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Robust rhythmogenesis via spike-timing-dependent plasticity
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Rhythmic activity has been observed in numerous animal species ranging from insects to humans, and in
relation to a wide range of cognitive tasks. Various experimental and theoretical studies have investigated
rhythmic activity. The theoretical efforts have mainly been focused on the neuronal dynamics, under the
assumption that network connectivity satisfies certain fine-tuning conditions required to generate oscillations.
However, it remains unclear how this fine-tuning is achieved. Here we investigated the hypothesis that spike-
timing-dependent plasticity (STDP) can provide the underlying mechanism for tuning synaptic connectivity
to generate rhythmic activity. We addressed this question in a modeling study. We examined STDP dynamics
in the framework of a network of excitatory and inhibitory neuronal populations that has been suggested to
underlie the generation of oscillations in the gamma range. Mean-field Fokker-Planck equations for the synaptic
weight dynamics are derived in the limit of slow learning. We drew on this approximation to determine which
types of STDP rules drive the system to exhibit rhythmic activity, and we demonstrate how the parameters that
characterize the plasticity rule govern the rhythmic activity. Finally, we propose a mechanism that can ensure the
robustness of self-developing processes in general, and for rhythmogenesis in particular.
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I. INTRODUCTION

Rhythmic activity in the brain has been observed for more
than a century [1,2]. Oscillations in different frequency bands
have been associated with different cognitive tasks and mental
states [2–6]. Specifically, rhythmic activity in the gamma band
has been described in association with sensory stimulation [7],
attentional selection [8,9], working memory [10], and other
measures [11]. Deviation from normal rhythmic activity has
been associated with pathology [12–15].

Considerable theoretical efforts have been devoted to un-
raveling the neural mechanism responsible for generating
rhythmic activity in general [2] and in the gamma band
in particular [16–21]. One possible mechanism is based on
delayed inhibitory feedback [21–24]. The basic architecture
of this mechanism is composed of one excitatory and one
inhibitory neuronal populations, with reciprocal connections
Fig. 1(a). A target rhythm is obtained by tuning the strengths
of the excitatory and inhibitory interactions [Figs. 1(b) and
1(c)]. However, it is unclear which mechanism results in the
required fine-tuning [25,26].

We hypothesized that activity-dependent synaptic plastic-
ity can provide the mechanism for tuning the interaction
strengths in order to stabilize a specific rhythmic activity in
the gamma band.

Here we focused on spike-timing-dependent plasticity
(STDP) as the rhythmogenic process [25,26]. Below, we
briefly describe STDP and derive the dynamics of the synaptic
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weights in the limit of slow learning. Since the cross-
correlation of neural activity is central to STDP dynamics,
we next define the network dynamics and analyze its phase
diagram and the dependence of the correlations on the synap-
tic weights. Using the separation of timescales in the limit
of slow learning, we analyze STDP dynamics and investigate
under what conditions STDP can stabilize a specific rhythmic
activity and how the characteristics of the STDP rule govern
the resultant rhythmic activity. Finally, we summarize our re-
sults, discuss possible extensions and limitations, and propose
a general principle for robust rhythmogenesis.

II. STDP DYNAMICS

The basic coin of information transfer in the central
nervous system is the spike: a short electrical pulse that
propagates along the axon (output branch) of the transmitting
neuron to synaptic terminals that relay the information to
the dendrites (input branch) of the receiving neurons down-
stream. While spikes are stereotypical, the relayed signal
depends on the synaptic weight, which can be thought of
as interaction strength. Learning is the process that modifies
synaptic weights (the dynamics of the interaction strengths
themselves), and typically occurs on a slower timescale than
the timescale of the neuronal responses.

STDP is an empirically observed microscopic learning rule
in which the modification of the synaptic weight depends
on the temporal relation between the spike times of the pre-
(transmitting) and post- (receiving) synaptic neurons [27–31].
Following [32], the change, �Ji j , in the synaptic weight Ji j

