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Boltzmann machines (BMs) are widely used as generative models. For example, pairwise Potts models (PMs),
which are instances of the BM class, provide accurate statistical models of families of evolutionarily related
protein sequences. Their parameters are the local fields, which describe site-specific patterns of amino acid
conservation, and the two-site couplings, which mirror the coevolution between pairs of sites. This coevolution
reflects structural and functional constraints acting on protein sequences during evolution. The most conservative
choice to describe the coevolution signal is to include all possible two-site couplings into the PM. This choice,
typical of what is known as Direct Coupling Analysis, has been successful for predicting residue contacts in the
three-dimensional structure, mutational effects, and generating new functional sequences. However, the resulting
PM suffers from important overfitting effects: many couplings are small, noisy, and hardly interpretable; the PM
is close to a critical point, meaning that it is highly sensitive to small parameter perturbations. In this work,
we introduce a general parameter-reduction procedure for BMs, via a controlled iterative decimation of the
less statistically significant couplings, identified by an information-based criterion that selects either weak or
statistically unsupported couplings. For several protein families, our procedure allows one to remove more than
90% of the PM couplings, while preserving the predictive and generative properties of the original dense PM,
and the resulting model is far away from criticality, hence more robust to noise.
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I. INTRODUCTION

Many applications of generative modeling, especially in
biological systems, are confronted to a limited amount of
available data, from which a large number of parameters
have to be inferred [1]. A particularly interesting example
is that of proteins, which belong to the most interesting
complex systems in nature and are essential in almost all
biological processes. Most of them robustly fold into well-
defined three-dimensional structures, which in turn form
the basis of their functionality. This triangular sequence-
structure-function relationship has, over several decades
now, attracted substantial attention in biological physics
[2,3].

A fascinating approach to the generative modeling of bio-
logical sequences has emerged over the last few years [4,5]. In
the course of evolution, biological sequences accumulate mu-
tations and become more diverse. We can now easily observe
the sequence variability across large families of so-called
homologous proteins, i.e., proteins of common evolutionary
ancestry and of close to equivalent function but in different
species or biological pathways [6]. Such homologous pro-
teins may differ by 70%–80% of their amino acids without
substantial changes in structure and function. However, their
sequence variability is not fully random: a vast majority of

mutations is deleterious, reducing protein stability or func-
tionality. They are thus suppressed by natural selection. Only
protein variants of similar or even better functionality are
maintained. In this way, the protein’s structure and function
constrain the viable sequence space that can be explored by
evolution. Inverting this argument, the empirically observed
variability of homologous sequences contains information
about such evolutionary constraints, albeit frequently well
hidden. This idea is at the basis of the concept of data-driven
“sequence landscapes,” i.e., classes of models that describe
the statistical properties of protein families, assigning high
probabilities to functional amino acid sequences and low
probabilities to nonfunctional ones [5,7]. The log-probability
(or minus “energy”) is thus interpreted as a measure of se-
quence fitness, hence the name sequence (fitness) landscape
[8]. Among the best known such models are Potts models
(PMs), parameterized by local fields and two-site interaction
couplings (cf. below for details), and constructed via the Di-
rect Couplings Analysis (DCA) method, which is now firmly
established [5,7]. The DCA parameters can be obtained via
inference or learning procedures [9–12], and they can be used
to extract useful information on molecular structure [13–16]
and function [17,18], on the effects of mutations [19,20], and
to generate new artificially designed molecules with specific
properties [21,22].
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A concrete implementation of DCA is the following [12].
Given training data in the form of a Multiple Sequence Align-
ment (MSA) of M homologous sequences of aligned length
L, the PM parameters are learned by the so-called Boltz-
mann machine learning (BML) algorithm [23]. By performing
gradient ascent on the log-likelihood of the model given the
data, BML determines values of couplings and fields such that
the one- and two-site model frequencies match the empirical
ones derived from the MSA. A standard pairwise q-state PM
is thus specified by q2L(L − 1)/2 couplings and qL fields,
where, for proteins, q = 21 corresponds to the 20 naturally
occurring amino acids plus the gap symbol used for insertions
or deletions.

Crucially, despite the fact that modern sequencing tech-
niques are making available an enormous number of bio-
logical sequences, and in particular hundreds of millions
of protein sequences [24], a serious overfitting problem is
present when PMs are used as models of protein fam-
ilies. In fact, with typical sequence lengths L ∼ 50–500,
the parameters to be inferred are ∼106–108, which in most
cases substantially exceeds the available information from
the MSA. The resulting over-fitting is manifested in several
ways: (1) many couplings turn out to be rather small and
noisy, (2) the PM is close to a critical point, i.e., it can be
very susceptible to small changes in its parameters, and (3)
different training procedures, e.g., with different initial condi-
tions, can lead to significant changes in the sets of parameters
without affecting the fitting accuracy, which severely limits
the interpretability of the model.

These observations call for a parameter-reduction proce-
dure, which aims at identifying a minimal set of couplings
needed to accurately describe the training data without over-
fitting. Hopfield-Potts models [25] and the more general
Restricted Boltzmann Machines (RBMs) [26] lead to a di-
mensional reduction of parameter space by learning collective
“patterns” from sequence data, which in turn can be inter-
preted as extended sequence motifs and are activated via a
limited number of hidden variables. The resulting coupling
matrix is low-rank but still dense. A complementary approach
aims at sparsifying the network of couplings: �1-norm regu-
larization has been used in a number of approximate methods
[27,28], but cannot be easily used for generative modeling,
because the regularization penalizes also nonzero couplings,
which in turn assume too small values. Alternatively, a “color-
compression” scheme [29] has been proposed, which groups
together sequence symbols with low frequency in specific
sites. However, frequent symbols may also be involved in
statistically nonsupported couplings. Another example is that
proposed in [30], where a candidate sparse graph topology
is sought by pruning the MSA columns associated with low
values of the mutual information. Although this method has to
be preferred when L is so large as to prevent the standard DCA
implementations, it completely loses some information on
the target statistical model. Overall, a statistically principled
and efficient approach to construct sparse PMs for protein
sequence modeling is still lacking.

In this work, we introduce an information-theory based
“decimation” procedure, which allows for an iterative and
controlled removal of irrelevant couplings. As a result, param-
eters are removed either if they have no statistical support (as

in color compression) or if they have statistical support for be-
ing very small. We show that up to about 90% of the coupling
parameters can be removed without observing any substantial
change in the fitting accuracy and in the generative properties
of the resulting Sparse Potts Model (SPM). Although greedy,
our pruning scheme does not require addition of extra terms in
the energy function of the model, at variance with any treat-
able regularization, like �1 or �2, and therefore it preserves
the generative properties of PMs. Finally, we show that the
resulting SPMs are not close to criticality, at variance with
the original PMs learned using standard DCA. Our results
thus demonstrate that the observed criticality of PMs inferred
from protein sequence data is not an intrinsic feature of the
biological systems themselves (cf. [31]) but results from the
overfitting in the learning procedure.

II. AN INFORMATION-GUIDED DECIMATION
PROCEDURE

With each sequence S = (s1, . . . , sL ) of length L, in which
si can take q possible values (q = 21 for proteins), a PM
associates a statistical “energy” or Hamiltonian H (S), written
as a sum over single-site fields hi(si) and two-site couplings
Ji j (si, s j ):

H (S) = −
∑

1�i< j�L

Ji j (si, s j ) −
∑

1�i�L

hi(si). (1)

The negative of the Hamiltonian can be interpreted as a
“fitness score” for protein sequence S, with an associated
Boltzmann probability P(S) = exp[−H (S)]/Z , where Z =∑

S exp[−H (S)] is the partition function guaranteeing cor-
rect normalization of P. Hence, the surface defined by H (S)
over the space of sequences can be interpreted as a “fitness
landscape” or—using a more cautious term—“sequence land-
scape” for the protein family represented by the training MSA.
We define the “model density” d as the number of nonzero
couplings Ji j (a, b) �= 0 divided by the total number of possi-
ble couplings q2L(L − 1)/2. Note that this definition is given
element-wise, i.e., for each i, j, a, b, and not blockwise for
entire q × q matrices Ji j coupling two sites i, j. Fields are
not decimated and do not contribute to the model density: we
consider them an essential ingredient of the model because
they encode amino acid conservation.

