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Steady-state joint distribution for first-order stochastic reaction kinetics
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While the analytical solution for the marginal distribution of a stochastic chemical reaction network has been
extensively studied, its joint distribution, i.e., the solution of a high-dimensional chemical master equation, has
received much less attention. Here we develop an alternative method of computing the exact joint distributions of
a wide class of first-order stochastic reaction systems in steady-state conditions. The effectiveness of our method
is validated by applying it to four gene expression models of biological significance, including models with 2A
peptides, nascent mRNA, gene regulation, translational bursting, and alternative splicing.
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I. INTRODUCTION

Stochastic modeling of chemical reaction networks has
attracted massive attention in recent years due to its wide
applications in biology, chemistry, ecology, and epidemics
[1]. If a reaction system is well mixed and the number of
molecules is very large, then random fluctuations can be
ignored and the evolution of concentrations of all chemical
species can be modeled deterministically as a set of ordinary
differential equations (ODEs) based on the law of mass action.
If the chemical species are present in low numbers, however,
then random fluctuations can no longer be ignored and the
evolution of copies numbers of all species is usually modeled
stochastically as a Markov jump process whose dynamics
is governed by the well-known chemical master equation
(CME). Thus far, stochastic chemical reaction networks have
become a fundamental model for single-molecule enzymol-
ogy [2,3] and single-cell gene expression dynamics [4]. Over
the past two decades, the marginal distributions of stochastic
reaction systems, such as Michalies-Menten enzyme kinetics
[5,6], gene expression dynamics [7–9], and gene regulatory
networks [10–16], have been studied extensively by solving
the CME exactly or approximately based on various meth-
ods. These approaches include the generating function method
[7], method of characteristics [8], multiscale techniques [17],
moment closure approximation [18], moment convergence
method [19], linear noise approximation [20], linear mapping
approximation [21], etc.

The joint distribution of all chemical species for stochas-
tic chemical reaction kinetics has received relatively little
attention. Mathematically, the steady-state distribution of a
reaction system corresponds to the eigenvector associated
with the zero eigenvalue of the rate matrix of the underlying
Markovian model. It can always be solved analytically when
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the rate matrix is finite-dimensional. However, for most re-
action systems, the rate matrix is infinite-dimensional since
the numbers of reactants are not bounded. In this case, simple
approaches like diagonalization of the rate matrix usually fail.
Due to the limitation of techniques, the joint distribution can
only be solved for some particular systems. It has long been
known [22,23] that (i) the steady-state joint distribution of a
closed monomolecular system, which only includes reactions
of the form Si → S j , must be a multinomial distribution and
(ii) the joint distribution of a detailed balanced reaction net-
work is given by a product of Poissons [24]. Here detailed
balance means that there is no net flux between any pair of
reversible reactions. The CME for an open monomolecular
system, which consists of synthesis reactions ∅ → Si, degra-
dation reactions Si → ∅, and conversion reactions Si → S j ,
has also been solved exactly and the steady-state joint dis-
tribution is given by a product-form Poisson distribution
[25–28]. Recently, this result has been extended to general
stochastic reaction networks that are complex balanced. Here
complex balance means that the flux flowing into each com-
plex (see Ref. [29] for definition) is precisely balanced by the
flux flowing out of that complex [29]. In fact, the steady-state
joint distribution of a complex balanced reaction network is
also given by a product-form Poisson-like distribution [30,31].

However, the condition of complex balance is very re-
strictive and not applicable to most systems of biological
relevance. If complex balance is not satisfied, then the joint
distribution has been analytically derived for hierarchic first-
order reaction networks [32]. In the context of stochastic gene
expression, the joint distribution for the copy numbers of
mRNA and protein has been exactly solved for the two-stage
model involving transcription and translation [33,34] and the
joint distribution for the copy numbers of two mRNA iso-
forms has also been analytically derived in the presence of
alternative splicing [35]. In addition, the joint distributions
of gene expression models have also been studied using the
linear noise approximation in the limit of large system size
[20]. In most previous papers, the closed-form solution of the
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joint distribution is computed by first converting the CME into
a system of partial differential equations (PDEs) satisfied by
the generating function and then solving the system of PDEs
using the method of characteristics. However, this method is
often very difficult to apply because of the tedious compu-
tations involved. Thus far, there is still a lack of a simple
and effective approach that can be applied to a wide class of
first-order reaction networks.

In this article, we propose an effective method of com-
puting the joint distribution of a first-order reaction system
in steady-state conditions. The key idea is to simplify the
Markovian model of stochastic reaction kinetics to a mod-
ified Markovian model by allowing all zero-order reactions
to occur only when all chemical species have zero copies. It
turns out that the modified model has a much simpler state
space and thus its joint distribution is much easier to solve.
Once the modified model is solved analytically, the joint dis-
tribution of the original model is automatically obtained by
making a simple transformation. Compared with the classical
method of characteristics, our approach greatly reduces the
theoretical complexity. The paper is organized as follows. In
Sec. II, we describe the stochastic model of first-order reaction
networks and introduce our method in detail. In Sec. III,
we validate the effectiveness of our approach by applying
it to four gene expression models of biological significance.
These models include (i) a gene expression model involving
2A self-cleaving peptides, (ii) a multistep gene expression
model involving nascent mRNA, (iii) a gene regulatory model
involving translational bursting, and (iv) a multistep gene ex-
pression model involving alternative splicing. We conclude in
Sec. IV.

II. MODEL AND METHODS

A chemical reaction involving a set of chemical species
S1, . . . , SN can be written in the following general form:

μ1S1 + μ2S2 + · · · + μN SN
k−→ ν1S1 + ν2S2 + · · · + νN SN ,

where μi and ν i are nonnegative integers and k is the rate
constant. The order of this reaction is the sum of coefficients
of all the reactants, i.e., μ1 + μ2 + · · · + μN . Following the
definition in Ref. [1], a reaction system is said to be first-order
if it only consists of zero-order and first-order reactions. By
definition, a first-order reaction system can be written in the
following general form:

R0 j : ∅
k0 j−→ ν1

0 jS1 + ν2
0 jS2 + · · · + νN

0 jSN , j = 1, . . . , r0,

Ri j : Si
ki j−→ ν1

i jS1 + ν2
i jS2 + · · · + νN

i j SN ,

i = 1, . . . , N, j = 1, . . . , ri,

where R0 j , j = 1, . . . , r0 are all zero-order reactions involved
in the system and Ri j , j = 1, . . . , ri are all first-order reac-
tions associated with the reactant Si. For convenience, we
write νi j = (ν1

i j, . . . , ν
N
i j ) for each i = 0, 1, . . . , N and j =

1, . . . , ri. A first-order reaction system can include synthesis
reactions ∅ → Si, degradation reactions Si → ∅, conversion
reactions Si → S j , catalytic reactions Si → Si + S j , and split-
ting reactions Si → S j + Sk; hence, it can be widely applied

to model various naturally occurring systems in biology and
physics.

We next focus on the stochastic dynamics of a first-order
reaction network. The microstate of the system can be de-
scribed by an ordered N-tuple n = (n1, . . . , nN ), where ni

denotes the molecule number of Si. Based on the law of mass
action, the stochastic dynamics of the system can be described
by a Markov jump process whose transition rates are given by

qn,n+ν0 j = k0 j, 1 � j � r0,

qn,n+νi j−ei = ki jni, 1 � i � N, 1 � j � ri,
(1)

where qn,n′ denotes the transition rate from microstate n to
microstate n′, ν0 j is the reaction vector of the zero-order reac-
tion R0 j , i.e., the vector indicating the species change after the
reaction, and νi j − ei is the reaction vector of the first-order
reaction Ri j with ei being the vector whose ith component is
1 and all other components are zero.

Throughout this paper, we assume that the reaction system
is ergodic, which guarantees that the system has a unique
steady-state distribution. Let pn = pn1,··· ,nN denote the prob-
ability of observing microstate n. Then the evolution of the
Markovian system is governed by the CME

ṗn =
N∑

i=1

ri∑
j=1

ki j
[(

ni + 1 − ν i
i j

)
pn+ei−νi j − ni pn

]

+
r0∑

j=1

k0 j
[
pn−ν0 j − pn

]
, (2)

where the first term on the right-hand side corresponds to the
occurrence of first-order reactions and the second term corre-
sponds to the occurrence of zero-order reactions. To proceed,
let

F (x1, · · · , xn) =
∑

n1,··· ,nN

pn1,...,nN xn1
1 . . . xnN

N

denote the generating function associated with the joint dis-
tribution pn1,...,nN . Then F satisfies the following PDE [32]:

∂F

∂t
=

N∑
i=1

ri∑
j=1

ki j (x
νi j − xi )

∂F

∂xi
+

r0∑
j=1

k0 j (x
ν0 j − 1)F. (3)

A classical method of solving the CME is to first solve Eq. (3)
to obtain the closed form of the generating function F and then
recover the joint distribution pn by taking the derivatives of F
at zero. However, it is remarkably difficult to solve Eq. (3)
analytically in most cases, even at the steady state.

Here we propose an alternative method of solving the CME
in steady-state conditions. To this end, we construct a simpler
Markov jump process called the modified Markovian model.
The microstate of the modified model is still described by
an ordered N-tuple n = (n1, n2, . . . , nN ). Note that for the
original model, the zero-order reaction R0 j can lead to a tran-
sition from any microstate n to microstate n + ν0 j ; in other
words, the zero-order reactions can occur at any microstate
of the original model. However, for the modified model, we
only allow the zero-order reactions to occur at the microstate
0 = (0, . . . , 0), which is called the zero microstate, while the
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first-order reactions follow the same transition rule as the orig-
inal model. To summarize, the transition rates for the modified
model are given as follows:

q̃n,n+ν0 j =
{

0, n �= 0,

k0 j, n = 0,
1 � j � r0,

q̃n,n+νi j−ei = ki jni, 1 � i � N, 1 � j � ri. (4)

Comparing Eqs. (1) and (4), we can see that the modified
model can be easily derived from the original one by elimi-
nating those transitions from n to n + ν0 j for n �= 0. Let πn =
πn1,n2,...,nN denote the probability of observing microstate n for
the modified model and let

H (x1, . . . , xN ) =
∑

n

πn1,...,nN xn1
1 . . . xnN

N

denote its generating function. Then the evolution of the mod-
ified model is then governed by the master equation

π̇n =
N∑

i=1

ri∑
j=1

q̃n+ei−νi j ,nπn+ei−νi j −
N∑

i=1

ri∑
j=1

q̃n,n+νi j−eiπn

+
r0∑

j=1

q̃n−ν0 j ,nπn−ν0 j −
r0∑

j=1

q̃n,n+ν0 j πn, (5)

where the first two terms on the right-hand side correspond
to first-order reactions and the last two terms correspond to
zero-order reactions. We next make a crucial observation that
if the system contains at least one zero-order reaction and
both the original and modified models have reached the steady
state, then the two generating functions F and H are related by
(see Appendix A for the proof)

F (x1, . . . , xN ) = e
H (x1 ,...,xN )−1

π0 , (6)

where π0 is the probability of observing the zero microstate
for the modified model. In general, the modified model has a
simpler transition diagram than the original model and thus
the master equation for the former is much easier to solve.
Once we have obtained the generating function H of the
modified model, we can use Eq. (6) to compute the generating
function F of the original model. Finally, the steady-state joint
distribution for the copy numbers of all chemical species can
be recovered by taking the derivatives of F at zero, i.e.,

pn = 1

n1! · · · nN !

∂n1+···+nN F

∂xn1
1 . . . ∂xnN

N

(0, . . . , 0).