from the presynaptic neuron j to the postsynaptic neuron i is
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FIG. 1. The excitatory-inhibitory network. (a) Model architec-
ture. The neuronal network here is composed of an excitatory (E )
and an inhibitory (I) populations with inter- (JIE and JEI ) and intra-
(JII and JEE , which will be taken to zero hereafter) connections.
The interaction is not symmetric and is delayed. (b) The oscillatory
dynamics of the mean excitatory and inhibitory population firing
rates mE and mI , respectively, at a frequency of 24.9 Hz. Here
we used JEE = JII = 0, JIE = 8.91, JEI = 0.9, and τm = d = 5 ms
[see Eqs. (7) and (8) below]. (c) Rhythmic activity. The oscillation
frequency is depicted as a function of the strength of the inhibitory
to excitatory connection, JEI . The following parameters were imple-
mented here: JEE = JII = 0, JIE = 50, τm = 10 ms, and d = 1 ms.
(d) Phase diagram of the delayed rate model. Strong inhibition,
JI > 1, leads the system to a purely inhibitory fixed point, in which
mE is fully suppressed and mI = 1. For weak to moderate inhibition,
JI ∈ (0, 1), and below the black line, the system converges to a fixed
point, where both populations are active. For J̄ > J̄d (above the black
line) the model exhibits rhythmic activity. For a given time delay, the
frequency is governed by J̄ . When J̄ is decreased, higher frequencies
are observed. Here we used τm = d = 1.

expressed as the sum of two processes: potentiation (i.e., in-
creasing the synaptic weight) and depression (i.e., decreasing
the synaptic weight):

�Ji j = λ[K+(�) − αK−(�)], (1)

where � = ti − t j is the pre- and postspike time difference.
Functions K±(�) � 0 describe the temporal structure of the
potentiation (+) and depression (−) of the STDP rule. Pa-
rameter α denotes the relative strength of the depression,
and λ is the learning rate. We assume that learning occurs

on a slower timescale than the characteristic timescales that
describe neuronal activity (for given fixed synaptic weights).

A wide range of temporal structures of STDP rules has
been reported [33–40]. Here we focus on two families of rules.
One is composed of temporally symmetric rules and the other
is made up of temporally asymmetric rules.

For the temporally symmetric family, we apply a difference
of Gaussian STDP rule, namely

K±(t ) = 1√
2πτ±

e−(t/τ± )2/2, (2)

where τ± denotes the characteristic timescales of the poten-
tiation (+) and depression (−). Consistent with the popular
description of the famous Hebb rule that “neurons that fire
together wire together” [41], we refer to the case of τ+ < τ−
as Hebbian, and τ+ > τ− as anti-Hebbian.

For the temporally asymmetric STDP rules, we take

K±(t ) = 1

τ±
e∓Ht/τ±�(±Ht ), (3)

where �(x) is the Heaviside step function, τ± are the char-
acteristic timescales of the potentiation (+) and depression
(−), and H = ±1 dictates the Hebbianity of the STDP rule.
The rule will be termed Hebbian for H = 1 when potentiation
occurs in the causal branch, tpost > tpre, and anti-Hebbian for
H = −1.

Different types of synapses have been reported to exhibit
different types of STDP rules. Consequently, there is no a pri-
ori reason to assume that excitatory and inhibitory synapses
share the exact same learning rule. In particular, the charac-
teristic time constants τE ,± for excitatory synapses and τI,±
for inhibitory synapses may differ.

Changes to synaptic weights due to the plasticity rule of
Eq. (1) at short time intervals occur as a result of either a pre-
or postsynaptic spike during this interval. Thus,

J̇i j (t ) = λρi(t )
∫ ∞

0
ρ j (t − t ′)[K+(t ′) − αK−(t ′)]dt ′

+ λρ j (t )
∫ ∞

0
ρi(t − t ′)[K+(−t ′) − αK−(−t ′)]dt ′,

(4)

where ρpost/pre(t ) = ∑
l δ(t − tpost/pre

l ) is the spike train of the
post/pre neuron written as the sum of the δ function at the
neuron’s spike times {tpost/pre

l }l . In the limit of slow learning,
λ → 0, the right-hand side of Eq. (4) can be replaced by
its temporal mean (see [32] for complete derivations). This
approximation has been termed the mean-field Fokker-Planck
approximation [28]. As fluctuations vanish in this limit and
deterministic dynamics are retained for the mean synaptic
weights, we get

J̇i j (t ) = λ

∫ ∞

−∞

i j (−t ′)[K+(t ′) − αK−(t ′)]dt ′, (5)

where 
i j (t ) is the cross correlation of neurons i and j:


i j (t ) = 〈ρi(t
′)ρ j (t

′ + t )〉. (6)

The angular brackets 〈· · · 〉 denote ensemble averaging over
the neural noise and temporal averaging over one period in the
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case of rhythmic activity (see [25,32] for more details). Note
that the dependence of the right-hand side of Eq. (5) on time, t ,
occurs through the dependence of the cross-correlations on the
synaptic weights at time t . Thus, the key to analyzing STDP
dynamics is the ability to compute the cross-correlations of the
neural activities and grasp their dependence on the synaptic
weights. To this end, we examined rhythmogenesis in the
gamma band using the framework of a reduced rate model
with delay, proposed by Roxin and colleagues [Fig. 1(a)]. A
complete analysis of the model appears in [21–23]. Below, we
briefly describe the phase diagram of the system and derive the
cross-correlations.