A fully connected model, i.e., with d = 100%, can be
trained to arbitrarily high accuracy using standard BML [12].
Let us define the empirical one-site frequency fi(a) of ob-
serving amino acid a in position i in the MSA, and two-site
frequency fi j (a, b) of observing amino acid a in position i
and b in position j in the same sequence of the MSA. BML
performs a gradient ascent on the log-likelihood, which gives
update equations for the couplings and fields at each learning
epoch:

δhi(a) = ηh[ fi(a) − pi(a)],

δJi j (a, b) = ηJ [ fi j (a, b) − pi j (a, b)],
(2)

where pi(a), pi j (a, b) are the one- and two-site marginal prob-
abilities of the PM, which are estimated at each iteration of
the learning by sampling P(S) via a standard Markov Chain
Monte Carlo (MCMC) simulation, and ηh, ηJ are the learning
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rates for fields and couplings. These equations are iterated
until convergence to a fixed point, at which the model almost
perfectly matches the empirical frequencies. For all the cases
we investigate (with one exception; see Appendix B 1), we
can ensure that the MCMC sampling is done in equilibrium
and the resulting PM can be sampled ergodically in relatively
short times; see also [32] for a detailed discussion. Note that
a PM trained in this way also corresponds to the maximum
entropy or least constrained model that is compatible with the
one- and two-site empirical frequencies [13,33].

Our decimation procedure consists in choosing pairs of
sites i < j and amino acids a, b, and fixing the correspond-
ing coupling permanently to Ji j (a, b) = 0. The coupling is
removed from the set of adjustable parameters, and the cor-
responding two-site frequency fi j (a, b) is no longer explicitly
fitted in the subsequent BML epochs. However, an important
property of PM is the so-called “gauge” or reparameterization
invariance: the transformation

Ji j (a, b) → Ji j (a, b) + Ji j (a) + Ki j (b),

hi(a) → hi(a) − Hi −
∑
j(>i)

Ji j (a) −
∑
j(<i)

K ji(a) (3)

leaves the Hamiltonian in Eq. (1) and the associated Boltz-
mann distribution P(S) invariant, for any choice of the J ,
K, and H. Hence, a gauge transformation can transform a
zero coupling into a nonzero one and vice versa. Because the
decimation procedure fixes some couplings to zero, it breaks
this invariance.

We thus begin our decimation procedure by a “gauge-
fixing” step, which sets to zero 2q − 1 out of all q2 entries
of each coupling matrix Ji j . To do so, we identify, inde-
pendently for each pair of sites 1 � i < j � L, the 2q − 1
amino acid pairs (a, b) of smallest connected correlation
ci j (a, b) = fi j (a, b) − fi(a) f j (b) and fix the corresponding
couplings Ji j (a, b) to zero. Only the other q2 − 2q + 1 =
(q − 1)2 couplings are updated using the BML, Eq. (2). This
procedure chooses a model of minimal density d = [(q −
1)/q]2 = 90.7% out of all equivalent PMs related by the
gauge transformation in Eq. (3). The parameters are initialized
using a “profile model” fitting only the one-site frequen-
cies fi(a). This initial model has zero couplings and fields
h(0)

i (a) = log fi(a) + Hi, with the constant Hi being fixed by∑
a h(0)

i (a) = 0 [with a very small pseudocount added to fi(a)
to avoid infinite fields; see Appendix A 4]. The fitting quality
of the learned PM is tested by the Pearson correlation between
the empirical ci j (a, b) and their counterparts in the model
P(S), the latter being estimated from a large independently
and identically distributed MCMC sample. For all protein
families considered in this work, this Pearson correlation
exceeds 0.95; see Fig. 1 and Appendix B 1. Note that the
results of our decimation procedure depend on the initializa-
tion and gauge fixing described above. We tried a different
initialization, either fixing both couplings and fields to zero, or
initializing both using pseudolikelihood maximization (PLM)
[11]. We found qualitatively similar results, but with slightly
worse performance (Appendix C 3).

Any further decimation of couplings changes the model.
To measure the impact of removing a given coupling Ji j (a, b)
from a PM, we determine the symmetric Kullback-Leibler

FIG. 1. Fitting and generative quality for PF00076: Pearson cor-
relation coefficient between model and data frequencies as a function
of the model density. The one-site frequencies fi(a) are directly
fitted. The two-site connected correlations ci j (a, b) are fully fitted
by the densest model, while only a fraction of them are fitted for
the sparse models at d < 1. The three-site connected correlations
ci jk (a, b, c) are never fitted. The generative performance of the model
is essentially unchanged down to a density of 10% and slowly decays
for even sparser couplings. However, even down to d = 1%, the Pear-
son coefficients remain at remarkably high values above 95% for the
two-site correlations, and above 84% for the three-site correlations.

(KL) divergence between the Boltzmann distributions with
and without that coupling. We thus consider a Potts model
with Hamiltonian H , and another with Hamiltonian H ′ in
which a given coupling is removed:

H ′(S) = H (S) + Ji j (a, b)δa,siδb,s j . (4)

We observe that averages over P′ = e−H ′
/Z ′ can be expressed

in terms of averages over P = e−H/Z as

〈O(S)〉P′ =
∑

S O(S)e−H ′(S)∑
S e−H ′(S)

=
∑

S O(S)e−Ji j (a,b)δa,si δb,s j e−H (S)∑
S e−Ji j (a,b)δa,si δb,s j e−H (S)

= 〈O(S)e−Ji j (a,b)δa,si δb,s j 〉P

〈e−Ji j (a,b)δa,si δb,s j 〉P

. (5)

Hence, the symmetric Kullback-Leibler divergence of P and
P′ is

Dab
i j = DKL(P||P′) + DKL(P′||P)

= −
∑

S

[P(S) − P′(S)][log P(S) − log P′(S)]

= 〈H ′ − H〉P − 〈H ′ − H〉P′

= 〈Ji j (a, b)δa,siδb,s j 〉P − 〈Ji j (a, b)δa,siδb,s j 〉P′

= 〈Ji j (a, b)δa,siδb,s j 〉P

−〈Ji j (a, b)δa,siδb,s j e
−Ji j (a,b)δa,si δb,s j 〉P

〈e−Ji j (a,b)δa,si δb,s j 〉P

= Ji j (a, b)pi j (a, b) − Ji j (a, b)pi j (a, b)e−Ji j (a,b)

pi j (a, b)e−Ji j (a,b) + 1 − pi j (a, b)
,

(6)
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where pi j (a, b) = 〈δa,siδb,s j 〉P is the marginal two-site proba-
bility of P, which coincides, at convergence of Eq. (2), with
the empirical frequency fi j (a, b). Note that we could also
have equivalently used the nonsymmetrized KL divergence
(Appendix A 1).

At each decimation step, we now remove the least sig-
nificant couplings, i.e., those with the lowest Dab

i j . For
computational efficiency, this is done for a fixed fraction (in
this work we choose 1%) of all remaining couplings. Note
that Dab

i j = D(J, p ∼ f ) (dropping the indices for notational
simplicity) goes to 0 either when f → 0 or f → 1 at fixed J ,
or when J → 0 at fixed f . More precisely, we have D(J, f ) ∼
J f (1 − e−J ) for f → 0, D(J, f ) ∼ J ( f − 1) for f → 1, and
D(J, f ) ∼ J2 f (1 − f ) for J → 0. The first and second limits
imply that finite couplings can be decimated if the correspond-
ing frequency is close to zero or one, i.e., they have little
statistical significance because the corresponding amino acids
are almost never observed (as in color compression [29]) or
almost always observed. The third limit indicates that small
couplings are decimated whatever f is (similar to the pro-
cedure proposed in [34] for the inverse Ising problem using
PLM). Numerically, we observe that the percentage of pruned
couplings corresponding to each category varies during deci-
mation (Appendix C 2). After a decimation step, we perform
additional BML iterations of Eq. (2) on all undecimated cou-
plings and the fields to reach convergence again. In this way,
we progressively obtain PMs of reduced density, and we stop
the decimation when d = 1%.