We summarize the above method as follows: first, we con-
struct the modified model (which is usually much simpler
than the original model) and compute its steady-state joint
distribution πn; next, we calculate the generating function H
of the modified model and use Eq. (6) to compute the gener-
ating function F of the original model; finally, we recover the
steady-state joint distribution of the original model by taking
the derivatives of F . We emphasize that Eq. (6) does not hold
if the two models have not reached the steady state. In fact,
the proof of Eq. (6) relies on the close relationship between the
partial derivatives of F and H with respect to xi in steady-state
conditions, while for the time-dependent case, we need to
take the partial derivatives with respect to t into consideration,
which invalidates our approach (see Appendix A for details).

We next focus on the transition diagrams of the two mod-
els. Recall that a microstate n is called recurrent if there exists
a path in the transition diagram that starts from n and returns
to itself; otherwise it is called transient. Actually, transient
microstates contribute nothing to the steady-state probabilities
and thus the steady-state distribution is only concentrated on
the collection of all recurrent microstates, which is called the
irreducible state space [36,37]. Hence, for both models, we
only need to focus on the irreducible state space, instead of the
whole state space. We now use a simple example to show the
relationship between the two models. Consider the following
open monomolecular system:

∅

k1−⇀↽−
d1

P1
k2−→ P2

d2−→ ∅. (7)

If we regard P1 and P2 as two conformational states of a
protein, then this reaction scheme describes the synthesis,
degradation, and conformational changes for the protein. The
transition diagrams for the original and modified models as-
sociated with this reaction scheme are depicted in Fig. 1.
The difference between them is that the zero-order reaction
∅ → P1 (blue arrows) can occur at any microstate for the orig-
inal model, but it can only occur at only the zero microstate
for the modified model. It can be seen from Fig. 1(b) that
the modified model has many transient microstates. The irre-
ducible state space (the collection of all recurrent microstates)
for the original model is the whole two-dimensional nonneg-
ative integer lattice, while the irreducible state space for the
modified model is simply the collection of the following three
microstates:

{(0, 0), (1, 0), (0, 1)},
which is much simpler than that of the original model. Once
the modified model enters the irreducible state space, it can
never leave it anymore. Since the steady-state distribution of
the modified model is only concentrated on the irreducible
state space which contains only three microstates, we imme-
diately obtain

π0,0 = 1

1 + a + b
, π1,0 = a

1 + a + b
, π0,1 = b

1 + a + b
,

where a = k1/(k2 + d1) and b = k1k2/(k2 + d1)d2. Thus,
the generating function of the modified model is given
by H (x1, x2) = π0,0 + π1,0x1 + π0,1x2. It then follows from
Eq. (6) that the generating function of the original model is
given by

F (x1, x2) = e
π0,0+π1,0x1+π0,1x2−1

π0,0 = ea(x1−1)+b(x2−1).

Then the steady-state joint distribution for the copy numbers
of P1 and P2 can be recovered by taking the derivatives of F at
zero, which finally gives

pn1,n2 = an1 bn2

n1!n2!
e−(a+b).

Note that this is the product of two Poisson distributions. In
fact, it has been shown in Ref. [26] that the joint distribution
of an open monomolecular system must be a product of Pois-
sons, which is consistent with our result. However, compared
with the derivation in Ref. [26], our method is much simpler.

024408-3



YOUMING LI, DA-QUAN JIANG, AND CHEN JIA PHYSICAL REVIEW E 104, 024408 (2021)

modified Markovian model

(0.0) (1.0) (2.0) (3.0)

original Markovian model

(0.1)

(0.2)

(0.3)

irreducible
state space

transient
microstates

k1

k2

d1

d2

(0.0) (1.0) (2.0) (3.0)

(0.1)

(0.2)

(0.3)

(b)(a)

FIG. 1. Transition diagrams of the original and modified Markovian models for the reaction scheme given in Eq. (7). The red arrows
correspond to the reaction P2 → ∅, the green arrows correspond to P1 → P2, the blue arrows correspond to ∅ → P1, and the orange arrows
correspond to P1 → ∅. For the modified model, we only allow the zero-order reaction (blue arrows) to occur at the zero microstate. The
irreducible state space of the modified model only consists of three microstates: (0,0), (1,0), and (0,1).

Our method can also be used to compute many other quan-
tities of interest. First, the steady-state marginal distribution
for the copy number of any chemical species can be easily
computed. To see this, let pi

ni
denote the steady-state proba-

bility of having ni copies of Si. Then the marginal distribution
can be recovered from the generating function F as

pi
ni

= 1

ni!

∂ni F

∂xni
i

(1, · · · , 0, · · · , 1), (8)

where (1, · · · , 0, · · · , 1) is the vector whose ith component
is 0 and other components are all 1. Note that the generat-
ing function given in Eq. (6) is a composite function. The
following Faà di Bruno’s formula [38] gives the explicit
expression for the higher-order derivatives of a composite
function:

dn

dxn
f [g(x)]

=
n∑

k=1

f (k)[g(x)]Bn,k[g′(x), g′′(x), . . . , g(n−k+1)(x)],

where Bn,k (x1, . . . , xn−k+1) is the incomplete Bell polynomial
[39]. The above two equations, together with Eq. (6), give the
following analytical expression for the marginal distributions
of all species:

pi
ni

= Bni (gi,1, gi,2, · · · , gi,ni )

ni!
e

H (1,··· ,0,··· ,1)−1
π0 , (9)

where

Bn(x1, · · · , xn) =
n∑

k=1

Bn,k (x1, · · · , xn−k+1)

is the complete Bell polynomial [39], and

gi,k = 1

π0

∂kH

∂xk
i

(1, · · · , 0, · · · , 1), k = 1, . . . , ni.

In addition, the steady-state mean and variance for the copy
number of Si can be obtained as

〈ni〉 = ∂F

∂xi
(1, . . . , 1),

σ 2
ni

=
[
∂2F

∂x2
i

+ ∂F

∂xi
−

(
∂F

∂xi

)2]
(1, . . . , 1),

where σ 2
ni

= 〈n2
i 〉 − 〈ni〉2 denotes the copy number variance of

Si. Finally, the steady-state covariance for the copy numbers
of any pair of chemical species Si and S j can be computed as

Cov(ni, n j ) = 〈nin j〉 − 〈ni〉〈n j〉

=
[

∂2F

∂xi∂x j
− ∂F

∂xi

∂F

∂x j

]
(1, . . . , 1).

In particular, the correlation coefficient between the copy
numbers of Si and S j is given by

ρni,n j = Cov(ni, n j )

σniσn j

. (10)

These formulas will be used to analyze the dynamic properties
of some important gene expression models in what follows.

We have seen from the previous example that our method
is particularly effective when the modified model has a finite
irreducible state space. A natural question is when this occurs.
To answer this, we recall that a family of reactions

Ri:μ
1
i S1 + · · ·+ μN

i SN
ki−→ ν1

i S1 + · · · + νN
i SN , i = 1, . . . , r

has a conservation law, if there exists a nonzero vector ω =
(ω1, . . . , ωN ) such that

ω1μ
1
i + ω2μ

2
i + · · · + ωNμN

i = ω1ν
1
i + ω2ν

2
i + · · · + ωNνN

i

for all i = 1, . . . , r. In Appendix B, we prove that if all the
first-order reactions except degradation reactions have a con-
servation law with positive coefficients ω1, · · · , ωN > 0, then
the modified model must have a finite irreducible state space.
To verify this criterion, we apply it to the reaction scheme
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modified Markovian model

(0.0) (1.0) (2.0) (3.0)

original Markovian model

(0.1)

(0.2)

(0.3)
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(0.0) (1.0) (2.0) (3.0)
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(b) (c)

Gene1 2A Gene2
translation ribosome skipping
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(d)
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pr
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ty

number of P2 number of P1

FIG. 2. A gene expression model involving 2A peptides. (a) Translation mechanism of two genes with the coding region of a 2A peptide
(2A) inserted in between. There are two possibilities: ribosome skipping results in two cleaved proteins and ribosome fall-off results in only the
protein upstream of the 2A [42]. (b, c) Transition diagrams for the original and modified models. The green arrows correspond to the reaction
G → G + P1 + P2, the blue arrows correspond to G → G + P1, the red arrows correspond to P2 → ∅, and the orange arrows correspond to
P1 → ∅. (d) Comparison of the analytical steady-state joint distribution for the numbers of the two proteins given in Eq. (13) (colored surface)
with the numerical simulations obtained using FSP (red plus signs) and stochastic simulations obtained using SSA (light blue dots). Here SSA
is performed by generating 80 000 stochastic trajectories. The model parameters are chosen as k1 = 30, k2 = 30, d1 = 2, d2 = 1.

given in Eq. (7). For this reaction system, there are three
first-order reactions:

P1 → P2, P1 → ∅, P2 → ∅.

Among these reactions, only P1 → P2 is not a degradation
reaction and obviously, it has a conservation law with pos-
itive coefficients ω1 = ω2 = 1 since the total number of P1

and P2 is invariant. It then follows from the above criterion
that the corresponding modified model has a finite irreducible
state space, which is consistent with the previous discussion.
Before leaving this section, we emphasize that if a family of
reactions contains a first-order catalytic reaction such as Si →
Si + S j , which appears in many biochemical systems, then the
family of reactions can never have a conservation law with
positive coefficients. In this case, the modified model may
have an infinite irreducible state space. Fortunately, for many
biochemical systems involving catalytic reactions, our method
is still applicable, although the computation will be more
complicated than the case of finite irreducible state space. In
the next section, we shall apply our method to compute the
steady-state joint distributions of mRNAs and/or proteins in
four gene expression models of biological significance.

III. APPLICATIONS

A. Gene expression model with 2A self-cleaving peptides

As the first application, we consider a gene expression
system involving 2A self-cleaving peptides, also called 2A
peptides. Biologically, 2A peptides are 18–22 amino-acid-
long oligopeptides derived from a wide range of viral families

[40,41] that mediate cleavage of polypeptides during transla-
tion in eukaryotic cells [42], and therefore enable the synthesis
of several gene products (proteins) from a single transcript.
For this reason, 2A peptides are widely used in genetic en-
gineering to cleave a long peptide into two shorter peptides.
Specifically, the coding region of a 2A peptide (2A) is inserted
between the coding regions of two proteins [Fig. 2(a)]. The
mechanism of 2A-mediated self-cleavage was recently dis-
covered to be ribosome skipping the formation of a peptide
bond at the C-terminus of the 2A [43,44]. There are two
possibilities for a 2A-mediated skipping event: (i) successful
skipping and recommencement of translation results in two
cleaved proteins: the protein upstream of the 2A is attached
to the complete 2A peptide except for the C-terminal proline,
while the protein downstream of the 2A is attached to one
proline at the N-terminus; (ii) successful skipping but ribo-
some fall-off and discontinued translation results in only the
protein upstream of the 2A [42]. Then the effective reactions
describing the gene expression system are given by

G
k1−→ G + P1 + P2, G

k2−→ G + P1, P1
d1−→ ∅, P2

d2−→ ∅,

(11)

where G is the coding region illustrated in Fig. 2(a) and P1

and P2 are two proteins. The first reaction describes ribosome
skipping, the second reaction describes ribosome fall-off, and
the remaining two reactions describe the degradation of the
two proteins. The microstate of the system can be represented
by an ordered pair (n1, n2), where ni denotes the copy number
of Pi. Let pn1,n2 denote the probability of observing microstate
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(n1, n2) and let

F (x1, x2) =
∑
n1,n2

pn1,n2 xn1
1 xn2

2

denote the corresponding generating function. Then the
stochastic gene expression dynamics can be described by a
Markov jump process with transition diagram illustrated in
Fig. 2(b). The evolution of the Markovian system is governed
by the CME

ṗn1,n2 = k1 pn1−1,n2−1 + k2 pn1−1,n2 + d1(n1 + 1)pn1+1,n2

+ d2(n2 + 1)pn1,n2+ 1 − (k1+ k2+ d1n1+ d2n2)pn1,n2 .