III. THE DELAYED EXCITATORY
INHIBITORY NETWORK

The firing of different neurons is assumed to follow in-
dependent inhomogeneous Poisson process statistics with
instantaneous firing rates that adhere to the reduced model
in Roxin et al. [21]. In their work, Roxin and colleagues
considered a full model that included inter-population as well
as intrapopulation interactions (i.e., excitatory-excitatory and
inhibitory-inhibitory). Here, for simplicity, we restrict the
analysis to the minimal model that can reproduce oscillations
in the gamma band. To do so, we model the rate dynamics of
the gamma generating network by

τmṁE (t ) = −mE (t ) + [I − JI mI (t − d )]+, (7)

τmṁI (t ) = −mI (t ) + [I + JE mE (t − d )]+, (8)

where mE/I (t ) is the mean firing rate of the excitatory (E ) and
inhibitory (I) population at time t . τm is the neuronal time
constant. Unless stated otherwise, we take τm = 1, which is
equivalent to measuring time in units of the neuronal time
constant. Parameter d denotes the delay, I is the external input
to the system, and [x]+ = x for x > 0 and zero otherwise is
taken to be the neuronal transfer function. In our analysis, we
took I = 1. JE and JI are the effective interaction strengths
between the two populations. JE (JI ) can be thought of as a
global order parameter reflecting the mean synaptic weight
from the excitatory (inhibitory) presynaptic population to the
inhibitory (excitatory) postsynaptic population.

For strong inhibition, JI > 1, the system converges to a
fixed point in which the excitatory population is fully sup-
pressed by the inhibitory population, 
m∗ = (0

1). For weak to
moderate levels of inhibition, JI ∈ (0, 1), the system has a
fixed point in which both populations are active, 
m∗ ≡ (m∗

E
m∗

I
) =

1
1+J̄2 (1 − JI

1 + JE
), with J̄ ≡ √

JE JI . However, this fixed point is not

stable for J̄ > J̄d , where J̄2
d = 1 + ω2

d , ωd = cot(ωd d ), and
ωd ∈ [0, π/2d] (see Roxin et al. [21]). In this region (J̄ > J̄d

and JI < 1), the system converges to a limit cycle solution,
Fig. 1(d).

By rescaling the firing rates, the two-dimensional first-
order delayed dynamics, Eqs. (7) and (8), can be reduced to a
one-dimensional delayed dynamic equation:

ẍ(t ) + 2ẋ(t ) + x(t ) − [1 − J̄2x(t − 2d )]+ = 0, (9)

with

mI (t ) = 1 + (JE − J̄2)x(t ), (10)

mE (t − d ) = JE − J̄2

JE
[x(t ) + ẋ(t )]. (11)

Equation (9) highlights the fact that the temporal structure of
the limit-cycle solution depends on the synaptic weights, JE

and JI , only via J̄ . In particular, the period of oscillations is
solely a function of J̄ and d . As shown in Fig. 2(a), the period
is a monotonically increasing function of both J̄ and d .

In our model, the cross-correlations are given by temporal
averaging of the mean firing rates, 
IE (�) ≡ 〈mI (t )mE (t +
�)〉. In the fixed-point region of the phase diagram, the cross-
correlation is simply given by the product of the mean rates,

IE (�) = (1 − JI )(1 + JE )/(1 + J̄2)2.