Note that in order to accurately estimate Dab
i j , it is important

that the PM learning is well converged before each deci-
mation step. We attempted an “online” decimation in which
couplings are pruned either after a fixed number of iterations
of Eq. (2) or for having reached convergence, and found that
this provides no advantage (Appendix C 4), neither in terms
of generative performance (i.e., the Pearson correlations at
d = 1% do not improve), nor in computational efficiency (i.e.,
the computational time required to reach d = 1% is almost
unchanged). Other decimation strategies based on fi j (a, b)
only (removing statistically unsupported couplings), or on
Ji j (a, b) only (removing small couplings), or on applying �1-
norm regularization to select relevant couplings were found
to perform substantially worse than the information-based
procedure using Eq. (6) (Appendix C 1).

We have also tested our decimation procedure on synthetic
data (see Appendix A 2) and found that it is able to correctly
identify the ground-truth sparse model, provided enough data
are available.

III. RESULTS AND DISCUSSION

We focus here on a representative protein family, the
PF00076 family from the Pfam database [6], corresponding
to a RNA recognition motif (RRM) of about 90 amino acids,
known to bind single-stranded RNAs. The MSA provided by
Pfam contains M = 137 605 sequences of aligned length L =
70. Results obtained for other families (Appendix B) fully
confirm the general conclusions drawn here for the RRM. The
features of the protein families used for this work are reported
in Appendix A 3.

In Fig. 1 we show, for model densities down to 1%, the
Pearson correlation coefficient between the empirical one-
site frequencies fi(a) obtained from the original MSA, and
the model one-site marginal probabilities pi(a), estimated
by MCMC sampling. Similar curves are also shown for the
two-site connected correlations ci j (a, b) and for a selected
subset (specified in Appendix B 1) of three-site connected
correlations, defined as

ci jk (a, b, c) = fi jk (a, b, c) − fi j (a, b) fk (c) − f jk (b, c) fi(a)

− fki(c, a) f j (b) + 2 fi(a) f j (b) fk (c), (7)

where i, j, k are the indices of the columns of the MSA (which
take a value from 1 to L), and a, b, c run over the amino acids
and the gap symbol (practically, from 1 to q). The one-site fre-
quencies are perfectly reproduced by the model, i.e., fi(a) =
pi(a), as a consequence of the fixed-point condition in Eq. (2),
and the Pearson coefficient thus remains equal to one at all d
[up to tiny deviations due to the finite MCMC samples used
in BML and in estimating pi(a)]. For the maximal density
dmax = [(q − 1)/q]2 obtained after gauge fixing, the two-site
correlations should also be perfectly reproduced because of
Eq. (2). In practice we only reach a Pearson coefficient of
∼0.975 due to sampling noise (Appendix A 5). On the con-
trary, for d < dmax only a fraction of all two-site frequencies
is explicitly fitted by the model via sparse BML. Nevertheless
the two-site Pearson coefficient is essentially independent of
d , up to a slight reduction when d < 10%. Finally, three-site
correlations, which are never explicitly fitted by the model
[the training process in Eq. (2) does not include three-site in-
formation], are nevertheless very accurately reproduced, with
a Pearson coefficient around 0.94 for all d > 10%. Note that
the reproduction of unfitted observables is a highly nontrivial
test for the generative properties of our models [12], i.e., of
the capacity of the model to generate data being statistically
close to indistinguishable from the natural sequence data used
for model learning. Below density d = 10%, the generative
quality of the model for three-site correlations is slightly re-
duced, remaining nevertheless very high (above 84% down
to d = 1%). We discuss the generative property of the sparse
models introducing additional metrics in Appendix D.

A second test of model quality is the prediction of struc-
tural contacts, which constituted the major application of
DCA in the last years. The idea is that pairs of strongly inter-
acting sites in the PM should correspond to close-by residues
in the three-dimensional structure, which display strong co-
evolution to maintain the proper protein fold and functionality.
Using the standard convention for coevolutionary contact pre-
diction, we consider a pair of residues to be in contact if
the distance between them is at most 8 Å, and we exclude
easy-to-predict short-range contacts by considering only pairs
with |i − j| � 4 in our analysis. The reference (ground-truth)
distance was obtained by the package [35] that takes the
shortest distance between heavy atoms in all protein structures
registered in the Protein Data Bank (PDB) [36] for the given
Pfam family. We follow the standard procedure for contact
prediction, which consists in computing the average-product-
corrected (APC) Frobenius norms of the coupling matrices
(note that the coupling matrices are transformed into the zero-
sum gauge and that the gap states a, b = q are excluded from
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FIG. 2. Contact prediction for PF00076: Positive predictive val-
ues (PPVs) for several model densities, i.e., the fraction of true
positives among the highest-ranking k pairs (i, j) of sites, when
ordered by decreasing F APC

i j . Even the most sparse model, with only
1.6% of couplings, shows an excellent performance at contact predic-
tion. The curve for plmDCA, a standard DCA approach for contact
prediction, is shown for reference and gives comparable results.

the sum [37]),

Fi j =
√√√√ q−1∑

a,b=1

Ji j (a, b)2; F APC
i j = Fi j −

∑
k Fik

∑
k Fk j∑

kl Fkl
. (8)

In Fig. 2 we show the fraction of true contacts within the first k
pairs of sites, ranked in decreasing order of F APC

i j . We observe
that the performance of the model at inferring the structural
contacts is only slightly deteriorated even in the sparsest case
d = 1.6%.
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FIG. 3. Coupling distributions: Distribution of couplings cor-
responding to true contacts (top) and to noncontacts (bottom) in
the three-dimensional protein fold, for the initial PM with density
dmax = 91% and a sparser model having density d = 7% associated
with a reasonably accurate contact prediction.

FIG. 4. Criticality: Heat capacity as a function of temperature
for models with different density. The densest models show a strong
peak of specific heat close to the reference scale T = 1, which is a
signature of criticality: the model is extremely sensitive to a small
change of couplings, due to overfitting. On the other hand, sparse
models display a much smaller peak, which is also shifted away from
T = 1 towards lower temperatures, indicating a better robustness of
the learning.

In Fig. 3 we show the probability distributions of couplings
Ji j (a, b), separately for pairs i < j corresponding to contacts
and all the others. We observe that, for both contacts and non-
contacts, the decimation affects the shape of the distribution
around J ∼ 0 in a similar way, while the tails are essentially
unaffected. Overall, these results explain why the performance
of the PM for contact prediction using F APC

i j is essentially
independent of d (Fig. 2). Unfortunately, the large-J tail of
the distributions of couplings on noncontacting sites does not
change upon sparsifying the model, which suggests that our
decimation procedure cannot help in devising better contact
predictors.

In order to study the criticality of the models, we con-
sider a simple perturbation of the statistical weight, i.e., we
rescale the Hamiltonian H (S) by a formal inverse temperature
β = 1/T and set P(S) ∼ e−βH (S), in such a way that T = 1
corresponds to the original model trained on data, while mea-
suring the variation of the model entropy S. In Fig. 4 we
show the heat capacity C = T dS/dT of the PM for several
sparsities (see Appendix B 4 for details on the computation
of C). Note that a large C indicates a large variation of the
model entropy with T , or equivalently that the model statistics
changes strongly after a slight change of the parameters. This
is indeed the best definition of criticality in statistical physics,
keeping in mind that our models have finite size L and we
thus cannot perform a finite-size scaling analysis to determine
if the observed peak in C corresponds to a phase transition
in the thermodynamic limit. In Fig. 4 we observe that the
denser models display a large peak in C close to T = 1,
which indicates that the models are close to criticality. Upon
sparsifying the model, the peak amplitude is strongly reduced,
and the peak is also shifted to lower temperatures, i.e., further
away from the reference scale T = 1. These results suggest
that the criticality of the dense models comes from overfitting.
Because the dense models have a huge number of parameters,
they are able to fit all the details of the training data. As
a consequence, the model becomes very sensitive to noise,
and a little change of the parameters changes significantly the
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FIG. 5. Single and double mutations: Spearman correlation be-
tween the experimental fitnesses and the model predictions as a
function of the model density, for both single and double mutants of
the PABP, a member of the PF00076 family. The dashed lines show
the same correlations for a profile model (d = 0) as a reference.

model statistics. On the other hand, sparse models have fewer
parameters and are thus more robust to noise.