To solve this CME, we consider the modified Markovian
model. We emphasize here that we do not take copy number
variation of the gene into account and hence the first two
reactions in Eq. (11) can be regarded as zero-order reactions.
The reason why we explicitly write out the gene G, instead
of using ∅, in the first two reactions is to stress that proteins
are produced from genes. Since the zero-order reactions can
only occur at the zero microstate, the modified model has the
transition diagram illustrated in Fig. 2(c). While the transition
diagram of the modified model is complicated, the irreducible
state space is actually finite and only contains the following
four microstates:

{(0, 0), (1, 1), (1, 0), (0, 1)}.
Since the steady-state distribution of the modified model is
concentrated on the irreducible state space which contains
only four microstates, it can be easily computed as

π0,0 = α0

α
, π1,0 = α1

α
, π0,1 = α2

α
, π1,1 = α12

α
,

where

α0 = 1, α1 = k2(d1 + d2) + k1d2

d1(d1 + d2)
, α2 = k1d1

d2(d1 + d2)
,

α12 = k1

d1 + d2
,

and α = α0 + α1 + α2 + α12. Then the generating function of
the modified model is given by

H (x1, x2) = 1

α
(α0 + α1x1 + α2x2 + α12x1x2).

It then follows from Eq. (6) that the generating function of the
original model is given by

F (x1, x2) = e
H (x1 ,x2 )−1

π0,0 = eα1(x1−1)+α2(x2−1)+α12(x1x2−1). (12)

This shows that the copy numbers of the two proteins have
a bivariate Poisson distribution [45], which can be recovered
from F by taking the derivatives:

pn1,n2 = 1

n1!n2!

∂n1+n2 F

∂xn1
1 ∂xn2

2

(0, 0)

=
n1∧n2∑
i=0

α
n1−i
1 α

n2−i
2 αi

12

i!(n1 − i)!(n2 − i)!
e−(α1+α2+α12 ), (13)

where n1 ∧ n2 denotes the smaller one of n1 and n2. Taking
x2 = 1 and x1 = 1 in Eq. (12), we obtain

F (x1, 1) = e(α1+α12 )(x1−1), F (1, x2) = e(α2+α12 )(x2−1).

It then follows from Eq. (8) that the steady-state marginal
distributions for the two proteins are given by

p1
n1

= (α1+ α12)n1

n1!
e−(α1+α12 ), p2

n2
= (α2 + α12)n2

n2!
e−(α2+α12 ).

(14)

This shows that both proteins have a marginal Poisson dis-
tribution but their joint distribution is not the product of two
Poisson distributions (note that a bivariate Poisson distribution
may not be the product of two Poissons). This reaction system
should be compared with complex balanced networks. In fact,
it was shown in Ref. [30] that if a reaction system is com-
plex balanced, then the copy numbers of all chemical species
must have a product-form Poisson distribution in steady-state
conditions, which is very different from the nonproduct-form
Poisson distribution studied here.

To validate our analytical solution, we compare it with the
numerical solutions obtained using the finite-state projection
algorithm (FSP) [46] and the stochastic simulation algorithm
(SSA), as illustrated in Fig. 2(d). When using FSP, we truncate
the state space at large enough N1 and N2, with N1 and N2

being the truncation sizes for n1 and n2, respectively, and
then solve the normalized eigenvector of the truncated rate
matrix corresponding to the zero eigenvalue numerically using
MATLAB. The truncation sizes are chosen to be N1 = 5(k1 +
k2)/d1 and N2 = 5k1/d2. Since (k1 + k2)/d1 and k1/d2 are the
typical copy numbers for proteins P1 and P2, respectively, the
probability that the protein numbers are outside the truncation
region is very small and practically can always be ignored.
It can be seen that the analytical solution coincides perfectly
with both FSP and SSA. Our analytical results can also be
used to analyze the correlation between the two proteins. It
follows from Eqs. (10) and (12) that the correlation coefficient
between the numbers of P1 and P2 is given by

ρP1,P2 = α12√
(α1 + α12)(α2 + α12)

= 1√(
1 + k2

k1

)(
1 + d1

d2

)(
1 + d2

d1

) .

Clearly, the numbers of the two proteins are always posi-
tively correlated and their correlation coefficient has the upper
bound

ρP1,P2 � 1

2
√

1 + k2
k1

,

where the equality holds if and only if d1 = d2. This means
that the correlation is the strongest when the degradation rates
of the two proteins are equal. In addition, we can see that the
correlation coefficient is always smaller than 0.5 and is com-
paratively large when the degradation rates of the two proteins
are close to each other, i.e., d1 ≈ d2, and when the translation
rate due to ribosome skipping is much larger compared to the
translation rate due to ribosome fall-off, i.e., k1 
 k2. Before
leaving this section, we point out that biologically, it is possi-
ble to generate three or more cleaved proteins from a single
transcript using coding sequences of multiple 2A peptides
[42]. In this case, our method can still be used to compute the
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FIG. 3. A multistep gene expression model. (a) Schematic of a multistep gene expression model, which includes transcription, translation,
and the production of mature mRNA from nascent mRNA. (b) Transition diagram for the modified model restricted to the irreducible state
space. (c) Comparison between the exact steady-state distribution for the protein number given in Eq. (17) (blue curve) and FSP simulations
(red circles) as ν = v/d varies while keeping b = ks/(k + f )v as constant. The left panel also compares the exact distribution (blue curve)
with the mixed Poisson approximation given in Eq. (18) (gray region). The Poisson components of the mixed distribution are shown by the
green curves. The model parameters are chosen as u = 40/3, d = 1, k = 0.002, s = 10 and the parameter f is chosen so that b = 3.52.

joint copy number distributions for these proteins since the
irreducible state space of the modified model is always finite.

B. Gene expression model with nascent mRNA

Based on the central dogma of molecular biology, the gene
expression dynamics in an individual cell has a standard two-
stage representation involving transcription and translation
[8]. In the literature, the transcription step is usually mod-
eled as the elementary reaction G → G + M, where G is the
gene of interest and M is the corresponding mRNA. How-
ever, in living cells, the realistic transcription process is much
more complicated: first the gene is transcribed to produce the
so-called nascent mRNA and then several steps such as 5′
capping, 3′ polyadenylylation, and mRNA splicing to remove
the introns are necessary for the nascent mRNA to become
the mature mRNA [47]. Only the mature mRNA can undergo
translation to produce the protein. Recent studies about single-
cell RNA-sequencing data analysis have highlighted the need
to incorporate the nascent mRNA dynamics into the model to
introduce the key concept of RNA velocity [48,49].

Here we consider a more realistic gene expression model
depicted in Fig. 3(a). Let G denote the gene of interest, let M�

denote the nascent mRNA, let M denote the mature mRNA,
and let P denote the protein. Then the effective reactions for
the gene expression model are given by

G
s−→ G + M�, M�

k−→ M, M
u−→ M + P,

M�

f−→ ∅, M
v−→ ∅, P

d−→ ∅,

where the first reaction represents transcription, the second
reaction represents the conversion of nascent mRNA into
mature mRNA, the third reaction represents translation, and
the remaining three reactions represent the degradation of all
gene products. If the dynamics of nascent mRNA is ignored,
then the steady-state joint distribution of mRNA and protein

numbers has been derived in Ref. [33]. Here we consider a
more complicated model involving nascent mRNA (a similar
model has been solved in Ref. [34] using a different method).
The microstate of the gene can be represented by an ordered
triple (m�, m, n): the copy number m∗ of nascent mRNA, the
copy number m of mature mRNA, and the copy number n
of protein. Let pm�,m,n denote the probability of observing
microstate (m�, m, n) and let

F (x�, x, y) =
∑

m�,m,n

pm�,m,nxm�

� xmyn

denote the corresponding generating function. Then the evo-
lution of the gene expression model is governed by the CME

ṗm�,m,n = spm�−1,m,n + k(m� + 1)pm�+1,m−1,n + umpm�,m,n−1

+ f (m� + 1)pm�+1,m,n + v(m + 1)pm�,m+1,n

+ d (n + 1)pm�,m,n+1

− (s + km� + f m� + um + vm + dn)pm�,m,n.

To solve this CME, we consider the modified Markovian
model. We emphasize again that we do not take copy number
variation of the gene into consideration and thus the reaction
G → G + M� can be viewed as a zero-order reaction. Since
the zero-order reaction can only occur at the zero microstate,
it is easy to see that the irreducible state space of the modified
model is given by

{(1, 0, 0)} ∪ {(0, 0, n), (0, 1, n) : n � 0},
and the transition diagram restricted to the irreducible state
space is illustrated in Fig. 3(b), which has a ladder-shaped
structure. In fact, ladder-shaped models arise in many gene
expression models and have been extensively studied in
the literature [7–15]. Such models are usually analytically
tractable with their solutions being represented by hyperge-
ometric functions (see Ref. [17] for a detailed discussion on
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the analytical theory of ladder-shaped models). Note that the
irreducible state space of the original model is the whole
three-dimensional nonnegative integer lattice since m�, m, and
n can take all nonnegative integer values. Using the method
proposed in this paper, we simplify a three-dimensional prob-
lem for the original model to a coupled one-dimensional
problem for the modified model (here “coupled” means that

m can only take the values of 0 and 1 and “one-dimensional”
means that n ranges over all nonnegative integers), which
greatly reduces the theoretical complexity.

Since the modified model is essentially one-dimensional,
its generating function H can be easily computed in steady-
state conditions, which is given by (see Appendix C for
details)

H (x�, x, y) = aπ0(x� − 1) + bπ0

[
(x − 1) 1F1(1; 1 + ν; μ(y − 1)) + μ

∫ y

1
1F1(1; 1 + ν; μ(z − 1))dz

]
+ 1,

where 1F1 denotes the confluent hypergeometric function and

a = s

k + f
, b = ks

(k + f )v
, μ = u

d
, ν = v

d
.

It then follows from Eq. (6) that the generating function F of the original model is given by

F (x�, x, y) = ea(x�−1)+b[(x−1) 1F1(1;1+ν;μ(y−1))+μ
∫ y

1 1F1(1;1+ν;μ(z−1))dz]. (15)

This implies that the number of nascent mRNA is independent
of the numbers of mature mRNA and protein, while the num-
bers of mature mRNA and protein are correlated. Taking the
derivatives of F gives the joint distributions for the nascent
mRNA, mature mRNA, and protein numbers. In particular,
taking x = y = 1 and x� = y = 1, we obtain

F (x�, 1, 1) = ea(x�−1), F (1, x, 1) = eb(x−1).

This shows that the numbers of nascent and mature mRNAs
both have a Poisson distribution:

pM�

m�
= am�

m�!
e−a, pM

m = bm

m!
e−b.

Taking x� = x = 1, we obtain

F (1, 1, y) = ebμ
∫ y

1 1F1(1;1+ν;μ(z−1))dz. (16)

It then follows from Eq. (9) that the marginal distribution for
the protein number is given by

pP
n = Bn(g1, . . . , gn)

n!
e−bμ

∫ 1
0 1F1(1;1+ν;μ(z−1))dz, (17)

where Bn is the complete Bell polynomial and

gi = bμi(i − 1)!

(1 + ν)i−1
1F1(i; i + ν; −μ), i = 1, . . . , n.

Our analytical results can also be used to compute the
correlation coefficient ρM,P between the mature mRNA and
protein numbers. Combining Eqs. (10) and (15), it is easy to
obtain

ρM,P =
√

μ

(1 + ν)(1 + μ + ν)
.

This shows that the mature mRNA and protein numbers are
always positively correlated; the correlation is strong when the
translation rate u is large and the mature mRNA degradation
rate v is small compared to the protein decay rate d .