In the region of the phase diagram where the system con-
verges to a limit-cycle solution, Eqs. (10) and (11) provide the
scaling of the cross-correlations, namely


IE (�) = ax̄ + b

(

x(� + d ) + d

d�

x(� + d )

)
, (12)

where a ≡ (JE − J̄2)/JE , b ≡ (JE − J̄2)2/JE , x̄ ≡ 〈x(t )〉, and

x(s) ≡ 〈x(t )x(t + s)〉. Note that x̄ and 
x depend solely
on the delay, d , and J̄ . Numerical investigation reveals that
the autocorrelation of x(t ) is well approximated by a cosine
function,


x(s) ≈ 
̄x + 
̃x cos (ωs), (13)

where we used


̄x =
∫ T

0

x(s)ds/T, (14)


̃x = 2
∫ T

0

x(s) cos(2πs/T )ds/T, (15)

with T denoting the period of the limit cycle, as can be seen
from the value of R2, Fig. 2(b). The goodness of fit of the
cosine approximation decreases when J̄ or d is increased.
Nevertheless, for a wide range of parameters relevant to the
generation of gamma oscillations, R2 is extremely high [R2 >

0.98 throughout Fig. 2(b)]. Both x̄ and 
̄x monotonically
decrease as J̄ increases, Figs. 2(c) and 2(d). In addition, they
transition the bifurcation line continuously. On the other hand,

̃x does not transition in a continuous manner: it is zero in
the fixed-point region and jumps to a positive value in the
rhythmic region, Fig. 2(e).

Using the cosine approximation for the correlations,
Eq. (13) and the scaling Eqs. (10) and (11) yield the semiem-
pirical excitatory-inhibitory cross-correlations function:


IE (�) ≈ 
̄ + 
̃ cos (ω� + ϕ̃) (16)

with 
̄ = ax̄ + b
̄x, 
̃ = b
̃x(1 + ω2)1/2, ϕ̃ = ω(d + ϕω ),
and ωϕω = arcsin(ω/

√
1 + ω2). Figure 3 shows the values

of ϕ̃ on the phase diagram. The phase ϕ̃(J̄, d ) is π/2 on the
bifurcation line and weakly decreases as J̄ is further increased.
Note that 
EI (�) = 
IE (−�).
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FIG. 2. Dynamics of the one-dimensional variable x, Eq. (9). Different features characterizing the dynamics of x are shown as a function
of J̄ for different values of the delay, d , differentiated by color. The dashed lines indicate the values of J̄d for different delays, shown by color.
The parameters plotted are as follows: (a) The period of the oscillations. (b) The goodness of fit of the cosine approximation, Eq. (13), of

x , R2. (c) The temporal average of x, x̄. (d) The zeroth-order Fourier component of the autocorrelation of x, 
̄x . (e) The first-order Fourier
component of the autocorrelation of x, 
̃x .

IV. STDP INDUCED FLOW ON THE PHASE DIAGRAM

Utilizing the semiempirical cross-correlations, Eq. (16),
yields the following dynamics for the synaptic weights:

J̇σ = λ(
̄K̄ + 
̃K̃σ ), (17)

where

K̄ =
∫ ∞

−∞
K (�)d�, (18)

K̃σ ≡
∫ ∞

−∞
K (�) cos(ω�σ + ϕ̃)d�, (19)

where σ = E , I . We used the notation K (�) = K+(�) −
αK−(�) and �E = −�, whereas �I = �.

The STDP dynamics, Eq. (17), induces a flow in the
phase plane of the synaptic weights [JI , JE ], which is also the
phase diagram of the neural responses. The right-hand side of
Eq. (17) depends on the synaptic weights through the Fourier
transforms of the cross-correlations 
̄ and 
̃. Using the sepa-
ration of timescales between the fast neuronal responses and
the slow learning rate, in the limit of slow learning λ → 0,
one can compute 
̄ and 
̃ from the neuronal dynamics for
fixed synaptic weights.

Thus, STDP induces a flow on the phase diagram of the
system. Rhythmogenesis is obtained when this flow guides the
system and stabilizes it at a fixed point on the phase diagram
that is characterized by the desired rhythm.

In the region of the phase diagram in which the mean neu-
ronal firings relax to a fixed point, 
̃ = 0. Due to our choice of
normalization, K̄± = 1, in this region sgn(J̇σ ) = sgn(1 − ασ ),
σ ∈ {E , I}. Consequently, the STDP dynamics will induce a
flow from the fixed-point region towards the rhythmic region
if and only if the potentiation is strong relative to the de-
pression for both types of synapses, αE , αI < 1 (except for a
small region of the phase diagram with high inhibition and low
excitation, which also depends on the learning rates, λE and
λI , of the different synapses). This result holds true for any
STDP rule. In contrast, the STDP dynamics in the rhythmic
region of the phase diagram depend on the temporal structure
of the learning rule.