Reference [38] provides Deep Mutational Scanning (DMS)
data for a representative member of the PF00076 family,
namely, the RRM2 domain of the poly(A)-binding protein
(PABP) in the yeast Saccharomyces cerevisiae. Using this
domain as a reference, the authors generated a library of
110 745 protein variants, including 1246 single amino acid
substitutions and 39 912 double amino acid substitutions.
Each of these variants was experimentally scored for func-
tion, by monitoring the growth of mutant yeast, and finally, a
“fitness score” was attributed to each mutant sequence in the
experiment [38]. Within our models, the inferred Hamiltonian
H (S) in Eq. (1) is also interpreted as a sequence-fitness score.
Hence, a good test of the generative property of our models is
to check whether the energy differences �H = H (mutant) −
H (reference) between mutant sequences and the PABP ref-
erence correlate well with the experimental fitness variations.
Because the mapping between experimental and model fitness
may be nonlinear, in Fig. 5 we show the Spearman’s rank
correlation between these two variables, for both single and
double mutants. In the dense d = dmax case, we reproduce the
reference values already given in Ref. [20]. We also observe
that upon reducing density, once again the model quality is not
degraded, down to d ∼ 10%. Even for d = 1.6% the model
performs quite well, and much better than a profile model,
which coincides with the limit d → 0 of our decimation pro-
cedure.

IV. CONCLUSIONS

We introduced a general parameter-reduction scheme for
Boltzmann Machine Learning, and we applied it to Potts
models for protein sequence data, i.e., for the learning of
highly accurate and generative, but sparse, DCA models. Our
strategy makes use of a rigorous information-based criterion
to select couplings that are iteratively pruned. Intuitively, re-
moved couplings are either statistically unsupported, i.e., they
correspond to pairs of amino acids that are almost never or
almost always observed, similarly to the color-compression
scheme [29], or they are small, i.e., they correspond to pairs

that are only weakly correlated, or a combination of both.
The statistical significance of a coupling is precisely quanti-
fied by the symmetric KL divergence between the Boltzmann
measure of the Potts model with and without this coupling,
which is exactly computable from the model or the empirical
statistics.

While our method is fully general for learning Boltzmann
machines from high-dimensional categorical data, here we
focused on its application to model protein families via Potts
models, in which strong couplings are usually associated with
physical contacts in the three-dimensional protein fold. We
stress that the aim of this work is not to provide a sparse
graph topology underlying the true interaction network, and
indeed the pruning is not performed block-wise but at the
level of the individual coupling entries, but to provide a gen-
eral framework of parameters reduction strongly based on
information-theoretic assumptions. We have shown that the
model can be decimated down to less than 10% of the original
couplings, while losing neither its generative quality, nor its
accuracy in contact prediction. However, it has to be noted
that many couplings not corresponding to structural contacts
remain nonzero even in the lowest-density models. The in-
terpretation of such couplings remains unclear. They may
result from subtle effects due to the phylogenetic relations be-
tween the training sequences [39,40], but also from extended
functional constraints such as those found by Restricted Boltz-
mann Machines or Hopfield-Potts models [25,26]. As a result,
further work is needed to make DCA-type modeling fully
interpretable.

The sparse models resulting from our decimation proce-
dure are also far away from criticality: they do not display the
specific-heat peak close to the formal temperature T = 1 that
characterizes the dense models. Hence, we attribute the criti-
cality observed in dense models to over-fitting, and conclude
that our decimation procedure makes model learning more
robust to finite-sample noise. Finally, the model maintains its
performance in predicting the fitness of mutations around a
reference sequence, i.e., it is capable of predicting the local
shape of the fitness landscape after having been trained on a
global alignment of distantly diverged amino acid sequences.

Our decimation procedure solves the first two problems
mentioned in the introduction: we can eliminate small and
noisy couplings, and the resulting model maintains its fitting
and generative qualities, while being statistically more robust.
Unfortunately, we were unable to solve the third problem,
namely, the strong dependence on the initial condition of
the training: different initial conditions (zero couplings and
fields, profile model, plmDCA) produce fully connected PMs
of equal fitting quality but with slightly different performances
in predicting contacts and mutational effects. This difference
does not disappear after decimation (Appendix C 3). In other
words, our decimation procedure remains sensitive to the ini-
tial fully connected model from which it is started.

The resulting sparse PMs attempt to fit the data by using
the minimal number of two-site couplings, i.e., using cou-
pling matrices that are as sparse as possible. In the context
of proteins (or RNA), it is natural to think that the sparse
couplings identified by the model are the most relevant to
describe the physical two-site correlations that arise from
the need to maintain the three-dimensional folded structure.

024407-6



SPARSE GENERATIVE MODELING VIA … PHYSICAL REVIEW E 104, 024407 (2021)

This strategy is complementary to collective-feature learning,
e.g., via RBM or Hopfield-Potts models [25,26], in which the
number of parameters in the coupling matrix is reduced by
assuming it to be of low rank. The features learned by these
machines are associated with global sequence motifs, related,
e.g., to protein function or its interactions, but the accuracy
of contact prediction is reduced. An interesting and natural
perspective would be to combine these two strategies into a
general “sparse plus low-rank” scheme (cf. [41] for a related
idea), which could lead to an accurate description of protein
families in an easily interpretable way, with sparse two-site
couplings describing physical constraints coming from struc-
tural contacts, and low-rank couplings describing biological
features associated with protein function and its evolutionary
history.

To conclude, we would like to stress once more that our
information-based decimation strategy is not specific to the
application of Potts models to protein sequence data. It can
directly be used in other applications of inverse statistical
physics and Boltzmann machine learning, such as in modeling
neural or socioeconomic data [1], and may be adapted to more
general network reconstruction schemes.

The code for learning and pruning the PMs is available at
[42].
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APPENDIX A: METHODS

1. Alternative decimation score

Using the relation

Z ′

Z
= 1

Z

∑
S

e−Ji j (a,b)δa,si δb,s j e−H (S)

= 〈e−Ji j (a,b)δa,si δb,s j 〉P

= pi j (a, b)e−Ji j (a,b) + 1 − pi j (a, b), (A1)

we obtain

D̂ab
i j = DKL(P||P′) =

∑
S

P(S)[log P(S) − log P′(S)]

= Ji j (a, b)pi j (a, b) + log[pi j (a, b)e−Ji j (a,b)

+ 1 − pi j (a, b)]. (A2)

This second quantity also coincides with the variation of the
likelihood of data under the change of model,

�L = 1

M

M∑
m=1

[log P(Sm) − log P′(Sm)]

= 1

M

M∑
m=1

Ji j (a, b)δa,sm
i
δb,sm

j
+ log

Z ′

Z

= Ji j (a, b) fi j (a, b)

+ log[pi j (a, b)e−Ji j (a,b) + 1 − pi j (a, b)], (A3)

which coincides with (A2) when the model is well converged
and pi j (a, b) = fi j (a, b).

Note that the qualitative form of Dab
i j and D̂ab

i j as a
function of fi j (a, b) and Ji j (a, b) is very similar, and Dab

i j

is a monotonous function of D̂ab
i j . Using Dab

i j or D̂ab
i j in

the decimation procedure thus leads to fully equivalent
results.

2. Test on synthetic data

To evaluate the accuracy of our information-based decima-
tion procedure, we learn and prune a fully connected model
learned from a set of synthetically generated sequences sam-
pled from a known sparse model (a ground truth), whose
parameters will be compared to our results. The true model
is a Viana-Bray model of 50 Ising spins lying in a random
regular graph of degree 4. The couplings associated with the
100 links are drawn from a Gaussian distribution of zero mean
and unit variance. We sample M independent configurations,
with M = {200, 500, 1000, 5000, 10 000}, from the associ-
ated Boltzmann distribution at β = 0.6; this value guarantees
the sampling to be performed in the paramagnetic phase but
close to the phase transition, expected at βc ∼ 0.7 for the
same model in the thermodynamic limit [43] (although for
this instance the number of variables is finite, we assume the
critical point to be closer to that found at the thermodynamic
limit).