We next take a deeper look at the marginal protein dis-
tribution. It is a classical result that if mRNA decays much
faster than protein, then the protein number has a negative
binomial distribution [8]. In fact, this assumption holds for

the majority of genes in bacteria and yeast, but it fails for
many genes in higher prokaryotes, where mRNA and protein
often decay at the same time scale (see Table S1 in Ref. [50]
for such time scales in various cell types). Here we consider
another important case where mature mRNA decays much
slower compared to protein. Specifically, we consider the lim-
iting case of ν = v/d 
 1, while keeping b = ks/(k + f )v as
constant. In this limit, the synthesis and degradation of mature
mRNA are both very slow and thus the mature mRNA is a
slow variable. Actually, a similar limit has been considered in
Ref. [33] where the nascent mRNA is not modeled explicitly;
here we take a deeper look at this limit. Since ν 
 1, we have
1F1[1; 1 + ν; μ(z − 1)] ≈ 1F1[1; 1; μ(z − 1)] = eμ(z−1). Then
the generating function in Eq. (16) can be simplified as

F (1, 1, y) = eb[eμ(y−1)−1].

Taking the derivatives of the generating function F (1, 1, y)
at y = 0, we find that the protein number has the following
mixed Poisson distribution with Poissonian weights:

pP
n = e−bδ0(n) +

∞∑
k=1

bje−b

k!

[
(kμ)ne−kμ

n!

]
, (18)

where δ0(n) is Kronecker’s δ function which takes the value
of 1 when n = 0 and the value of 0 otherwise. This can
be understood intuitively as follows. We have seen that the
mature mRNA number has the Poisson distribution P (NM =
k) = bke−b/k!, where NM denotes the number of M. Since the
mature mRNA is a slow variable, given that k copies of mature
mRNA has been produced, the total synthesis rate of protein is
given by ku and thus the conditional distribution of the protein
number is also Poissonian:

P (NP = n|NM = k) = (kμ)ne−kμ

n!
,

where NP denotes the number of P. Hence, the mixed Poisson
distribution given in Eq. (18) is nothing but the formula of
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FIG. 4. A gene regulatory model with translational bursting. (a) Schematic of a simple gene regulatory model where the product of gene
G1 activates the expression of gene G2. The protein synthesis of gene G2 occurs in bursts. (b) Transition diagram for the modified model
restricted to the irreducible state space. Note that translational bursting can cause jumps from microstate (1, n2) to (1, n′

2) with n′
2 > n2. This

is shown for microstate (1,0) in the figure but is also true for other microstates. (c) Comparison between the exact steady-state distribution for
the number of protein P2 given in Eq. (21) (blue curve) with FSP simulations (red circles) as ν = d1/d2 varies while keeping μ1 = u1/d1 as
constant. The left panel also compares the exact solution (blue curve) with mixed negative binomial approximation given in Eq. (24) (gray
region). The negative binomial components of the mixed distribution are shown by the green curves. The model parameters are chosen as
u2 = 40, d2 = 1, p = 0.25 and the parameters u1 and d1 are chosen so that μ1 = 3.52.

total probability:

P (NP = n) =
∞∑

k=0

P (NP = n|NM = k)P (NM = k).

Figure 3(c) shows the comparison between the exact solution
given in Eq. (17), the approximate solution given in Eq. (18),
and FSP simulations under different values of ν. It can be seen
that the exact and approximation solutions coincide perfectly
with each other for small ν, but they fail as expected for
large ν. When ν 
 1, the protein distribution is a mixture
of Poisson distributions and thus is capable of producing
multiple peaks that are located around kμ, k = 0, 1, 2... with
μ being the averaged amount of protein produced by a sin-
gle mature mRNA molecule. Note that only the first several
Poisson components contribute to the multiple peaks of the
protein distribution since the Poisson components become
lower and flatter as k increases [Fig. 3(c)]. In the literature
[15], it is widely believed that bimodality of the protein dis-
tribution has two major origins—it can occur either when
there is a positive feedback loop involved in the system or
when the switching between promoter states are slow. Here we
show that multimodality can also be caused by slow synthesis
and degradation of mature mRNA, even when the gene is
constitutively expressed (no promoter switching). As ν in-
creases, multimodality disappears and the protein distribution
becomes closer to a negative binomial distribution [Fig. 3(c)].

C. Gene regulatory model with translational bursting

As the third application, we consider a simple gene regu-
latory system where the product of a gene, as a transcription
factor, regulates the expression of another gene in a bursty
manner [Fig. 4(a)]. Let G1 and G2 denote the two genes and
let P1 and P2 denote the corresponding gene products. The
effective reactions describing the gene regulatory system are
given by

G1
u1−→ G1 + P1, G2 + P1

u2 pkq−−−→ G2 + P1 + kP2, k � 1,

P1
d1−→ ∅, P2

d2−→ ∅.

Here the first reaction describes the expression of gene G1

with effective translation rate u1, the second reaction describes
the expression of gene G2 which is activated by protein P1,
and the last two reactions describe the degradation of the two
proteins. In agreement with experiments [51], the production
of protein P2 is assumed to occur in bursts of random size
sampled from a geometric distribution with parameter p. Each
burst is due to rapid synthesis of protein from a single, short-
lived mRNA molecule; thus the effective translation rate of
gene G2 is the product of the corresponding transcription rate
u2 and the geometric distribution pkq, where q = 1 − p [52].
The microstate of the system can be represented by an ordered
pair (n1, n2), where ni denotes the copy number of protein
Pi. Let pn1,n2 denote the probability of observing microstate
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(n1, n2) and let

F (y1, y2) =
∑
n1,n2

pn1,n2 yn1
1 yn2

2

denote the corresponding generating function. Then the evo-
lution of the gene regulatory system is governed by the CME

ṗn1,n2 = u1 pn1−1,n2+
n2−1∑
i=0

u2 pn2−iqn1 pn1,i + d1(n1 + 1)pn1+1,n2

+ d2(n2 + 1)pn1,n2+1

− (u1 + u2 pn1 + d1n1 + d2n2)pn1,n2 ,

where u2 pn1 = ∑∞
k=1 u2 pkqn1 in the bracket is the sum of

transition rates from microstate (n1, n2) to other microstates
due to translational bursting.

To solve this CME, we next consider the modified Marko-
vian model. Similarly, we do not take the copy number
variation of the gene into account and thus the reaction

G1 → G1 + P1 can be viewed as a zero-order reaction. Since
the zero-order reaction can only occur at the zero microstate,
it is easy to see that the irreducible state space of the modified
model is given by

{(1, n2), (0, n2) : n2 � 0},
and the transition diagram restricted to the irreducible state
space is illustrated in Fig. 4(b). Note that the irreducible state
space of the original model is the two-dimensional lattice
since n1 and n2 can take all nonnegative integer values. Thus,
the method proposed in this paper reduces a two-dimensional
problem for the original model to a coupled one-dimensional
problem for the modified model (here “coupled” means that
n1 can only take the values of 0 and 1), which greatly reduces
the theoretical complexity.

Since the modified model is essentially one-dimensional,
its generating function H can be easily computed in steady-
state conditions, which is given by (see Appendix D for
details)

H (y1, y2) = π0μ1

{
2F1[−μ2, 1; 1 + ν; ω(y2)](y1 − 1) + μ2B

∫ y2

1
2F1[1 + μ2 + ν, 1; 1 + ν; B(z − 1)]dz

}
+ 1,

where 2F1 denotes the Gaussian hypergeometric function, B = p/q = ∑∞
n2=1 n2 pn2 q is the mean burst size of protein P2, and

μ1 = u1

d1
, μ2 = u2

d2
, ν = d1

d2
, ω(y2) = p(y2 − 1)

py2 − 1
.

It then follows from Eq. (6) that the generating function F for the original model is given by

F (y1, y2) = eμ1[2F1(−μ2,1;1+ν;ω(y2 ))(y1−1)+μ2B
∫ y2

1 2F1(1+μ2+ν,1;1+ν;B(z−1))dz]. (19)

Taking the derivatives of F at zero yields the steady-state joint distribution for the numbers of the two proteins. In particular,
taking y2 = 1, we obtain F (y1, 1) = eμ1(y1−1). This shows that the number of protein P1 has the Poisson distribution

pP1
n1

= μ
n1
1

n1!
e−μ1 .

Moreover, taking y1 = 1, we obtain

F (1, y2) = eμ1μ2B
∫ y2

1 2F1(1+ν+μ2,1;1+ν;B(z−1))dz. (20)

It then follows from Eq. (9) that the number of protein P2 has the following distribution:

pP2
n2

= Bn2 (g1, . . . , gn2 )

n2!
e−μ1μ2B

∫ 1
0 2F1(1+ν+μ2,1;1+ν;B(z−1))dz, (21)

where Bn is the complete Bell polynomial and

gi = μ1μ2Bi(1 + ν + μ2)i−1(i − 1)!

(1 + ν)i−1
2F1(i + ν + μ2, i; i + ν; −B), i = 1, . . . , n2.

We next focus on two limiting cases. The first case occurs
when protein P1 decays much faster than protein P2, i.e., ν =
d1/d2 
 1, and the constant μ1 = u1/d1 is strictly positive
and bounded. In this case, both the synthesis and degradation
of protein P1 are very fast and thus it can be viewed as a fast
variable. When ν 
 1, we have

2F1[1 + ν + μ2, 1; 1 + ν; B(z − 1)]

≈ 1F0[1; B(z − 1)] = [1 − B(z − 1)]−1.

It then follows from Eq. (20) that

F (1, y2) =
(

q

1 − py2

)μ1μ2

. (22)

This shows that the number of protein P2 has the negative
binomial distribution

pP2
n2

= (μ1μ2)n2

n2!
pn2 qμ1μ2 . (23)

The second case occurs when protein P1 decays much
slower than protein P2, i.e., ν = d1/d2 
 1, and the constant
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μ1 = u1/d1 is strictly positive and bounded. In this case, both
the synthesis and degradation of protein P1 are very slow and
thus it can be viewed as a slow variable. When ν 
 1, we
have

2F1[1 + ν + μ2, 1; 1 + ν; B(z − 1)]

≈ 1F0[1 + μ2; B(z − 1)] = [1 − B(z − 1)]−(1+μ2 ).

Then the generating function in Eq. (20) can be simplified as

F (1, y2) = eμ1[( q
1−py2

)μ2 −1]
.

Taking the derivatives of F (1, y2) at y2 = 0, we find that
the number of protein P2 has the following mixed negative
binomial distribution with Poissonian weights:

pP2
n2

= e−μ1δ0(n2) +
∞∑

k=1

μk
1e−μ1

k!

[
(kμ2)n2

n2!
pn2 qkμ2

]
. (24)

This can be explained intuitively as follows. We have seen that
the number of protein P1 has the Poisson distribution P (NP1 =
k) = μk

1e−μ1/k!, where NP1 denotes the number of P1. Since
protein P1 is a slow variable, given that k copies of P1 has been
produced, the effective transcription rate of gene G2 is given
by ku2 and thus the conditional distribution for the number of
protein P2 is negative binomial:

P (NP2 = n2|NP1 = k) = (kμ2)n2

n2!
pn2 qkμ2 ,

where NP2 denotes the number of P2. Thus, the mixed negative
binomial distribution given in Eq. (24) is nothing but the
formula of total probability:

P
(
NP2 = n2

) =
∞∑

k=0

P
(
NP2 = n2

∣∣NP1 = k
)
P

(
NP1 = k

)
.

Figure 4(c) shows the comparison between our exact solution
given in Eq. (21), the approximate solution given in Eq. (24),
and FSP simulations under different values of ν. Clearly, the
exact and approximation solutions coincide perfectly with
each other for small ν, but deviate significantly from each
other for large ν. When ν 
 1, the copy number distribution
for protein P2 is a mixture of negative binomials and thus
can produce multiple peaks around kμ2B, k = 0, 1, 2... with
μ2B being the averaged amount of protein P2 produced by
a single protein P1 molecule. As ν increases, multimodality
disappears and the protein distribution becomes closer to a
negative binomial distribution [Fig. 4(c)].

