We remark that there is a perfect match with
the theoretical stability thresholds computed through the lin-
ear analysis. Counterintuitively, despite the marginal stability
threshold is higher, the normalized beading amplitude Ar/R,
increases faster as the aspect ratio p is incremented, result-
ing in a more pronounced pattern in the nonlinear regime.
Denoting by E,;,m and Ey, the energies of the buckled and
of the undeformed reference configuration, respectively, in
Fig. 6 we plot the energy ratio E,,,/En versus the control
parameter w. Finally, the buckled configurations for © = 2000
are reported in Fig. 7. Interestingly, the actin cortex is thinner

Enum/Eth

0.992+ Solid: p = 0.8
Dashed: p=0.9
560 1 0‘00 1 5‘00 2000

0

FIG. 6. Bifurcation diagram showing the energy ratio Ey,/En
versus the control parameter . The solid and dashed lines cor-
respond to two distinct simulations where p = 0.8 and p = 0.9,
respectively, while A, = 0.5 in both the cases. The orange circles
denote the theoretical stability thresholds arising from the linear
analysis.
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FIG. 7. Deformed configurations predicted by the finite element
simulations for p = 0.8 (snapshot “a”) and p = 0.9 (snapshot “b”’)
when p = 2000, 1, = 0.5. In the lower part of the axons it is shown
the deformed image of the axoplasm (green) and of the actin cortex

(blue).

in correspondence of the bulges provoked by the disruption of
the cytoskeleton, while it is thicker where the axonal radius is
minimal.

V. CONCLUDING REMARKS

Summing up, we have characterized the physical mecha-
nisms underlying axonal beading due to microtubule disas-
sembly. Modeling the axonal shaft as a cylindrical bilayer
composed of an active hyperelastic material, the reference
configuration undergoes a mechanical instability whenever
the ratio between the shear modulus of the cortex and of the
axoplasm reaches a critical value, that is when the elastic
modulus of the axoplasm decreases below a critical threshold.
The simple model presented in this paper captures the main
features of axonal beading: the elasticity of both the F-actin
and the microtubules network appears to be fundamental to
describe both the onset and the postbuckling evolution of the
bifurcated branches. While the wavelength of the instability is
controlled by the dimensionless parameters A, and p, which
are the active strain and the aspect ratio respectively, the
amplitude of the pattern is dictated by the ratio between the
shear modulus of the cortex and of the axoplasm. The wave-
length predicted by the linear analysis is in agreement with
experiments performed on PC12 neurites [16]. Furthermore,
the postbuckling morphology predicted by the finite element
simulations is in qualitative agreement with the experimental
one (compare Fig. 1 (bottom) and Fig. 8).

For the sake of simplicity, in this paper, we have assumed
that the depolymerization of the microtubules is spatially ho-
mogeneous. However, in some cases the disruption of the
cytoskeleton is faster close to the growth cone, as happens
in human axons exposed to nocodazole [16]. This can lead
to a spatial modulation of the wavelength of the pattern that
will be studied in a future work. Furthermore, future efforts

) Lo ) (O

0.00 0.50 1.00
|

—

will be devoted to study the influence of the axoplasm poroe-
lasticity on the shape transitions exhibited by the axon. In
fact, the axoplasm is composed of both a solid and a fluid
phase. Modeling the axon as a poroelastic mixture, where the
microtubule depolymerization gives rise to an exchange of
mass between the liquid and solid phase, may lead to a better
fit of the experimental shapes even when the depolymerization
is spatially inhomogeneous. Another interesting aspect that
deserves further study is the role of F-actin disruption in the
process of axonal retraction [16].
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APPENDIX: STROH FORMULATION AND IMPEDANCE
MATRIX METHOD

In this Appendix, we first rewrite the incremental Egs. (12)
as a system of first order differential equations exhibiting an
Hamiltionian structure using the Stroh formalism [35]. This
technique requires to consider 6Pgg and 6Pk as additional
unknowns of the problem, assuming the variable separation

8Prr(R, Z) = Sgr(R) cos(kZ/R,), (A1)

8Prz(R, Z) = Sgz(R) sin(kZ/R,). (A2)

By substituting Eq. (A1) into Eq. (11), we obtain an expres-
sion for the pressure P(R) [see Eq. (14)]

P(R) = U'(R)[Ajpto + p(R)] — Sgr(R).

It remains to determine a system of four equations for the
unknowns U, V, Sgr, Sgz. These equations are the incremen-
tal form of the incompressibility constraint and of the balance
of the linear momentum (three scalar equations), see Eq. (12),
and the constitutive equation for § Pgz, given by Eq. (11). They
can be written as the following system of ordinary differential
equations:

] N (A3)
” - R ”7
where n = [U, W, RSgr, RSgz] and N(R) is the 4 x 4 Stroh
matrix, having the following block form:

NG N
N_[N3 —N{}

) Lo ) (O

1.50 2.00 2.62

; g

(A4)

lull/R,

FIG. 8. Buckled morphology of the axon predicted by the finite element simulations for o = 0.9 when p = 2000, A, = 0.5.
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where Ny, Ny, N3 are 2 x 2 matrices such that Ny, = Ng and
N3 = NI Their expressions are given by

r kR
-1 & 0 0
N; = kRp o1 Na=1| U
—)"4I"(/0RU )\'3“0
N; = [ az]’
_0[2 (0%
where
K*R*
ol — + A 1
2 k2R2p M(R(z) + a+ )
o] = — ,
PP T MR 22
kR(Xg1t0 + )
az = —5
R,
K*R*(ASpo + 1o + 222 p)
o3 = oY) .
)\'HRO

We can now numerically solve the incremental problem by
using Eq. (A3). A very robust numerical scheme is based on
the impedance matrix method. More explicitly, we introduce
the conditional impedance matrix Z(R, R,) [37], so that

RS(R) = Z(R, R,)U(R), (AS)
where U = [U, W] and S = [Sgg, Skz]. Plugging Eq. (AS5)
into Eq. (A3), we get the following equations:

1
U = E(N]U + N,ZU), (A6)

1
ZU+ZU = E(N3U —NTzU). (A7)

Substituting Eq. (A6) into Eq. (A7), we obtain a Riccati dif-
ferential equation:

RZ' = —ZN; — N{Z — ZN,Z + N;. (A8)

The Riccati equation is complemented by the the initial condi-
tion Z(R,, R,) = 0, corresponding to the boundary condition
SPTEg =0 for R = R, [37].

Finally, a bifurcation criterion is constructed by enforcing
the continuity of the incremental stress and displacement at
the interface. Identifying with

U; = lim URR), S;= lim SR),
R—R;

R—R;

U,= lim UR), S,= lim S(R),
R—R} R—R}

then, from Egs. (13) and (AS), we obtain

Si =8, = Z(Ri, R)U, = Z(Ri, R,)U;. (A9)

Using Egs. (11), (Al), and (A2), denoting by
Skr, Szp, Sk, Sz, the components of S corresponding
to the solutions Eq. (15) for the axoplasm, we introduce the
matrices X (R) and Q(R), defined as

[Sk®)  SE(R)
2w = [ o)
_[uR) UAR)
QR=1wiwr) war) |

From Eq. (A9), nontrivial solutions exist whenever [46,47]

det (Z(R;) — Z(R;, R,)Q(R;)) = 0. (A10)

The Riccati Eq. (A8) is integrated numerically from R, to R;
using the software MATHEMATICA (version 12.2), increment-
ing the control parameter p for fixed values of A,, k, and p
until the bifurcation criterion Eq. (A10) is reached.
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