The difference of Gaussians learning rule, Eq. (2), yields

K̃σ = cos ϕ̃
(
e− (ωτσ,+ )2

2 − αe− (ωτσ,− )2

2
)
, (20)

with σ ∈ {E , I}. Consequently, the dynamical equations of
JE and JI will be identical if the characteristic timescales of
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FIG. 3. The values of ϕ̃. The parameter ϕ̃/π is shown by color as
a function of JE and JI on the phase diagram. Here d = 1 was used.

potentiation and depression are the same, i.e., if τE ,+ = τI,+
and τE ,− = τI,−. Note that on the right-hand side of Eq. (20),
the term cos ϕ̃ ensures that K̃σ is zero on the bifurcation (see
Fig. 3). Figures 4(a) and 4(b) depict the nullclines of JE and JI ,
respectively, for different values of the relative strength of de-
pression, α [in (a)], and the characteristic time of depression,
τ− [in (b)], differentiated by color. We show that for α < 1
(α > 1) and τ+ > τ− (τ+ < τ−) the nullcline of JE and the
left branch of the nullcline of JI are stable (unstable). A fixed
point of the STDP dynamics is obtained by the intersection of
JE and JI nullclines. For the difference of Gaussians rule, a
stable fixed point that exhibits rhythmic activity in the gamma
band can thus be obtained. However, this requires a delicate
adjustment of the parameters characterizing the STDP learn-
ing rules.

For the temporally asymmetric Hebbian exponential rule,
Eq. (3) with H = 1, we obtain

K̃σ = cos (θσ,+) cos (θσ,+ − ϕ̃σ )

− α cos (θσ,−) cos (θσ,− + ϕ̃σ ),
(21)

where cos(θσ,±) = [1 + (ωτσ,±)2]−1/2, ϕ̃E = ϕ̃, and ϕ̃I =
−ϕ̃. Now, due to θσ,±, the term 
̃K̃σ transitions discontinu-
ously across the bifurcation line, thus inducing discontinuity
in J̇E and J̇I along the transition from the fixed point to the
rhythmic region. Figures 4(c) and 4(d) depict the nullclines
of JI for the temporally asymmetric Hebbian learning rule
for different values of the relative strength of depression, α

[in (c)], and the characteristic time of depression, τ− [in (d)],
differentiated by color. The left branch of the nullclines of JI

is stable (unstable) for α < 1 (α > 1) and τ+ < τ− (τ+ > τ−).
Interestingly, a considerable part of the JI nullcline is on the
bifurcation line.

For the temporally asymmetric Hebbian learning rule, the
dynamics of JE do not have a nullcline. As a result, a fixed

point does not exist, and the temporally asymmetric Hebbian
STDP rule cannot stabilize rhythmic activity in the gamma
range.

However, as 
EI (�) = 
IE (−�), the temporally asym-
metric anti-Hebbian exponential rule [Eq. (3) with H = −1]
for excitatory synapses, JE , in our model, defines the exact
same dynamics as that of inhibitory synapses, JI , with a Heb-
bian rule [Eq. (3) with H = +1]. Therefore, an asymmetric
Hebbian learning rule for JI and an asymmetric anti-Hebbian
learning rule for JE yield the same nullclines [see Figs.
4(c) and 4(d)]. Moreover, because a considerable part of
the nullcline is on the bifurcation line, no fine-tuning of the
parameters is required to obtain a fixed point of the STDP
dynamics that will generate rhythmic activity at ωd . Thus,
the STDP dynamics have a line attractor on (part of) the
bifurcation line. Furthermore, when the left branches of the
nullclines of JE and JI are stable (α < 1, τE ,− > τE ,+, and
τI,− > τI,+) and the nullcline of JI departs from the bifurca-
tion line below the nullcline of JE , the attractor line is stable
against perturbations in every direction [see Fig. 4(e)].

V. DISCUSSION

Previous studies have investigated the effects of rhyth-
mic activity on STDP [20,42–51]. However, in these studies,
rhythmic activity was hard-wired in the system, and the issue
of rhythmogenesis was not addressed.

Rhythmogenesis can be thought of as self-organizing tem-
poral activity, i.e., the ability of a nonrhythmic system to
spontaneously develop rhythmic activity. In our approach, the
process of rhythmogenesis was mapped to a flow on the phase
diagram. This mapping relies on the separation of timescales.