We finally examine the correlation between the two pro-
teins using our analytical results. It follows from Eqs. (10)
and (19) that the correlation coefficient between the numbers
of P1 and P2 is given by

ρP1,P2 =
√

μ2B

(1 + ν)[1 + ν + (1 + ν + μ2)B]
.

Clearly, the numbers of the two proteins are always positively
correlated; the correlation is strong when the burstiness of

protein P2 is large, the translation rate of protein P2 is large,
and the degradation rate of protein P1 is small.

D. Gene expression model with alternative splicing

Alternative splicing is a process during gene expression
that results in a single gene coding for multiple proteins [47].
In this process, particular exons of a gene may be included
within or excluded from the final processed mRNA that are
produced from that gene. Consequently, the proteins trans-
lated from different spliced mRNAs will be different [see
Fig. 5(a) for an illustration]. A gene expression model involv-
ing alternative splicing has been solved in Ref. [35], which
considers the expression of mRNAs but not proteins. Here we
take proteins into consideration.

Let G denote the gene of interest, M� denote the nascent
mRNA, M1 and M2 denote two mRNA isoforms, and P1

and P2 denote the corresponding protein isoforms. Based on
the central dogma of molecular biology, the effective reac-
tions involved in the gene expression system are listed as
follows:

G
s−→ G + M�, M�

ki−→ Mi, Mi
ui−→ Mi + Pi,

M�

f−→ ∅, Mi
vi−→ ∅, Pi

di−→ ∅, i = 1, 2,

(25)

where s is the transcription rate, ki are the rates of alterna-
tive splicing, ui are the translation rates of the two mRNA
isoforms, and f , vi, and di are the degradation rates of all
gene products. Recently, it has been found that alternative
splicing can be regulated by a system of proteins (regulators)
binding to a nascent transcript that in turn direct the splicing
machinery to include or skip specific exons [53,54]; moreover,
the regulators usually exert distinct effects on exon inclusion
or exclusion depending on the position of its binding [53]
and thus different binding positions lead to different mRNA
isoforms. Here we take this effect into account by assuming
that there is a regulator P which activates the formation of two
mRNA isoforms M1 and M2 (via exon inclusion and/or exclu-
sion). Hence, the copy number of the regulator P, which is
denoted by n, will influence the splicing rates k1 = k1(n) and
k2 = k2(n). For simplicity, we further assume that the number
of regulator has a fixed distribution that is independent of the
numbers of gene products.

The microstate of the system can be represented by an
ordered five-tuple (m, m1, n1, m2, n2): the copy number m of
nascent mRNA, the copy numbers m1 and m2 of the two
mRNA isoforms, and the copy numbers n1 and n2 of the two
protein isoforms. Let pm,m1,n1,m2,n2 denote the probability of
observing microstate (m, m1, n1, m2, n2) and let

F (x, x1, y1, x2, y2) =
∑

m,m1,n1,m2,n2

pm,m1,n1,m2,n2 xmxm1
1 yn1

1 xm2
2 yn2

2

denote the corresponding generating function. Given that
there are n copies of regulator P, we can treat the splic-
ing rates k1 = k1(n) and k2 = k2(n) as constants and the
evolution of the gene expression model is governed by
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FIG. 5. A multistep gene expression model with alternative splicing. (a) Schematic of a multistep gene expression model involving
transcription, translation, and alternative splicing. Due to alternative splicing, the nascent mRNA is spliced in two different ways to produce two
mature mRNA isoforms. (b) Transition diagram for the modified model restricted to the irreducible state space. Note that the transition diagram
has two branches (left and right), corresponding to the production of two mRNA/protein isoforms. Each branch has a ladder-shaped structure.
(c) Correlation coefficient ρP1,P2 between the numbers of the two protein isoforms versus the degradation rate f of nascent mRNA. The
model parameters are chosen as s = 100, u1 = 30, u2 = 20, v1 = 15, v2 = 4, d1 = 3, d2 = 2, ξ1 = 10, ξ2 = 20, λ = 2. The remaining
parameters are chosen as η1 = 10, η2 = 3 (blue curve), η1 = 20, η2 = 6 (red curve), and η1 = 40, η2 = 12 (green curve). (d) Correlation
coefficient ρP1,P2 versus the mean λ of the regulator number. The model parameters are chosen as u1 = 30, u2 = 20, v1 = 3, v2 = 4, d1 =
3, d2 = 4, ξ1 = 7, ξ2 = 5, η1 = 15, η2 = 28. The remaining parameters are chosen as s = 200, f = 80 (blue curve), s = 100, f = 80 (red
curve), s = 100, f = 0 (green curve), and s = 200, f = 0 (orange curve). (e), (f) Correlation coefficient ρP1,P2 versus the regulation strengths
ξ1 and ξ2. (e) Slow degradation of nascent mRNA with f = 1. (f) Fast degradation of nascent mRNA with f = 40. The model parameters are
chosen as s = 100, u1 = 30, u2 = 20, v1 = 15, v2 = 4, d1 = 3, d2 = 2, η1 = 1, η2 = 4, λ = 2. The two green lines separate the region
with positive correlation and the region with negative correlation.

the CME

ṗm,m1,n1,m2,n2 = spm−1,m1,n1,m2,n2 + k1(m + 1)pm+1,m1−1,n1,m2,n2 + k2(m + 1)pm+1,m1,n1,m2−1,n2 + u1m1 pm,m1,n1−1,m2,n2

+ u2m2 pm,m1,n1,m2,n2−1 + f (m + 1)pm+1,m1,n1,m2,n2 + v1(m1 + 1)pm,m1+1,n1,m2,n2

+ v2(m2 + 1)pm,m1,n1,m2+1,n2 + d1(n1 + 1)pm,m1,n1+1,m2,n2 + d2(n2 + 1)pm,m1,n1,m2,n2+1

− [s + (k1 + k2 + f )m + (u1 + v1)m1 + (u2 + v2)m2 + d1n1 + d2n2]pm,m1,n1,m2,n2 .

To solve this CME, we next consider the modified Markovian model, which has only one zero-order reaction. Since the
zero-order reaction G → G + M� can only occur at the zero microstate, it is easy to see that the irreducible state space of the
modified model is given by

{(1, 0, 0, 0, 0), (0, 1, n1, 0, 0), (0, 0, n1, 0, 0), (0, 0, 0, 1, n2), (0, 0, 0, 0, n2) : n1, n2 � 0}.
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The transition diagram restricted to the irreducible state space is illustrated in Fig. 5(b). Clearly, the zero microstate can only
transition to microstate (1,0,0,0,0). If the nascent transcript M� produces the mRNA isoform M1, then the modified model enters
the left branch in Fig. 5(b); if M� produces M2, then the modified model enters the right branch. Hence, our method reduces a
five-dimensional problem for the original model to a coupled one-dimensional problem for the modified model. In analogy to
the derivation in Sec. III B, given that there are n copies of regulator P in a single cell, the generating function of the original
model is given by (see Appendix E for details)

F (x, x1, y1, x2, y2|n) = ea(n)(x−1)+∑2
i=1 Ki (n)bi[(xi−1) 1F1(1;1+νi ;μi (yi−1))+μi

∫ yi
1 1F1(1;1+νi ;μi (z−1))dz], (26)

where

a(n) = s

k1(n) + k2(n) + f
, K1(n) = k1(n)

k1(n) + k2(n) + f
,

K2(n) = k2(n)

k1(n) + k2(n) + f
,

b1 = s

v1
, b2 = s

v2
, μ1 = u1

d1
, μ2 = u2

d2
,

ν1 = v1

d1
, ν2 = v2

d2
.

Finally, when taking into account the copy number variation
of regulator P, it follows from the total probability formula
that the generating function F is given by

F (x, x1, y1, x2, y2) =
∞∑

n=0

pP
n F (x, x1, y1, x2, y2|n),

where pP
n is the probability of observing n copies of regulator

in a cell. Finally, the joint distribution of all gene products
can be recovered by taking the derivatives of the generating
function. It is easy to see that the marginal distributions for
nascent mRNA and the two mRNA isoforms are all mixed
Poisson distributions with the weights being the distribution
of the regulator number; however, the marginal distributions
for the two protein isoforms are much more complicated.

In recent years, the correlation between different mRNA
and protein species produced from a single gene by means of
alternative splicing has attracted increasing attention [53,55].
It has been shown that the numbers of two mRNA isoforms
are independent of each other if they are not controlled by
the regulator [35]; moreover, transcriptional bursting (which is
not considered in our current model) may lead to positive cor-
relation between two mRNA isoforms [35]. Here we analyze
such correlation when the two mRNA isoforms are controlled
by the same regulator. To do this, we assume that the splicing
rates depend on the regulator number linearly as

k1(n) = ξ1n + η1, k2(n) = ξ2n + η2,

where ηi > 0, i = 1, 2 are the spontaneous splicing rates and
ξi � 0 characterize the strengths of regulation. Such linear de-
pendence has been widely used in the modeling of stochastic
gene regulatory networks [13,56–58]. In addition, we assume
that the number of regulator has a Poisson distribution with
mean λ. Under these assumptions, the correlation coefficient
between (the numbers of) the two mRNA isoforms is given by
(see Appendix E for details)

ρM1,M2 = α1α2√(
α2

1 + β1
)(

α2
2 + β2

) , (27)

and the correlation coefficient between the two protein iso-
forms is given by (see Appendix E for details)

ρP1,P2 = α1α2√(
α2

1 + β1L1
)(

α2
2 + β2L2

) , (28)

where

α1 = ξ2η1 − ξ1η2 − ξ1 f

η1 + η2 + f
, α2 = ξ1η2 − ξ2η1 − ξ2 f

η1 + η2 + f
,

L1 = 1 + μ1 + ν1

μ1(1 + ν1)
, L2 = 1 + μ2+ ν2

μ2(1 + ν2)
, γ = η1 + η2 + f

ξ1 + ξ2
,

h1 = 1F1(1; γ + 1; −λ), h2 = 2F2(γ , γ ; γ + 1, γ + 1; λ)e−λ,

β1 = (ξ1 + ξ2)(ξ1 + α1h1)

b1
(
h2 − h2

1

) , β2 = (ξ1 + ξ2)(ξ2 + α2h1)

b2
(
h2 − h2

1

) ,

where 12 F denotes the generalized hypergeometric function.
In the above formulas, the parameters β1 and β2 depend on the
parameters h1 and h2, which further depend on the parameter
γ . In Appendix E, we have proved that the parameters β1

and β2, together with h2 − h2
1, must be positive. Therefore,

the correlation coefficients ρM1,M2 and ρP1,P2 must have the
same sign and the sign is determined by the sign of α1α2. In
particular, when the nascent mRNA decays very slowly, i.e.,
f 
 1, we have

α1α2 ≈ − (ξ2η1 − ξ1η2)2

(η1 + η2)2
.

In this case, the numbers of the two mRNA/protein isoforms
are negatively correlated. However, when the nascent mRNA
decays very fast, i.e., f 
 1, we have α1α2 ≈ ξ1ξ2 > 0. In
this case, the numbers of the two mRNA/protein isoforms are
positively correlated.

These results can be understood intuitively as follows.
When the nascent mRNA decays very slowly, once a nascent
transcript is synthesized, it can either produce an M1 or an M2

molecule. Thus, there is strong competition between the two
isoforms; the more one isoform, the less the other isoform.
This results in negative correlation between them. However,
when the nascent mRNA decays very fast, its molecule num-
ber relaxes to the steady-state value rapidly [59] and thus there
is an ample supply of nascent mRNA. In this case, there is
little competition between the two isoforms; the more (less)
the regulator, the more (less) the two isoforms. This results in
positive correlation between them.