The pruning protocol is applied to each of the dense models
decimating 1% of the nonpruned couplings every time the
convergence error reaches the threshold of ε = 2.5 × 10−2;
the algorithm stops either because we reach the density of the
true model dtrue = 0.0816 or because we reach the maximum
number of iterations set for this experiment to 20 000. We
show in Fig. 6(f) the reconstruction error (computed as the
�2-norm between the learned and the true couplings) and the
true positive, false negative, false positive, and true negative
rates in Fig. 6(a), 6(b), 6(c), and 6(d) respectively. Different
lines correspond to different M as specified in the legend.
For small values of M the decimation procedure is very slow
because every time a new pruning step is performed, several
learning iterations are needed to reach a new convergence.
This explains why in Fig. 6(a), 6(b), 6(c), 6(d), and 6(f) the
lines associated with M = {200, 500, 1000} do not reach dtrue

within the 20 000 iterations. The reconstruction performance
is overall accurate as shown by the reconstruction error al-
though ∼20 of the true couplings are set to zero within the
decimation procedure [as stressed by the values of the true
positive and false negative rates in 6(a) and 6(b) panels]. For
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(a) (b)

(c)

(d) (f)

(e)

FIG. 6. Reconstruction performances measured by the true positive rate (a), false negative rate (b), false positive rate (c), true negative rate
(d), and �2-norm between the true and inferred parameters (f), as a function of the density for the controlled experiment over a Viana-Bray
model. We use different colors according to the value of M, the number of sequences used within the learning step of the fully connected and of
the sparse model. The vertical line represents the density of the true model dtrue = 0.0816. In (e) we show the scatter plot of the true couplings
against the parameters learned by the M = 10 000 run for d = dtrue.

large M, the reconstruction performance (in terms of both
the �2-norm and the number of wrongly or correctly pruned
couplings) significantly improves: the algorithm is now able
to reach the desired sparsity and the true positive rate is
close or above 0.9 for all densities (only 12 parameters are
inaccurately estimated). These couplings have a true value
close to zero as shown in Fig. 6(e) by a scatter plot of the true
parameters versus the learned couplings of the M = 10 000
samples run for d = dtrue. The points forming a cross in the
origin of the axes are associated with the 12 zero couplings
of the learned model (in correspondence with the 12 nonze-
ros parameters of the true one) and, similarly, with the 12
nonzero learned parameters that are not present in the true
model.

3. Data set

In the following, we report the details of the five pro-
tein families analyzed in our work, identified as PF00014,
PF00072, PF00076, PF00595, and PF13354 in the Pfam
database [44] (see also [6,45]). For PF00014, PF00072,
PF00076, and PF00595 we filter the full set of sequences
downloaded from Pfam, keeping only those that have fewer
than six consecutive gaps. Empirically, we have found that
the presence of stretched gaps renders the training more dif-
ficult as the Markov Chain Monte Carlo (MCMC) used for
sampling has difficulties in visiting both very gapped se-
quences and the gap-free region of the sequence landscape

in a proper way, i.e., proportionally to the correct Boltzmann
weight. This leads to a systematic bias in the model statis-
tics. For the Beta-lactamase2 family PF13354, we used a
slightly different procedure: we downloaded the Pfam pHMM
model for that family, and we scanned the NCBI database
to obtain aligned sequences. We then filtered sequences ac-
cording to two criteria: (1) 80% sequence coverage (i.e.,
less than 20% gaps) and (2) redundancy reduction at 80%
(so Meff ≈ M in this case). We also removed the sequence
TEM-1 (which is used as reference in the deep mutational
scanning, as discussed below), and all sequences very similar
to it. Note that because there are overlapping Beta-lactamase
families in Pfam, our procedure, based on a single pHMM,
gives also sequences that would align better to some other
family in Pfam, in particular to the Beta-lactamase family
PF00144.

In Table I we show the name of the protein domain associ-
ated with each family, the length, i.e., the number of columns
L of the multiple sequence alignment (MSA), the number of
sequences M of the original MSA and Meff , the number of
statistically relevant sequences after a standard reweighting of
close-by sequences [14].

4. Training protocol

We specify here the details of the Boltzmann learning
used to train the dense Potts model and to refine the nonzero
parameters within the decimation run.
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TABLE I. The Pfam identifier, the name of the protein domain, the length, the number of sequences, and the effective number of sequences
for the families analyzed in our work.

Identifier PF00014 PF00072 PF00076 PF00595 PF13354
Protein domain Kunitz domain Response regulator receiver domain RNA recognition motif PDZ domain Beta-lactamase2

L 53 112 70 82 202
M 13 600 823 798 137 605 36 690 7515
Meff 4364 229 585 27 785 3961 7454

First, we compute the data statistics from the input MSA
as

fi(a) = (1 − α) f emp
i (a) + α

q
, (A4)

fi j (a, b) = (1 − α) f emp
i j (a, b) + α

q2
, (A5)

with f emp
i (a) and f emp

i j (a, b) being the one- and two-site fre-
quencies computed from the MSA (for all positions i, j and
amino acids a, b), and with α being a pseudocount [46] in-
troduced to avoid divergent fields and couplings associated
with poor statistics. Here we set α = 1/Meff except for the
PF13354 family for which we set α = 10−50 (we observed
that other values of the pseudocount do not lead to a sig-
nificant change of the trained models). Then we start from
a profile model, i.e., all couplings are set to zero, and the
fields are equal to hi(a) = log[ fi(a)] + Hi with Hi a constant
ensuring

∑
a hi(a) = 0. Subsequently we iteratively refine the

parameters according to Eq. (2), using as learning rate ηJ =
ηh = 5 × 10−2. We stop the algorithm when the convergence
error ε, computed as the maximum error attained in the fitting
of the two-site connected correlations,

ε = max
i, j,a,b

| fi j (a, b) − fi(a) f j (b) − pi j (a, b) + pi(a)p j (b)|,

(A6)

reaches 10−2 (this value may slightly change depending on the
family, up to 5 × 10−2 for the PF13354 family, which is the
most difficult to train). At each iteration, we use Metropolis-
Hasting MCMC to compute the model statistics pi(a) and
pi j (a, b). We run Nchain independent MC chains, with Nchain =
3000 for PF00014 and PF00595, Nchain = 1000 for the longer
PF13354, and Nchain = 5000 for the copious families PF00072
and PF00076. The chains are initialized at the first iteration
from a uniform independent random distribution over all pos-
sible amino acids, gap included and are then persistent over
iterations, i.e., at each new iteration the chain is initialized
from the last configuration of the previous iteration. Each
chain runs for Teq = 20 MC sweeps (one sweep corresponds
here to L single-site Metropolis-Hastings MC steps) before
starting to sample 10 configurations spaced by Twait = 10 MC
sweeps. Hence, the total number of generated samples in a
single iteration is 10 × Nchains (from 104 to 5 × 104 depending
on the family), and each chain is evolved by 110 MC sweeps
in a single iteration.

5. Sampling protocol

Once the training is complete, for the final set of param-
eters of the Potts model, we need to generate a new sample,

from which we compute the model statistics to be compared
with the MSA statistics. As in training, the MCMC method
used for the sampling is the standard Metropolis-Hasting
algorithm, using Nchain independent MC chains, initialized
from a uniform independent random distribution over all
possible amino acids, gap included. Each chain is evolved
for Teq MC sweeps in order to achieve equilibration, before
we start collecting samples, the waiting time between each
sampled configurations being Twait MC sweeps. We specify
in Table II the values of Nchain, Teq, and Twait and of the
total number of collected samples, MMC. Note that the con-
ditions for the sampling are different from those used in the
learning.

We also compute, for each model, the Hamming dis-
tance dH (t ) between an equilibrium configuration and its time
evolution under the MCMC dynamics after t MC sweeps
(averaged over initial configurations and over the dynamics);
see Fig. 7. Obviously, dH (0) = 0 and for short times, dH (t )
grows linearly, with a coefficient given by the acceptance
rate of single-site mutations in the MCMC dynamics. At long
times, dH (t → ∞) saturates at the average distance between
two independent samples from the Potts model equilibrium
distribution. This quantity can also be computed by measuring
the Hamming distance between two independent MC chains,
after equilibration, and is reported as a red horizontal line in
Fig. 7. The time it takes for dH (t ) to reach its asymptotic value
gives an estimate of the decorrelation time of the MCMC
dynamics, i.e., the time needed to generate a new independent
equilibrium sample.

We observe that for PF00014, PF00072, and PF00076,
the decorrelation time is on the order of 102 MC
sweeps, and independent of sparsity, which suggests
that the model is sampled in equilibrium during the
learning process. In fact, we obtain exactly the same
model statistics upon resampling the model in different
conditions.