Previously, Soloduchin and Shamir investigated rhythmo-
genesis using the framework of two neuronal populations
with reciprocal inhibition and short-term adaptation in the
form of firing rate adaptation [25,26]. The network motif of
reciprocal inhibition has been widely reported in the central
nervous system [52–54]. However, it is mainly associated with
winner-take-all-like competition [55–61] rather than gener-
ating rhythmic activity (but see [62,63] on the spinal cord).
Here, rhythmogenesis was studied in the framework of a
network that is considered a valid hypothesis for generating
gamma rhythm in the brain [21–23].

In Soloduchin and Shamir [25], rhythmogenesis was ob-
tained as a specific stable fixed point on the phase diagram
of the system, in which due to the temporal characteristics of
the STDP rule, the dynamics of the synaptic weights vanish
at a specific frequency. This scenario is similar to the case of
temporally symmetric STDP [Figs. 4(a) and 4(b)]. However,
scientifically this scenario is somewhat disappointing, since
we have traded the problem of fine-tuning of the synaptic
weights for the problem of fine-tuning of the characteristics
of the STDP rule [26].

The temporally asymmetric STDP rule provides a possible
solution to the fine-tuning problem of rhythmogenesis, which
we term critical rhythmogenesis [Figs. 4(c)–4(e)]. Rhyth-
mogenesis in the temporally asymmetric STDP rule is not
obtained as a fixed point of the STDP dynamics. Rather, in this
case, rhythmogenesis utilizes the discontinuity of 
̃ across
the bifurcation line. For a wide range of parameters, the flow
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FIG. 4. Nullclines of the STDP dynamics. (a),(b) The nullclines of JE and JI for the difference of Gaussians learning rule (in this case, the
nullclines are identical for the same choice of parameters α, τ±) The nullclines are shown for different values of α = 0.99, 0.991, . . . , 0.999,
differentiated by color, with τ+ = 2 and τ− = 1, in (a). The nullclines are shown for different values of τ− = 0.25, 0.5, . . . , 3.25, by colors,
with τ+ = 5 and α = 0.999, in (a). (c),(d) The nullclines of JI (JE ) for the temporally asymmetric Hebbian (anti-Hebbian) STDP rule. The
nullclines are shown for different values of α = 0.9, 0.91, ...0.99, with τ+ = 2 and τ− = 5, in (c). The nullclines are shown for different
values of τ− = 2.5, 3, . . . , 7, with τ+ = 2 and α = 0.94, in (d). The nullclines were computed using the cosine approximation for the neuronal
cross-correlations. (e) The vector flow in the case of a temporally asymmetric Hebbian learning rule for JI and a temporally asymmetric
anti-Hebbian learning rule for JE . The nullclines are shown for α = 0.88, τI,+ = τE ,+ = 1, τI,− = 2, and τE ,− = 5. The learning rates are
λI = 1 and λE = 10. In every subfigure, d = 1 was used.

induced by the STDP is directed from the fixed-point region
towards the rhythmic region and from the rhythmic region
to the fixed-point region, and the system will settle on the
bifurcation line itself. Consequently, the resultant rhythmic
activity will be dictated by bifurcation (e.g., the firing rates
will oscillate at ωd ), which is independent of the synaptic
plasticity, thus accounting for the robustness to the parameters
that characterize the STDP.

Figure 5(a) presents an illustration of critical rhythmoge-
nesis with finite learning rate, λ > 0. As can be seen from
the figure, for relatively strong potentiation, α < 1, the STDP
dynamics draws the system towards the rhythmic region. The
noise in the dynamics results from the spiking activity of
the neurons that follows an inhomogeneous Poisson process
with rates given by Eqs. (7) and (8). Note that due to the
discontinuity [of 
̃x, cf. Fig. 2(e)] across the bifurcation,
the STDP dynamics pulls the system towards the bifurcation
line from both sides, but it does not vanish on it. Consequently,
the system can drift along the bifurcation line. This drift
can be restricted by suppressing the potentiation when the

synaptic weight becomes too strong, as done in, e.g.,
[28,32,64]; see Fig. 5(b).