Our results indicate that the degradation rate f of nascent
mRNA has a critical value

fc =
{|ξ2η1 − ξ1η2|/ξ1, if ξ2η1 − ξ1η2 � 0,

|ξ2η1 − ξ1η2|/ξ2, if ξ2η1 − ξ1η2 < 0,
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and the system undergoes a stochastic bifurcation as f varies.
When f < fc, we have α1α2 < 0 and thus the levels of the
two isoforms are negatively correlated; when f = fc, we have
α1α2 = 0 and thus they are not correlated; when f > fc, we
have α1α2 > 0 and thus they are positively correlated. Note
that the size of the critical value fc depends on the sizes of η1

and η2. As η1 and η2 increase, the critical value fc becomes
larger. These observations coincide with stochastic simula-
tions in Fig. 5(c), which illustrates the correlation coefficient
ρP1,P2 as a function of f .

The correlation between the two mRNA/protein isoforms
is also influenced by the abundance of regulator. Figure 5(d)
depicts the correlation coefficient ρP1,P2 as a function of the
regulator mean λ. It can be seen that the correlation is weak
when λ is very small or very large. Interestingly, there is an
optimal λ such that |ρP1,P2 | attains its maximum. This shows
that the correlation is the strongest when the regulator mean
is neither too small nor too large. This can be understood in-
tuitively as follows. It follows from Eq. (26) that the regulator
number n affects the joint distribution by adjusting the three
parameters a(n), K1(n), and K2(n). When λ 
 1 or λ 
 1,
the three parameters are almost invariant and thus the gene
expression model under consideration behaves like a system
with no regulator. This explains the weak correlation observed
when λ 
 1 or λ 
 1. Figure 5(d) also shows that a larger
transcription rate s will enhance the correlation between the
two isoforms. This is consistent with our analytical result in
Eq. (28) since a larger value of s results in smaller values of
β1 and β2 and thus results in stronger correlation.

Furthermore, the correlation is also influenced by the reg-
ulation strengths ξ1 and ξ2. Figures 5(e) and 5(f) illustrate the
correlation coefficient ρP1,P2 as a function of ξ1 and ξ2 under
different values of f , where the two green lines in each figure
separate the region with positive correlation (inside the two
green lines) and the region with negative correlation (outside
the two green lines). One of the two green lines corresponds
to the case of α1 = 0 and the other corresponds to the case of
α2 = 0. Recall that the two isoforms are positively correlated
when α1α2 > 0, i.e.,

η2

η1 + f
<

ξ2

ξ1
<

η2 + f

η1
.

Therefore, to observe positive correlation, log ξ2 − log ξ1

must be controlled within a belt-shaped region that becomes
wider as f increases [Figs. 5(e) and 5(f)]. In the absence of
regulator (ξ1 = ξ2 = 0), we have α1 = α2 = 0 and thus there
is no correlation between the two isoforms [35]. If only one
of the two isoforms is controlled by the regulator (ξ1 > 0 and
ξ2 = 0), then we have α1 < 0 and α2 > 0 and thus they are
negatively correlated. If both isoforms are controlled by the
regulator (ξ1, ξ2 > 0), then the correlation coefficient can be
either positive or negative, depending on whether the degra-
dation rate of nascent mRNA is above or below its critical
value.

Finally, we make a crucial observation that the correlation
between the two protein isoforms can be either weaker or
stronger than that between the two mRNA isoforms, depend-
ing on the values of the parameters L1 and L2. Comparing
Eq. (27) with Eq. (28), we can see that the protein correlation
is less than the mRNA correlation when L1, L2 > 1. How-

ever, when L1, L2 < 1, i.e., when the translation rates ui and
degradation rates vi of mRNA isoforms are large compared
to the degradation rates di of protein isoforms, the protein
correlation can be even greater than the mRNA correlation,
which means that the translation step may even enhance the
correlation between the two isoforms of the gene product.

IV. DISCUSSION

In this paper, we propose an alternative method of com-
puting the joint distribution for a wide class of first-order
stochastic reaction networks in steady-state conditions. By
allowing all zero-order reactions to occur only at the zero
microstate, we simplify the Markovian model of stochastic
reaction kinetics to a modified Markovian model whose tran-
sition diagram is usually much simpler than that of the original
one. In many models of biological relevance, the joint distri-
bution of the modified model can be computed analytically.
Finally, the joint generating function of the original model
can be recovered from that of the modified model by taking
a simple exponential transformation.

While the modified model is generally simpler than the
original one, it may not be analytically tractable. However,
we show its analytical tractability in two special cases: (i) its
irreducible state space is finite and (ii) its irreducible state
space has a ladder-shaped topological structure. We provide
an easily verifiable criterion for the case (i), which states that if
all the first-order reactions except degradation reactions have a
conservation law with positive coefficients, then the modified
model must have a finite irreducible state space. We also show
that the case (ii) is satisfied in many gene expression models
of biological interest. Here the ladder-shaped structure results
from the fact that for the modified model, we only allow zero-
order reactions to occur at the zero microstate. For example, if
we allow ∅ → P to occur only at the zero microstate, then the
number of P can only vary between 0 and 1, which correspond
to the two branches of the ladder-shaped structure. In fact,
ladder-shaped models have been extensively studied in the lit-
erature and their generating functions are always represented
by various kinds of hypergeometric functions [17]. Hence, for
the case (ii), the generating function of the original model is
given by the exponential of hypergeometric functions since an
exponential transformation needs to be taken in our approach.

In most previous papers, the exact joint distribution is
computed by first converting the CME into a system of PDEs
satisfied by the joint generating function and then solving
the system of PDEs using the method of characteristics.
Compared with this method which often involves tedious
computations, our approach greatly reduces the theoretical
complexity. We then validate the effectiveness of our method
by applying it to four gene expression models of biologi-
cal significance. The analytical results obtained reveal some
interesting biological phenomena: (i) multimodality can be
caused by slow synthesis and degradation of some gene
product, even when the gene is constitutively expressed; (ii)
in the presence of alternative splicing, the numbers of two
mRNA-protein isoforms are negatively regulated if one iso-
form is controlled by the regulator and the other isoform is
not; (iii) if both mRNA-protein isoforms are controlled by
the regulator, then their abundances can be either positively or
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negatively correlated, depending on whether the degradation
rate of nascent mRNA is above or below its critical value;
(iv) the protein isoform correlation may be even greater than
the mRNA isoform correlation when the translation rates and
degradation rates of mRNA isoforms are large compared to
the degradation rates of protein isoforms.

We emphasize that we construct the modified model by
allowing all zero-order reactions to occur only at the zero
microstate. Hence, to apply our method, the reaction system
must have at least one zero-order reaction. However, in some
biological systems, there may not be a zero-order reaction
involved in the system. For example, consider the following
gene expression model with promoter switching [7]:

G
a−→ G∗, G∗ b−→ G, G∗ ρ−→ G∗ + P, P

d−→ ∅,

where G and G∗ denote the inactive and active states of the
promoter, respectively, and P denotes the corresponding pro-
tein. Note that in this model, while the total number of genes
in the two promoter states is constant, the number of genes
in the active (inactive) state is not constant. Therefore, the
two switching reactions, G −→ G∗ and G∗ −→ G, as well as
the synthesis reaction G∗ −→ G∗ + P, are actually first-order
reactions and cannot be regarded as zero-order reactions. In
this case, there are no zero-order reactions involved in the
system and thus our approach can no longer be applied. This
is the major limitation of our method. In the presence of
promoter switching, it has been shown that the analytical
solution of a gene expression model is usually represented
by hypergeometric functions [7–15]. In our paper, we do not
take promoter switching into account and show that the joint
distributions for a class of gene expression models can be

represented by the exponential of hypergeometric functions.
The reason for this discrepancy is that promoter switching is
considered for the former but is not considered for the latter.

The current method is aimed to compute the exact solution
of the steady-state joint distribution of first-order reaction
kinetics. If a system contains higher-order reactions, then
the PDEs satisfied by the generating function involve higher-
order partial derivatives and hence it is very difficult to solve
these PDEs analytically. Current research work aims to de-
velop novel methods of computing the joint distribution of
higher-order stochastic reaction kinetics. We anticipate that
the method developed in this paper can be combined with
various approximate techniques developed recently [18–21]
to solve the joint distribution of complex biochemical reaction
networks and gene regulatory networks.
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APPENDIX A: RELATIONSHIP BETWEEN THE
GENERATING FUNCTIONS OF THE TWO MODELS

Here we uncover the relationship between the generating
functions of the original and modified models. Multiplying
xn = xn1

1 . . . xnN
N on both sides of Eq. (5) and then summing

over all microstates, we obtain

∂H

∂t
=

∑
n

(
N∑

i=1

ri∑
j=1

q̃n+ei−νi j ,nπn+ei−νi j −
N∑

i=1

ri∑
j=1

q̃n,n+νi j−eiπn

)
xn +

∑
n

(
r0∑

j=1

q̃n−ν0 j ,nπn−ν0 j

)
xn −

∑
n

(
r0∑

j=1

q̃n,n+ν0 j πn

)
xn

:= I + II − III.
(A1)

Recall that first-order reactions lead to the same transitions for the two models. It then follows from the classical result about
first-order reaction systems (see Appendix A.2 in Ref. [32]) that

I =
N∑

i=1

ri∑
j=1

ki j (x
νi j − xi )

∂H

∂xi
.

Moreover, since q̃n,n+ν0 j is nonzero only when n = 0, it is easy to see that

II =
r0∑

j=1

k0 jπ0xν0 j , III =
r0∑

j=1

k0 jπ0.

Inserting the above two equations into Eq. (A1) yields

∂H

∂t
=

N∑
i=1

ri∑
j=1

ki j (x
νi j − xi )

∂H

∂xi
+

r0∑
j=1

k0 jπ0(xν0 j − 1). (A2)
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We next prove that Eq. (6) holds. If both the original and modified models are at the steady state, then it follows from Eq. (A2)
that

N∑
i=1

ri∑
j=1

ki j (x
νi j − xi )

∂

∂xi

(
e

H−1
π0

)
+

r0∑
j=1

k0 je
H−1
π0 (xν0 j − 1)

=
N∑

i=1

ri∑
j=1

ki j (x
νi j − xi )e

H−1
π0

1

π0

∂H

∂xi
+

r0∑
j=1

k0 je
H−1
π0 (xν0 j − 1) = e

H−1
π0

1

π0

[
N∑

i=1

ri∑
j=1

ki j (x
νi j − xi )

∂H

∂xi
+

r0∑
j=1

k0 jπ0(xν0 j − 1)

]
= 0.

Thus, we have

N∑
i=1

ri∑
j=1

ki j (x
νi j − xi )

∂

∂xi

(
e

H−1
π0

) +
r0∑

j=1

k0 je
H−1
π0 (xν0 j − 1) = 0.

(A3)
Comparing Eq. (A3) with Eq. (3), we finally conclude that

F = e
H−1
π0 in steady-state conditions.

APPENDIX B: FINITENESS OF THE IRREDUCIBLE
STATE SPACE OF THE MODIFIED MODEL

Here we prove the following criterion: if all the first-order
reactions except degradation reactions has a conservation law
with positive coefficients, then the modified model must have
a finite irreducible state space. To prove this criterion, we need
the following lemma.

Lemma IV.1. Suppose that a family of reactions

Ri:μ
1
i S1 + · · · + μN

i SN
ki−→ ν1

i S1 + · · · + νN
i SN , i = 1, . . . , r,

has the conservation law

ω1μ
1
i + ω2μ

2
i + · · · + ωNμN

i = ω1ν
1
i + ω2ν

2
i + · · · + ωNνN

i ,

for all i = 1, . . . , r. If the coefficients ω1, · · · , ωN are all
positive, then for any microstate n, the family of reactions can
only lead microstate n to a finite number of microstates.