For PF00595 the decorrelation time is ≈103 MC sweeps
for the dense model. Because our training is done with per-
sistent chains, and a small learning rate, we still believe that

TABLE II. Details of the MC sampling performed to evaluate the
model statistics.

Identifier PF00014 PF00072 PF00076 PF00595 PF13354

MMC 30 000 30 000 30 000 30 000 30 000
Twait 60 80 60 90 100
Teq 10 000 50 000 30 000 50 000 50 000
Nchain 100 100 100 100 300
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FIG. 7. Averaged Hamming distances between an equilibrium sequence at time t = 0 and the evolved sequence after t MC sweeps for
(a) PF00076 (b) PF00014 (c) PF00072 (d) PF00595, and (e) PF13354. The average is computed using 104 independent MC chains.

proper equilibrium sampling is achieved during learning. This
is confirmed by the fact that we reproduce the same model
statistics under resampling. Furthermore, we observe that the
decorrelation time is reduced upon sparsifying the model,
which suggests that the sparse models are less critical, as we
discuss below.

For PF13354 the situation is radically different. In this
case, the decorrelation time is huge (more than 104 MC
sweeps for the dense model). This is likely due to the presence
of multiple subfamilies, such that the MC chains take a large
amount of time to jump from one subfamily to another. With
such a long decorrelation time, learning becomes extremely
hard, and we cannot guarantee that equilibration is achieved
during it. In fact, we find that upon resampling the model
starting from random initial states, the statistics is initially
good (after ≈2 × 104 MC sweeps) but then is degraded,
indicating that the model suffers from overfitting due to
poor equilibration during learning. For the sparse models, the
decorrelation time is substantially reduced (by almost a factor
100), and consistently we find that resampling is stable at all
times.

APPENDIX B: RESULTS FOR THE OTHER
PROTEIN FAMILIES

In this Appendix we report the same type of results shown
in the main text for PF00076, but for the four remaining
families: PF00014, PF00072, PF00595, and PF13354.

1. Fitting quality

To evaluate the quality of the sparse models we compute,
for each possible density, the Pearson correlation coefficients
between a certain type of statistics computed from the em-
pirical data (the MSA) and the model (via MCMC). More
precisely, we focus on one-site frequencies and two- and
three-site connected correlations, as defined in Eq. (7). To
select the indices of the most significant three-site connected
correlations we have first extensively scanned all possible
triplets and computed the empirical frequencies for all possi-
ble color assignments. We then keep the elements ci jk (a, b, c)
with empirical absolute values above 10−4: only for those
elements do we compute the corresponding model correla-
tions, in order to limit the computational cost. The model
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FIG. 8. Pearson correlation coefficients between the three chosen metrics (first moments, two-site, and three-site connected correlations)
of the data and the sparse models as a function of the density. Each panel (a), (b), (c), and (d) is associated with a different family, respectively,
PF00014, PF00072, PF00595, and PF13354.

correlations are computed from a set of samples generated via
the MCMC procedure described in Appendix A.

In Fig. 8 we show the Pearson correlation coefficients
for the three metrics between the data and the models as a
function of the model density, for the PF00014 [Fig. 8(a)],
PF00072 [Fig. 8(b)], PF00595 [Fig. 8(c)], and PF13354
[Fig. 8(d)] families. For all families, the Pearson coefficient
maintains almost the same value reached for the densest (fully
connected) model up to a density of about 10%. When the
density goes below 10%, the Pearson coefficient gradually
decreases for all families; not surprisingly, the reduction as-
sociated with the three-site connected correlations is more
pronounced, because this more-than-two-site correlation is
not explicitly fitted by BM learning.

The case of PF13354 is special because, for the reasons
discussed in Appendix A, the learning, which is done using
rather short waiting times between samples, suffers from a
very long decorrelation time in the dense case. Hence, the
resampling degrades when MC chains are evolved for long
times, which explains why the Pearson coefficients are poor
for d > 20%. For d < 20%, the decorrelation time becomes
much shorter, and the resampling is stable over time, but the
Pearson coefficients get progressively degraded when d is
reduced, as for the other families. The optimal compromise
seems to be d ≈ 20% for this atypical family. See Ref. [32]
for a more detailed analysis of these nonequilibrium sampling
effects.

2. Contact prediction

The APC-corrected Frobenius norms associated with the
couplings can be used for scoring each pair of sites of the
MSA (cf. the main text). As already explored in literature, this
score correlates well with the physical distances between pairs

of residues in the three-dimensional structure of the protein
domains. Larger Frobenius norms suggest larger probabilities
of a physical interaction. As usual, we try to estimate the
quality of the sparse models through a set of positive pre-
dictive value (PPV) curves associated with the prediction of
contacts. As reference structures we use those extracted from
[35], a tool that outputs the shortest relative distance of pairs
of residues over all known crystal structures registered in the
Protein Data Bank (PDB) database [36]. In Fig. 9 we show
the PPV curves for a subset of the sparse models (the density
is mapped to a different color of the lines) together with the
result of plmDCA [10] used here as comparison (red lines).
Even keeping only 10% of the coupling parameters, i.e., when
90% of them are removed by the decimation procedure, the
accuracy of the contact prediction remains stable, that is, the
performances are comparable to those of the fully connected
models. The comparison to plmDCA is instead heterogeneous:
as found in [12], the Boltzmann machine learning can have
comparable performance to plmDCA as for PF13354 in panel
(d), slightly worse as for PF00014 and PF00072 in Figs. 9(a)
and 9(b), or slightly better as for PF00595 in Fig. 9(c).

3. Coupling distribution

Because the couplings mirror a physical interaction among
residues, one may guess that the more we decimate the model,
the more we decimate the couplings not associated with
residues in contact. Similarly, one may expect that the more a
coupling is important in terms of three-dimensional structure,
the larger will be its strength, and hence it will be preserved
by the decimation.

To check whether this is the case, we plot in Fig. 10,
for PF00014 [Fig. 10(a)], PF00072 [Fig. 10(b)], PF00595
[Fig. 10(c)], and PF13354 [Fig. 10(d)], the distributions of
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FIG. 9. Positive predictive value (PPV) curve for (a) PF00014, (b) PF00072, (c) PF00595, and (d) PF13354 associated with the contact
prediction of several sparse models, from yellow to black lines. As a comparison we show the PPV curve (red line) obtained by the state-of-
the-art method for this task, plmDCA.

the couplings linking residues in contact (panel 1) and not in
contact (panel 2); the values of the corresponding densities are
indicated in the legend. We note that as we reduce the density
of the couplings, those corresponding to residues in contact
are slightly enhanced (indeed, the original red histograms in
Fig. 10 for the dense models are shifted to slightly larger
values in the sparse case), but we do not observe a significant
change in the tails of the distributions, as discussed in the main
text.

4. Criticality

Dense Potts models are generally very sensitive to a per-
turbation of their model parameters: a slight change of the
couplings or the fields leads to a dramatic transformation of
the model statistics, which thus seems to be close to a phase
transition, i.e., to be critical. A good measure of the criticality
of statistical models is represented by the heat capacity, which
is obtained by applying a global variation to the parameters,
J → J/T, h → h/T , and measuring the derivative of the av-
erage internal energy with respect to the temperature,

C(T ) = ∂〈H〉T

∂T
= 1

T 2

(〈H2〉T − 〈H〉2
T

)
. (B1)

The averages in Eq. (B1), denoted as 〈.〉T , are evaluated
by sampling a system with Boltzmann weight exp{−H/T }.
Standard thermodynamic identities also show that TC(T ) =
∂S/∂T , where S(T ) is the entropy of the model. The model
criticality is related to the magnitude of C(T ) in the vicinity
of T = 1, which expresses how quickly the model entropy (or
energy) varies under a small rescaling of all couplings.