The discontinuity of 
̃x across the bifurcation line results
from a degenerate Hopf bifurcation that can be traced to the
choice of a threshold linear transfer function, e.g., Eq. (7).
Indeed, on the bifurcation line itself, one can show that the
degenerate solutions are sinusoidal functions of time around
the fixed-point solution with angular velocity of wd and any
arbitrary amplitude that is less than

√
2�
̃x, where �
̃x

is the discontinuity in 
̃x across the transition (specifically,
�
̃x = 1

2[J̄2
d (1+J̄2

d )]2 ). Roxin and Montbrió, in an elegant study,

investigated the effect of a smooth transfer function in a
related model [24]. Their analysis provided a criterion that
determines, based on the transfer function and its derivatives,
whether the bifurcation will be subcritical or supercritical.
In particular, their investigation showed that the frequently
used logistic function may only yield supercritical bifurcation
in their model, thus eliminating the discontinuity across the
transition.
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FIG. 5. Critical rhythmogenesis. (a) STDP dynamics at finite learning rate. Equation (4) was solved numerically with λE = 10 × λI =
0.0004, where the spike times of the excitatory and inhibitory neurons obeyed an inhomogeneous Poisson process with mean rates given by
Eqs. (7) and (8); see Appendix 1 for details. The red trace depicts the trajectory of the synaptic weights on the phase diagram of the system
in the plane of [JI , JE ]. (b) STDP dynamics at finite λE = 10 × λI = 0.0004 and suppression of potentiation. STDP dynamics with a modified
learning rule, Eq. (A1) (see Appendix 2 for details), was solved numerically. The red and blue traces show the trajectories of the synaptic
weights for different initial condition. (c) STDP dynamics with a smooth transfer function, Eq. (A3); see Appendix 3 for details. In all of the
above figures, the bifurcation line is shown for reference (black). In all simulations, we used the temporally asymmetric Hebbian (anti-Hebbian)
exponential kernel, Eq. (3), for the inhibitory (excitatory) synapses with τE ,+ = τI,+ = 1, τI,− = 2, τE ,− = 5, α = 0.9, a delay of d = 1, and
τm = 1.

Figure 5(c) depicts the STDP dynamics for a model with a
smooth transfer function (see Appendix 3 for details). As can
be observed, the phase diagram has been modified somewhat.
Nevertheless, qualitatively similar results are still obtained.
Namely, the STDP dynamics draws the system towards the
bifurcation line, along which it may drift. This drift can be
limited by adding weight dependence to the STDP learning
rule that suppresses potentiation for strong synapses.

Recently, Pernelle and colleagues studied the possible con-
tribution of gap junction plasticity to rhythmic activity [65].
They postulated a plasticity rule for gap junctions that tuned
the system to operate on the boundary of asynchronous reg-
ular firing activity on the one hand, and rhythmic activity of
synchronous bursts on the other. In the context of our work,
this can be viewed as an example of critical rhythmogenesis,
which explains the robustness of their putative mechanism to
variations in the plasticity rule.

We suggest that the scenario of critical rhythmogenesis
may provide a general principle for robustness in biological
systems. Assume that a certain biological system, which is
characterized by set parameters {x1, x2, . . . , xn} (i.e., 
x is a
point in the phase diagram of the system), is required to main-
tain a certain living condition, f ({x1, x2, . . . , xn}) = 0. This
condition is met by a homeostatic process. The homeostatic
process defines the dynamics on {x1, x2, . . . , xn}, which are
characterized by another set of parameters, {α1, α2, . . . , αm},
namely 
̇x = F (
x, 
α). A viable homeostatic process is a choice
of parameters, 
α∗, such that the homeostatic dynamics will
lead the system to a set of parameters, x∞, that satisfy the
living condition, f (
x∞) = 0.

How can this be achieved? One possibility is that x∞ is
a stable fixed point of the homeostatic dynamics, in which
F (
x∞, 
α∗) = 0. This solution requires fine-tuning of the pa-
rameters that define the homeostatic process, 
α. In this case,
fluctuations in 
α will generate fluctuations in 
x away from x∞.

An alternative scenario is that the homeostatic dynam-
ics utilize some discontinuity in the phase diagram. In this
scenario, the dynamics do not necessarily vanish on x∞,
F (
x∞, 
α∗) �= 0. Rather, due to the discontinuity there exists a
wide range of parameters, {α1, α2, . . . , αm}, such that the dy-
namics draw the system towards the discontinuity from both
sides, as is the case for critical rhythmogenesis. Consequently,
this scenario can stabilize the system in a critical condition on
the boundary of two phases.