Proof. For simplicity, we write μi = (μ1
i , · · · , μN

i ) and
νi = (ν1

i , · · · , νN
i ). Suppose that the family of reactions lead

microstate n to microstate n̄. Then there exists nonnegative
integers ξ1, · · · , ξr such that

n̄ = n + ξ1(ν1 − μ1) + · · · + ξr (νr − μr ),

with ξi being the number of occurrence of the ith reaction.
Then we have

ω · n̄ = ω · n + ξ1ω · (ν1 − μ1) + · · · + ξrω · (νr − μr )

= ω · n,

where ω · n = ω1n1 + ω2n2 + · · · + ωN nN denotes the usual
scalar product of vectors. This clearly shows that ω · (n̄ −
n) = 0, which implies that all the microstates accessible from
n must lie in some hyperplane H with normal vector ω. Since
the normal vector ω has positive components, it always points
into the first orthant and thus the hyperplane H can only
contain a finite number of microstates within the first orthant
(see Fig. 6 for an illustration). This completes the proof. �

We are now in a position to prove the above criterion. Since
the original model is ergodic, all nonzero microstates can lead

to the zero microstate via a series of first-order reactions.
Since first-order reactions result in the same transitions for
the original and modified models, for the modified model,
all nonzero microstates can also lead to the zero microstate
via a series of first-order reactions. This shows that the zero
microstate is contained in the irreducible state space of the
modified model. Therefore, to identify the irreducible state
space of the modified model, we only need to determine
which microstates are accessible from the zero microstate.
First, since zero-order reactions can only occur at the zero
microstate for the modified model, all zero-order reactions can
only lead the zero microstate to a finite number of microstates,
denoted by n1, · · · , nk . Next, since the family of first-order
reactions except degradation reactions has a conservation law
with positive coefficients, it follows from Lemma IV.1 that all
first-order reactions can only lead microstates n1, · · · , nk to a
finite number of microstates. This completes the proof of the
criterion.

APPENDIX C: JOINT DISTRIBUTION FOR THE GENE
EXPRESSION MODEL WITH NASCENT mRNA

Let πm�,m,n denote the steady-state probability of observ-
ing microstate (m�, m, n) for the modified model. From the
transition diagram in Fig. 3(b), these steady-state probabilities

Normal vector  (1,1,1)

(0,0,0) (3,0,0)

(0,0,3)

(0,3,0)

FIG. 6. Two hyperplanes with the same normal vector (1,1,1).
The blue hyperplane contains three points in the first orthant of the
lattice space and the red hyperplane contains ten points.
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satisfy the following equations:

f π1,0,0 + vπ0,1,0 + dπ0,0,1 − sπ0,0,0 = 0,

sπ0,0,0 − (k + f )π1,0,0 = 0,

kπ1,0,0 + dπ0,1,1 − (u + v)π0,1,0 = 0,

vπ0,1,n + (n + 1)dπ0,0,n+1 − ndπ0,0,n = 0, n � 1,

uπ0,1,n−1 + (n + 1)dπ0,1,n+1 − (nd + u + v)π0,1,n = 0, n � 1. (C1)

To proceed, we define the following two generating functions:

φ(y) =
∞∑

n=0

π0,0,nyn, ψ (y) =
∞∑

n=0

π0,1,nyn.

Then the generating function of the modified model is given by

H (x�, x, y) = π1,0,0x� + φ(y) + xψ (y). (C2)

Note that Eq. (C1) can be converted into the following system of ODEs:

kπ1,0,0 + (uy − u − v)ψ (y) + d (1 − y)ψ ′(y) = 0, (C3)

−kπ1,0,0 + vψ (y) + d (1 − y)φ′(y) = 0. (C4)

By the second equation in Eq. (C1) we obtain

π1,0,0 = aπ0,0,0,

where a = s/(k + f ). Taking the derivative on both sides of Eq. (C3) yields

d (1 − y)ψ ′′(y) + (uy − u − v − d )ψ ′(y) + uψ (y) = 0.

This is a confluent hypergeometric differential equation [60, Eq. (13.2.1)] and its solution is given by

ψ (y) = K 1F1[1; 1 + ν; μ(y − 1)],

where ν = v/d, μ = u/d and K is a normalization constant. Taking y = 1 in Eq. (C3), we can determine the normalization
constant K as

K = ψ (1) = bπ0,0,0,

where b = ks/(k + f )v. However, it follows from Eq. (C4) and the power series expansion of the confluent hypergeometric
function that

φ′(y) = bνπ0,0,0

y − 1
{1F1[1; 1 + ν; μ(y − 1)] − 1} = bνπ0,0,0

y − 1

∞∑
i=1

[μ(y − 1)]i

(1 + ν)i

= bνμπ0,0,0

1 + ν

∞∑
i=0

[μ(y − 1)]i

(2 + ν)i
= bνμπ0,0,0

1 + ν
1F1[1; 2 + ν; μ(y − 1)], (C5)

where (x)i = x(x + 1) . . . (x + i − 1) is the Pochhammer symbol. Thus, we obtain

φ(y) = bνμπ0,0,0

1 + ν

∫ y

1
1F1[1; 2 + ν; μ(z − 1)]dz + C,

where C is an undetermined constant. It then follows from Eqs. (6) and (C2) that the generating function of the original model
is given by

F (x�, x, y) = e
aπ0,0,0x�+φ(y)+xψ (y)−1

π0,0,0 = eax�+ bνμ

1+ν

∫ y
1 1F1(1;2+ν;μ(z−1))dz+bx 1F1(1;1+ν;μ(y−1))+(C−1)/π0,0,0 .

By using the fact that F (1, 1, 1) = 1, we can determined the constant C and thus the generating function can be rewritten as

F (x�, x, y) = ea(x�−1)+ bνμ

1+ν

∫ y
1 1F1[1;2+ν;μ(z−1)]dz+b{x 1F1[1;1+ν;μ(y−1)]−1}. (C6)

To proceed, recall that the confluent hypergeometric function satisfies the following recurrence relation [60, Eq. (13.3.3)]:

1F1[2; 2 + ν; μ(z − 1)] + ν 1F1[1; 2 + ν; μ(z − 1)] − (1 + ν) 1F1[1; 1 + ν; μ(z − 1)] = 0. (C7)
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Moreover, it follows from the differentiation formula of confluent hypergeometric functions [60, Eq. (13.3.15)] that

d

dz
1F1[1; 1 + ν; μ(z − 1)] = μ

1 + ν
1F1[2; 2 + ν; μ(z − 1)].

Integrating both sides of Eq. (C7) from 1 to y, we obtain

μν

1 + ν

∫ y

1
1F1[1; 2 + ν; μ(z − 1)]dz = μ

∫ y

1
1F1[1; 1 + ν; μ(z − 1)]dz − 1F1[1; 1 + ν; μ(y − 1)] + 1. (C8)

Finally, inserting the above equation into Eq. (C6), we obtain Eq. (15) in the main text.

APPENDIX D: JOINT DISTRIBUTION FOR THE GENE REGULATORY MODEL WITH TRANSLATIONAL BURSTING

Let πn1,n2 denote the steady-state probability of observing microstate (n1, n2) for the modified model. From the transition
diagram in Fig. 4(b), these steady-state probabilities satisfy the following equations:

d1π1,0 + d2π0,1 − u1π0,0 = 0,

u1π0,0 + d2π1,1 + 2d1π2,0 − (d1 + u2 p)π1,0 = 0,

d1π1,n2 + (n2 + 1)d2π0,n2+1 − n2d2π0,n2 = 0, n2 � 1,

(n2 + 1)d2π1,n2+1 +
n2−1∑
i=0

u2 pn2−iqπ1,i − (u2 p + n2d2 + d1)π1,n2 = 0, n2 � 1. (D1)

To proceed, we define the following two generating functions:

φ(y2) =
∞∑

n2=0

π0,n2 yn2
2 , ψ (y2) =

∞∑
n2=0

π1,n2 yn2
2 .

Then the generating function of the modified model can be written as

H (y1, y2) = φ(y2) + y1ψ (y2). (D2)

Note that Eq. (D1) can be converted into the following system of ODEs:

u1π0,0 +
[

u2 p(y2 − 1)

1 − py2
− d1

]
ψ (y2) + d2(1 − y2)ψ ′(y2) = 0, (D3)

−u1π0,0 + d2(1 − y2)φ′(y2) + d1ψ (y2) = 0. (D4)

Taking the derivative on both sides of Eq. (D3) yields

a(y2)ψ ′′(y2) + b(y2)ψ ′(y2) + c(y2)ψ (y2) = 0,

where

a(y2) = (py2 − 1)2(y2 − 1), b(y2) = (py2 − 1)[(μ2 + ν + 1)py2 − (μ2 p + ν + 1)], c(y2) = μ2 p(p − 1).

This is a hypergeometric differential equation and its solution is given by

ψ (y2) = K 2F1[−μ2, 1; 1 + ν; ω(y2)],

where ω(y2) = p(y2 − 1)/(py2 − 1) and K is a normalization constant. Taking y2 = 1 in Eq. (D3), the normalization constant
can be determined as

K = ψ (1) = μ1π0,0.

Next, we compute φ(y2) by using Eq. (D4). However, it follows from Eq. (D4) and the power series expansion of the
hypergeometric function that

φ′(y2) = μ1νπ0,0

y2 − 1
{2F1[−μ2, 1; 1 + ν; w(y2)] − 1} = μ1νpπ0,0

(py2 − 1)w(y2)

∞∑
i=1

(−μ2)iw(y2)i

(1 + ν)i

= μ1νpπ0,0

(py2 − 1)

∞∑
i=0

(−μ2)i+1w(y2)i

(1 + ν)i+1
= −μ1μ2νpπ0,0

1 + ν

2F1[1 − μ2, 1; 2 + ν; w(y2)]

py2 − 1
.

Thus, we obtain

φ(y2) = −μ1μ2νpπ0,0

1 + ν

∫ y2

1

2F1[1 − μ2, 1; 2 + ν; w(z)]

pz − 1
dz + C, (D5)
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where C is an undetermined constant. It then follows from Eqs. (6) and (D2) that the generating function of the original model
is given by

F (y1, y2) = e
φ(y2 )+y1ψ (y2 )−1

π0,0 = eμ1y1 2F1(−μ2,1;1+ν;ω(y2 ))− μ1μ2νp
1+ν

∫ y2
1

2F1 (1−μ2 ,1;2+ν;ω(z))
pz−1 dz+(C−1)/π0,0 . (D6)

By using the fact that F (1, 1) = 1, we can determined the constant C and thus the generating function can be rewritten as

F (y1, y2) = eμ1[y1 2F1(−μ2,1;1+ν;ω(y2 ))−1]− μ2μ1νp
1+ν

∫ y2
1

2F1 (1−μ2 ,1;2+ν;ω(z))
pz−1 dz

. (D7)

To proceed, recall that the hypergeometric function satisfies the following recurrence relation [60, Eqs. (15.5.13) and (15.5.15)]:

ν 2F1[1 − μ2, 1; 2 + ν; ω(z)] − (1 + ν) 2F1[−μ2, 1; 1 + ν; ω(z)] + [1 − ω(z)] 2F1[1 − μ2, 2; 2 + ν; ω(z)] = 0. (D8)

Since

ω′(z) = p[1 − ω(z)]

pz − 1
,

multiplying μ1 p/(pz − 1) on both sides of Eq. (D8) yields

μ1νp
2F1[1 − μ2, 1; 2 + ν; ω(z)]

pz − 1
− (1 + ν)μ1 p

2F1[−μ2, 1; 1 + ν; ω(z)]

pz − 1
+ μ1ω

′(z) 2F1[1 − μ2, 2; 2 + ν; ω(z)] = 0. (D9)

Moreover, it follows from the differentiation formula of Gaussian hypergeometric functions [60, Eq. (15.5.1)] that

d

dz
2F1(−μ2, 1; 1 + ν; ω(z)) = −μ2

1 + ν
ω′(z) 2F1[1 − μ2, 2; 2 + ν; ω(z)].