Figure 11 shows the behavior of the heat capacity C(T )
as a function of the temperature T for the models associated

with the four families analyzed here: the color of the lines
depends on the value of the density of the corresponding
model, which spans the range (1, 90)%. We observe that for
all families, upon sparsifying the model, (1) the heat capacity
is reduced, rendering the model less sensitive to changes in the
model parameters, and/or (2) the peak slightly shifts towards
a temperature smaller than T = 1, the natural temperature of
the learning. In all cases, the value of C(T = 1) decreases
upon sparsifying the model. This observation suggests that a
dense model learned by the empirical data is indeed close to
a phase transition, but the criticality disappears (or decreases
substantially) for the statistically equivalent sparser models.
Hence, we conclude that the sensitivity of the dense model is
related to over-fitting. Note that the suppression of criticality
is also suggested by the reduction of the decorrelation time, as
discussed in Appendix A.

5. Mutational landscape prediction

Similarly to the analysis we proposed in the main text for
the PF00076 landscape and the experimentally determined
single- and double-mutant fitness, we show in Fig. 12 the
Spearman correlation coefficient, as a function of the density,
between the energy variation (computed according to our
models) and the experimental fitness associated with single-
residue mutations. Here we consider the libraries of single
mutants for the Beta-lactamase2 domain of the TEM1 protein
[47] (here the fitness is related to antibiotic resistance) and
for the PDZ3 domain of the PSD95 protein [48] (here the
fitness refers to the CRIPT ligand), which we assume to be
described by the models for PF13354 and PF00595 families,
respectively. As shown in Fig. 12, the correlation coefficient
(spBM lines) between the experimental measures and the
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(a1)

(a2)

(b1)

(b2)

(c2)

(c1) (d1)

(d2)

FIG. 10. Distribution of the couplings associated with residues physically in contact (labeled “1” histograms) and with residues not in
contact (labeled as “2” histograms) for two different densities. Panels (a), (b), (c), and (d) refer to PF00014, PF00072, PF00595, and PF13354,
respectively.

energy differences of our models are mostly constant as a
function of the density; only a smooth increment (drop) is ap-
preciated for densities smaller than 10−1 for PSD95 (TEM1).
We remark that even in the sparsest case, the Spearman cor-
relation coefficient never crosses that obtained from a pure
profile model (denoted as prof), suggesting that the remaining
nonzero couplings of our sparse models are fundamental for a
good description of the fitness landscape.

APPENDIX C: ADDITIONAL RESULTS ON PF00076

To complete the analysis described in the main text, we
propose here a set of additional results for the PF00076 fam-
ily. More precisely, we compare the learning and decimation
strategy used in the main text and in Appendix B (initialize
the parameters in the profile model, learn a dense model until
convergence, then perform decimation) to several different
initializations of the learning and to other decimation strate-
gies based on different metrics. We also investigate the nature
of the decimated couplings, via the statistics of the second

moments associated with them, to stress the nontrivial nature
of the symmetric Kullback-Leibler-based decimation.

1. Decimation strategies

The method presented in the main text uses as criterion
(or score) for the iterative decimation an information-theory
based measure, the symmetric Kullback-Leibler divergence
(symKLD) between the model with or without a certain cou-
pling. As a result, the decimation score of each coupling takes
into account both its statistical relevance (related to the second
moments associated with it) and the strength of the coupling
alone. We compare here the results presented in the main text
to two simpler strategies where at each decimation step (1)
we remove 1% of the weakest couplings or (2) we remove
1% of the couplings associated with the lowest, hence less
statistically significant, two-site frequencies.

In Fig. 13 in the left panels, we compare the three possi-
ble decimation procedures using as a comparison metric the
fitting quality of the sparse models. We show the Pearson
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FIG. 11. Heat capacity as a function of the temperature T for the other protein families PF00014, PF00072, PF00595, and PF13354 in
panels (a), (b), (c), and (d) respectively.

correlation coefficient of the empirical data and our sparse
models predictions, as a function of the density, for the first
moments [Fig. 13(a)], the two-site [Fig. 13(b)], and the most
relevant three-site ]Fig. 13(c)] connected correlations, respec-
tively. Among the three procedures, that based on the two-site
frequencies gives the poorest results, as it always provides the
lowest Pearson up to density ≈ 3% where the algorithm fails
to converge, meaning that it is no more able to fit the statistics
associated with the nonzero parameters. The decimation based
on the coupling strength outperforms the frequencies-based
one, but the Pearson coefficients, for all comparison metrics,
is systematically lower than that of the symKLD-based deci-
mation.

SPMSPM

FIG. 12. Spearman correlation coefficient between the energy
variations computed according to the sparse models (spBM lines)
and the experimentally determined fitness variations of a set of single
mutants, for the TEM1 (PF13354) and PSD95 (PF00595) proteins.
The dashed lines show the results of the Spearman correlation co-
efficients when the energy variations are computed with the profile
models of the corresponding families.

In addition to the fitting quality, we compare the three
methods looking at the contact prediction PPV curves, shown
in the top panel of Fig. 14, varying the model density. It is
worth noting that all procedures for all densities (except 3.2%
using a frequency-based measure) perform equally well.

We also considered a standard network selection strategy,
in which we first learn a series of dense models with a �1-
norm regularization at different strength γ , i.e., Eq. (2) for the
couplings is modified to

δJi j (a, b) = ηJ [ fi j (a, b) − pi j (a, b)] − γ sgn[Ji j (a, b)].

(C1)

At convergence, all couplings such that | fi j (a, b) −
pi j (a, b)| < γ thus have zero gradient and are considered as
decimated. In this way one can obtain PMs of different density
d by tuning γ . After selection, the sparse PMs is trained again
keeping the decimated couplings to zero, but without the
�1-norm regularization for the nondecimated couplings, until
convergence. The results for this procedure are reported
in Fig. 15 and are outperformed by the symDKL-based
procedure.

2. Decimated couplings

As mentioned in the previous section, either the couplings
that are decimated at each iteration are associated with poor
statistics, i.e., pairs of residues that are rarely or very fre-
quently observed in two specific positions, or their strength
is very small rendering their contribution in the Boltzmann
weight negligible. It is interesting to quantify how many deci-
mated couplings fall into the first or second class, as a function
of the density. To this purpose we plot in Fig. 16 the em-
pirical cumulative density function of the (logarithms of) the
two-site empirical frequencies associated with the decimated
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FIG. 13. Left panels: Pearson correlation coefficients between (a) the first moments, and (b) the two- and (c) three-site connected
correlations of each model (varying the density) compared to the empirical data. The lines are colored according to the metrics used within the
decimation procedure: the symmetric Kullback-Leibler distance, and the strength of the couplings or the two-site frequencies. Right panels:
Pearson correlation coefficients between (d) the first moments and (e) the two- and (f) three-site connected correlations varying the initial
condition of the dense model learning. All data are for the PF00076 family.

couplings. We report in the same plot several curves depend-
ing on the density of the considered model: more specifically
we observe the cases d ∈ {90.7, 69.9, 49.7, 12.2, 3.2}%. The
values of log10[ fi j (a, b)] in the range [−5,−4.3] empirically
correspond to pairs of residues (a, b) appearing one time
in position (i, j). Note that, although these frequencies are
associated with a single occurrence, they span an interval,
i.e., they are not always equal to the same value, because
their computation takes into account the reweighting protocol
described in Ref. [14], in which each sequence may have
a statistical weight smaller than one. Therefore, the value
of the cumulative density function in log10[ fi j (a, b)] = −5
gives the fraction of decimated couplings associated with the
pairs (a, b) that are never observed in sites (i, j). We see that
this quantity changes as a function of the density: when the
model is quite dense (for values of d = {90.7, 69.9, 49.7}%)
about 70% of the decimated couplings corresponds to never
observed statistics, and thus only 30% are associated with neg-
ligible couplings. As the model becomes sparser and sparser
the fraction is reduced and reaches about 30% for the sparsest
models: here about 70% of the decimated couplings are asso-
ciated with a rich statistics, but nonetheless their contribution
to the Boltzmann weight is negligible.

3. Initialization of the learning for the dense Boltzmann machine

An intrinsic difficulty arises when comparing statistical
models for protein sequences: the set of parameters that are
able to reproduce the empirical statistics well and also give
a good contact prediction is not unique. Therefore, giving
a clear interpretation of the fields and the couplings of the
inferred Potts model, i.e., to detect which variables are suffi-
cient to characterize the target ensemble of protein sequences,
is a challenging task. When the sufficient set of observables
is not known, and one attempts to fit all possible pairwise
couplings and single-site statistics through the Boltzmann ma-
chine learning, it is common to encounter “flat” directions of
the log-likelihood landscape, where the learning usually con-
verges (as any attempt at modifying the parameters does not
lead to any significant improvement). The parameters found
at convergence thus strongly depend on the initial conditions.