The idea that the central nervous system may operate in (or
near) a critical condition has been suggested in the past, and
it may have computational advantages [66–68]. However, this
latter scenario also has shortcomings. The most obvious is that
it can only be used to ensure and stabilize critical behavior. In
addition, it cannot be used when one of the phases near the
critical line is lethal.

An advantage of critical rhythmogenesis is that it allows for
rapid switching between rhythmic and nonrhythmic phases,
for example by neuromodulators, since the system is on the
boundaries of these phases. This raises the question of the
likelihood of critical rhythmogenesis: what is the probability
that a biological system will “choose” the exact rhythmic
activity that also characterizes the bifurcation? One possible
explanation is that the opposite took place. In other words,
biological systems have evolved to operate at the critical
conditions chosen by the critical rhythmogenesis mechanism.
Thus, in our example, the characteristic delays, d , do not
miraculously fit the desired rhythm. Rather, due to the specific
values of d , the critical rhythmogenesis tunes the system to
oscillate at ωd , which is why the biological system “uses” this
specific frequency band.

In our work, we made several simplifying assumptions
to facilitate the analysis. We studied the dynamics of the
effective couplings between excitatory and inhibitory popula-
tions and did not incorporate the STDP dynamics of individual
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synapses. We investigated a model with only interconnections,
hence ignoring the effective couplings that represent the in-
trapopulation synapses. We estimated neuronal correlations
using a simplified rate model, and we did not study the effects
of spiking neurons. These issues are beyond the scope of the
current study and will be addressed elsewhere. Nevertheless,
this work lays the foundation for studying a mechanism for
robust homeostatic plasticity in general, and rhythmogenesis
in particular.
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APPENDIX: DETAILS OF THE NUMERICAL
SIMULATIONS

1. STDP dynamics at finite λ

The STDP dynamics of the synaptic weights, JE and JI , at
finite λ, Eq. (4), has been computed numerically. Using the
separation of timescales, we solved the firing rate dynamics,
Eqs. (7) and (8), for time intervals of 40τm with fixed values
of JE and JI , yielding the temporal evolution of mE (t ) and
mI (t ) during that interval. We then generated spike trains
approximating the inhomogeneous Poisson process in the fol-
lowing manner. The time interval of 40τm was divided into
time bins of �t = 0.001τm (specifically, we used τm = 1).
In each time bin, the existence of a single spike was chosen
in an independent manner following Bernoulli statistics with
mean mX (t )�t , where X ∈ {E , I}. These spike times and the
spike times of the previous interval were then used to update
the synaptic weights using Eq. (4). This procedure was then
repeated with the updated weights.

2. STDP dynamics with suppression of potentiation

The temporal evolution of the synaptic weights, JE and
JI , was computed following the procedure described in

Appendix 1. However, the potentiation term in Eq. (1) for JE

has been modified to

�JE = λ[ f (JE )K+(�) − αK−(�)], (A1)

where f (JE ) = (1 − JE/JE ,max)μ is the term that limits the
potentiation for strong excitatory synapses. This change has
modified the synaptic dynamics of Eq. (4) for the temporally
asymmetric anti-Hebbian rule (H = −1) to

J̇E (t ) = λ

[
f (JE (t ))ρE (t )

∫ ∞

0
ρI (t − t ′)K+(−t ′)dt ′

−αρI (t )
∫ ∞

0
ρE (t − t ′)K−(t ′)dt ′

]
. (A2)

The dynamics of JI remained unchanged. Specifically, in
Fig. 5(b) we used μ = 0.015 and JE ,max = 7.

3. STDP dynamics with a smooth transfer function

We replaced the threshold-linear transfer function, [z]+, in
Eqs. (7) and (8) with a smooth transfer function

�(z) = z

1 + e−bz
. (A3)

As the neuronal activity, mE (t ) and mI (t ), can now be-
come negative, STDP dynamics cannot be computed using
simulated spike times. Instead, we solved numerically the
“mean-field” dynamics, Eq. (5), that is driven by the cross-
correlations of the neuronal responses. The cross-correlations
of the neuronal responses were computed by the temporal
average of the product of their activities. The neuronal dy-
namics, Eqs. (7) and (8), has been solved for time intervals
of 500τm with time bins of �t = 0.001τm. Specifically, in
Fig. 5(c) we used λE = 10 × λI = 0.004, b = 30, and I = 10.
We also used the suppression of strong excitatory potentiation,
Eq. (A1), with μ = 0.015 and JE ,max = 7.
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