Integrating both sides of Eq. (D9) from 1 to y2, we obtain

μ1μ2νp

1 + ν

∫ y2

1

2F1[1 − μ2, 1; 2 + ν; ω(z)]

pz − 1
dz

= μ1μ2 p
∫ y2

1

2F1[−μ2, 1; 1 + ν; ω(z)]

pz − 1
dz + μ1 2F1[−μ2, 1; 1 + ν; ω(y2)] − μ1.

Inserting the above equation into Eq. (D7), we obtain

F (y1, y2) = eμ1 2F1[−μ2,1;1+ν;ω(y2 )](y1−1)−μ1μ2 p
∫ y2

1
2F1[−μ2 ,1;1+ν;ω(z)]

pz−1 dz
.

Finally, using the Kummer’s transformation [60, Eq. (15.5.1)], we obtain Eq. (19) in the main text.

APPENDIX E: JOINT DISTRIBUTION FOR THE GENE EXPRESSION MODEL WITH ALTERNATIVE SPLICING

Let πm,m1,n1,m2,n2 denote the steady-state probability of observing microstate (m, m1, n1, m2, n2) for the modified model. Given
that there are n copies of the regulator, these steady-state probabilities satisfy the following equations:

f π1,0,0,0,0 + v1π0,1,0,0,0 + v2π0,0,0,1,0 + d1π0,0,1,0,0 + d2π0,0,0,0,1 − sπ0 = 0,

sπ0,0,0,0,0 − (k1(n) + k2(n) + f )π1,0,0,0,0 = 0,

k1(n)π1,0,0,0,0 + d1π0,1,1,0,0 − (u1 + v1)π0,1,0,0,0 = 0,

k2(n)π1,0,0,0,0 + d2π0,0,0,1,1 − (u2 + v2)π0,0,0,1,0 = 0,

v1π0,1,n1,0,0 + (n1 + 1)d1π0,0,n1+1,0,0 − n1d1π0,0,n1,0,0 = 0, n1 � 1,

u1π0,1,n1−1,0,0 + (n1 + 1)d1π0,0,n1+1,0,0 − (n1d1 + u1 + v1)π0,1,n1,0,0 = 0, n1 � 1,

v2π0,0,0,1,n2 + (n2 + 1)d2π0,0,0,0,n2+1 − n2d2π0,0,0,0,n2 = 0, n2 � 1,

u2π0,0,0,1,n2−1 + (n2 + 1)d2π0,0,0,0,n2+1 − (n2d2 + u2 + v2)π0,0,0,1,n2 = 0, n2 � 1. (E1)

To proceed, we define the following generating functions:

φ1(y1) =
∞∑

n1=0

π0,0,n1,0,0yn1
1 , ψ1(y1) =

∞∑
n1=0

π0,1,n1,0,0yn1
1 ,

φ2(y2) =
∞∑

n2=1

π0,0,0,0,n2 yn2
2 , ψ2(y2) =

∞∑
n2=0

π0,0,0,1,n2 yn2
2 .

024408-19



YOUMING LI, DA-QUAN JIANG, AND CHEN JIA PHYSICAL REVIEW E 104, 024408 (2021)

Then, given that there are n copies of the regulator, the generating function of the modified model is given by

H (x, x1, y1, x2, y2|n) = π1,0,0,0,0x + φ1(y1) + ψ1(y1)x1 + φ2(y2) + ψ2(y2)x2. (E2)

Note that Eq. (E1) can be converted into the following system of ODEs:

π1,0,0,0,0ki(n) + (uiyi − ui − vi )ψi(yi ) + di(1 − yi )ψ
′
i (yi ) = 0, (E3)

−π1,0,0,0,0ki(n) + viψi(yi ) + di(1 − yi )φ
′
i (yi ) = 0, (E4)

for i = 1, 2. By the second equation in Eq. (E1) we obtain

π1,0,0,0,0 = a(n)π0,

where a(n) = s/(k1(n) + k2(n) + f ). Note that Eqs. (E3) and (E4) have a similar form as Eqs. (C3) and (C4). By using the same
procedure used for solving Eqs. (C3) and (C4), we obtain

ψi(yi ) = Ki(n)biπ0 1F1[1; 1 + νi; μ(yi − 1)], φi(yi ) = Ki(n)biνiμiπ0

1 + νi

∫ yi

1
1F1[1; 2 + νi; μi(z − 1)]dz + Ci,

where Ci are two undetermined constants and

K1(n) = k1(n)

k1(n) + k2(n) + f
, K2(n) = k2(n)

k1(n) + k2(n) + f
,

b1 = s

v1
, b2 = s

v2
, μ1 = u1

d1
, μ2 = u2

d2
, ν1 = v1

d1
, ν2 = v2

d2
.

It thus follows from Eqs. (6) and (E2) that the generating function of the original model, given that there are n copies of the
regulator, is given by

F (x, x1, y1, x2, y2|n) = ea(n)(x−1)+∑2
i=1 Ki (n)bi{xi 1F1[1;1+νi ;μi (yi−1)]+ μiνi

1+νi

∫ yi
1 1F1[1;2+νi ;μi (z−1)]dz}.

Replacing μ, ν, and y in Eq. (C8) by μi, νi, and yi for i = 1, 2 and inserting the resulting two equations into the above equation
give Eq. (26) in the main text.

Next we compute the correlation coefficients between the copy numbers of the two mRNA-protein isoforms under the
assumption that the copy number of the regulator has a Poisson distribution with parameter λ. In this case, the generating
function of the original model is given by

F (x, x1, y1, x2, y2) =
∞∑

n=0

λne−λ

n!
ea(n)(x−1)+∑2

i=1 Ki (n)bi{(xi−1) 1F1[1;1+νi ;μi (yi−1)]+μi
∫ yi

1 1F1[1;1+νi ;μi (z−1)]dz}.

We first focus on the correlation between the two mRNA isoforms. Using the power series expansion and the Kummer
transformation [60, Eq. (13.2.39)] of confluent hypergeometric functions, the derivative of F with respect to xi is given by

∂F

∂xi
(1, 1, 1, 1, 1) =

∞∑
n=0

Ki(n)bi
λne−λ

n!
= bi

ξ1 + ξ2

∞∑
n=0

(
ξi + αiγ

n + γ

)
λne−λ

n!

= bi

ξ1 + ξ2

∞∑
n=0

(
ξi + αi(γ )n

(γ + 1)n

)
λne−λ

n!
= bi(ξi + αih1)

ξ1 + ξ2
, (E5)

and the second derivative of F with respect to xi and x j is given by

∂2F

∂xi∂x j
(1, 1, 1, 1, 1) =

∞∑
n=0

Ki(n)Kj (n)bib j
λne−λ

n!

= bib j

(ξ1 + ξ2)2

∞∑
n=0

[
ξiξ j + (αiξ j + α jξi )(γ )n

(γ + 1)n
+ αiα j (γ )n(γ )n

(γ + 1)n(γ + 1)n

]
λne−λ

n!

= bib j[ξiξ j + (αiξ j + α jξi )h1 + αiα jh2]

(ξ1 + ξ2)2 , (E6)

where

α1 = ξ2η1 − ξ1η2 − ξ1 f

η1 + η2 + f
, α2 = ξ1η2 − ξ2η1 − ξ2 f

η1 + η2 + f
, γ = η1 + η2 + f

ξ1 + ξ2
,

h1 = 1F1(1; γ + 1; −λ), h2 = 2F2(γ , γ ; γ + 1, γ + 1; λ)e−λ.
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Inserting the above two equations into Eq. (10), we obtain Eq. (27) in the main text. We next focus on the correlation between
the two protein isoforms. Using the power series expansion and the Kummer transformation [60, Eq. (13.2.39)] of confluent
hypergeometric functions, it is not hard to prove that

∂F

∂yi
(1, 1, 1, 1, 1) =

∞∑
n=0

Ki(n)μibi
λne−λ

n!
= μibi(ξi + αih1)

ξ1 + ξ2
.

Similarly, the second derivative of F with respect to y1 and y2 is given by

∂2F

∂y1∂y2
(1, 1, 1, 1, 1) =

∞∑
n=0

K1(n)K2(n)μ1μ2b1b2
λne−λ

n!
= μ1μ2b1b2[ξ1ξ2 + (α1ξ2 + α2ξ1)h1 + α1α2h2]

(ξ1 + ξ2)2
,

and the second derivative of F with respect to yi is given by

∂2F

∂y2
i

(1, 1, 1, 1, 1) =
∞∑

n=0

{
[Ki(n)μibi]

2 + Ki(n)μibi
μi

1 + νi

}
λne−λ

n!
= μ2

i b2
i

(
ξ 2

i + 2αiξih1 + α2
i h2

)
(ξ1 + ξ2)2

+ μ2
i bi(ξi + αih1)

(ξ1 + ξ2)(1 + νi )
.

Inserting the above three equations into Eq. (10) gives Eq. (28) in the main text.
Finally, we prove that ξi + αih1 and h2 − h2

1 are positive for any choice of rate constants. First, we note that

αi

ξi
= ηi(ξ1 + ξ2)

ξi(η1 + η2 + f )
− 1 > −1, h1 = e−λ

1F1(γ ; γ + 1; λ) = e−λ

∞∑
n=0

(γ )n

(γ + 1)n

λn

n!
< 1.

Combining the above inequalities shows that ξi + αih1 > 0. Second, it follows from the Cauchy product formula of two infinite
series that

h2 − h2
1 = e−2λ{eλ

2F2(γ , γ ; γ + 1, γ + 1; λ) − [1F1(γ ; γ + 1; λ)]2}

= e−2λ

[ ∞∑
n=0

λn

n!

∞∑
n=0

(
γ

γ + n

)2
λn

n!
−

( ∞∑
n=0

γ

γ + n

λn

n!

)2]

= e−2λγ 2

{ ∞∑
n=0

λn

n!

n∑
i=0

(
i

n

)[
1

(γ + i)2
− 1

(γ + i)(γ + n − i)

]}
. (E7)

We next prove that
n∑

i=0

(
i

n

)[
1

(γ + i)2
− 1

(γ + i)(γ + n − i)

]
> 0, (E8)

for any γ > 0 and n > 0. Putting the first term and the last term in the left-hand size of Eq. (E8) together yields[
1

γ 2
− 1

γ (γ + n)

]
+

[
1

(γ + n)2
− 1

γ (γ + n)

]
= n

γ 2(γ + n)
− n

(γ + n)2γ
= n2

γ 2(γ + n)2
> 0.

Similarly, putting the second term and the last but one term together gives

n

[
1

(γ + 1)2
− 1

(γ + 1)(γ + n − 1)

]
+ n

[
1

(γ + n − 1)2
− 1

(γ + 1)(γ + n − 1)

]

= n

[
n − 2

(γ + 1)2(γ + n − 1)
− n − 2

(γ + n − 1)2(γ + 1)

]
= n(n − 2)2

(γ + 1)2(γ + n − 1)2
> 0.

If n is an odd number, then repeating the above procedure shows that the left-hand size of Eq. (E8) is positive. If n is an even
number, then the (n/2 + 1)th term in the left-hand size of Eq. (E8) cannot be paired in the above manner. However, in this case
it is easy to check the (n/2 + 1)th term must equal zero. Thus, we have proved Eq. (E8). Combining Eqs. (E7) and (E8) finally
shows that h2 − h2

1 > 0.
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