Here we evaluate how the results of the decimation pro-
cedure are affected by the dense model used as starting
point, which in turn depends on the initial conditions of
the parameters. For this comparison, we consider three dis-
tinct initial conditions for the initial learning of the dense
model: (1) the profile model (h = hprofile, J = 0, used for the
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FIG. 14. Positive predictive value for each decimation procedure
(a) and for each initial condition (b) for the PF00076 family.

results presented in the main text), (2) the parameters from
pseudolikelihood maximization (h = hplmDCA, J = JplmDCA),
as implemented in plmDCA [10], and (3) a null initial con-
dition for all model parameters (h = 0, J = 0). We then let
the Boltzmann machine learning converge, and we use the

FIG. 15. Pearson correlations (a) and positive predictive value
(b) for the decimation via �1-norm regularization, for the PF00076
family, compared with those reported in the main text.

FIG. 16. Cumulative density function of the logarithms of the
two-site frequencies associated with the decimated couplings for the
sparse models having densities d = 90.7%, d = 69.9%, d = 49.7%,
d = 12.2%, and d = 3.2%. The data refer to the PF00076, and the
decimation is performed according to the standard protocol described
in the main text.

converged Potts model as the starting model of the decimation
run described in the main text.

In the right panels of Fig. 13 we show the Pearson cor-
relation coefficients between the empirical frequencies fi(a)
and the model frequencies pi(a) [in Fig. 13(a)] and the two-
site and three-site connected correlations of the empirical
data and of the sparse models, for Figs. 13(b) and 13(c),
respectively. When all parameters are initialized to profile
we reach the larger Pearson correlation coefficients, for all
the three measures and for all densities. The plmDCA and
zeros initializations have comparable results, and they reach
Pearson correlation coefficients equal to those of the profile
initialization only for the first moment in the high-density
regime.

In addition to the fitting quality, we can compare the three
different initializations through the contact map prediction.
We observe in Fig. 14 that all the three strategies, indepen-
dently of the density, provide a very similar contact prediction
as the associated PPV curves completely overlap.

4. Online learning

In our decimation protocol, we proceed with a new deci-
mation step only when the learning has reached convergence.
Starting from a well-converged dense Potts model, and dec-
imating only 1% of the couplings at the time, allows us to
modify smoothly the remaining parameters during the dec-
imation. Indeed, we empirically observe that most of the
times two consecutive decimations are separated by just a few
learning steps. However, the entire protocol requires to learn
a dense model first, which can be time-consuming.

We thus explored an alternative strategy in which the deci-
mation is performed online, i.e., within a unique learning run.
Here the decimation step is applied either because the learning
has performed K steps or because it has reached the tolerance
required for convergence. In these experiments, we start from
a set of parameters corresponding to the profile model (as in
the protocol illustrated in the main text) for PF00076, and we
proceed with the decimation step every K = 10, 20, 40 steps.
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FIG. 17. Pearson correlation coefficients for the online learning
(blue line), for K = 10, 20, 40, compared to the converged run (red
line) as a function of the density, for the one-site frequencies (a),
two-site (b), and three-site (c) connected correlations.

In Fig. 17 we compare the Pearson correlation coeffi-
cient between the one-site frequencies [Fig. 17(a)], two-site
[Fig. 17(b)], and three-site [Fig. 17(c)] connected correlations,
of the data and the models obtained by the two different
strategies: we refer to the conventional method as converged
(corresponding to K → ∞), while the online learning method
is characterized by the number K of steps. It is worth noting
that, at convergence, both strategies, and independently of K ,
reach the same fitting quality even in the three-site connected
correlations. For completeness, we show in Fig. 18 the contact
prediction performance of the converged and online runs for
densities equal to 72% [Fig. 18(a)] and 3.2% [Fig. 18(b)]. In
the denser case (when we consider 72% of nonzero couplings)
the converged run outperforms the online learning for any
K . This can be explained by the poor fitting quality reached
by the online runs at the initial steps of the algorithm, that
is, when the model is still inaccurate in fitting the two-site
frequencies. It is worth noting that, in the sparse regime, i.e.,
for density equals to 3.2%, all the strategies show comparable
results, qualitatively similar to the performance of the dense
case [Fig. 18(a)].

FIG. 18. Comparison between the PPV curve obtained for the
online (for K = 10, 20, 40) and converged runs at two different den-
sities, 72% (a) and 3.2% (b). All data are for the PF00076 family.

Although the results of the online run resemble those of
the converged run for the very sparse models, the online
procedure is not always advantageous from the point of view
of the running time. We notice that, depending on the family,
a unique learning-decimation run may have problems fitting
the statistics, i.e., to converge, because the decimation affects
and “deviates” the learning of the machine, for small K . To
cure this issue, one may think of increasing the number of
steps between each decimation. However, this results in a very
slow procedure, because we remove 1% of the couplings every
(large) K steps. Instead, if the model is well converged first,
then convergence is achieved quite fast after each decimation,
resulting in a faster procedure overall.

APPENDIX D: SEQUENCES SIMILARITY

The defining feature of generative models is the ability
to generate configurations that are statistically equivalent to
those used within the training process, but substantially differ-
ent in the residue composition; i.e., a good generative model
should not just reproduce the sequences of the training set.
Hence, it is important to quantify the distances between gen-
erated samples and the training data. For this purpose, we
employed the following metrics, introduced in [49,50]:

DY (x) = min
y∈Y

D(x, y), DXY = 1

NX

NX∑
n=1

DY (xn). (D1)

where X and Y are ensembles of the generic statistical vari-
ables x and y, D(x, y) is a certain distance defined for the
sequences x and y. The metric DY (x) computes the mini-
mum distance of the sequence x reached when compared
to each of the possible sequences in the ensemble Y ; the
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FIG. 19. Sequence variability for all the protein families considered in this work. We plot Dts, Dst , and Dss as a function of the density
using blue, orange, and green lines, respectively, for PF00076 (a), PF00014 (b), PF00072 (c), PF00595 (d), and PF13354 (e).

quantity DXY is instead the average value of DY (x) over
the ensemble of X . In our problem, we choose D(x, y) as
the Hamming distance between sequence x and sequence y,
and the ensembles X and Y are, respectively, t (the training
set) and s, the synthetic sequences generated from the sparse
Boltzmann machines. A proper generative model would pro-
duce comparable Dst and Dss, and, concurrently, the two
measures must be sufficiently large (practically 20% of the
sequence similarity is required for good training sets). This
corresponds to a scenario where generated sequences are
variable (large Dss), and similarly distant to natural or the
other generated sequences (Dss � Dst). This corresponds to
a scenario where the average distance between each pair of
generated sequences is comparable to that obtained between
the two ensembles t and s: therefore, the generated synthetic
sequences are indistinguishable from the natural sequences
using distance-based methods (like nearest-neighbor classi-
fication, distance-based clustering). A similar argument can
be applied to Dts. In Fig. 19 we show the average distances
Dts, Dst, and Dss for each protein family; we do not show

the Dtt measure, which is obviously constant for all densities,
and takes values Dtt (PF00076) = 0.308, Dtt (PF00014) =
0.0917, Dtt (PF00072) = 0.421, Dtt (PF00595) = 0.295, and
Dtt (PF00076) = 0.445. Because of the phylogenetic relation-
ship among sequences, the training set is composed of similar
(correlated), sequences and, as a consequence, the Dtt is sig-
nificantly smaller than the other distance metrics. Regarding
Dts, Dst, and Dss we notice that, as the density of the couplings
decreases, the distances remain unchanged up to a density
in the range 10%–20%, depending on the family. Then the
minimum average distance significantly increases, which sug-
gests that the synthetic sequences are distributed more broadly
in the sequence space as the number of model parameters
decreases. Also, the difference between Dts, Dst, and Dss de-
creases for most of the protein families, in the sparse regime,
suggesting that the synthetic sequence ensembles and the set
of the natural sequences become more and more statistically
similar for increasing sparsity. We can conclude that, accord-
ing to these metrics, the decimation improves the generative
properties of the model.
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