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The actin cytoskeleton of cells is in continuous motion due to both polymerization of new filaments and their
contraction by myosin II molecular motors. Through adhesion to the substrate, such intracellular flow can be
converted into cell migration. Recently, optogenetics has emerged as a new powerful experimental method to
control both actin polymerization and myosin II contraction. While optogenetic control of polymerization can
initiate cell migration by generating protrusion, it is less clear if and how optogenetic control of contraction
can also affect cell migration. Here we analyze the latter situation using a minimal variant of active gel theory
into which we include optogenetic activation as a spatiotemporally constrained perturbation. The model can
describe the symmetrical flow of the actomyosin system observed in optogenetic experiments, but not the long-
lasting polarization required for cell migration. Motile solutions become possible if cytoskeletal polymerization
is included through the boundary conditions. Optogenetic activation of contraction can then initiate locomotion
in a symmetrically spreading cell and strengthen motility in an asymmetrically polymerizing one. If designed
appropriately, it can also arrest motility even for protrusive boundaries.
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I. INTRODUCTION

Despite the large variety of different cell types in our body,
all of them have the ability to migrate. Migration is essential
for all cells in the developing embryo and later is used by
specific cell types for certain functions, such as white blood
cells chasing intruders or epithelial cells closing wounds [1].
Very importantly, virtually all body cells can revert back to the
migratory mode, which is especially dangerous in the context
of cancer metastasis [2,3]. Moreover, there is a growing inter-
est in the bottom-up construction of synthetic cells [4], but an
understanding of the minimal ingredients for cell migration is
still missing.

Although animal cells are complex systems and can use
very different migration strategies, the main physical basis of
their migration capacity has been identified to be flow in the
actomyosin cytoskeleton [5–7]. Due to controlled assembly
and disassembly of actin filaments, all major actin architec-
tures in the cell (lamellipodia, filopodia, lamellae, cortex,
and stress fibers) are continuously flowing. When combined
with adhesion to the substrate, this intracellular flow can
be converted into productive cell migration, similar to the
function of a automotive clutch [8]. For example, recently
it has been shown through cell migration experiments on
one-dimensional lanes and theoretical modeling that increased
flow leads to faster and more persistent cell migration [9].
However, before cell migration is established as a steady state
of the system, the cell first has to polarize, either sponta-
neously or guided by some external cues. A well established
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model system for this essential process is the keratocyte, a
cell type which lives on two-dimensional surfaces like the
cornea of eyes and migrates with a very steady shape. For
these cells, it has been shown that they (and also their frag-
ments) can transition from a nonpolarized stationary into a
polarized motile state by application of a simple mechanical
perturbation [10,11].

The spontaneous symmetry break in polarization under-
lying cell migration has attracted considerable interest from
theory, also because it resonates with symmetry breaking
transitions in other parts of physics, e.g., in spin systems or
particle physics. The symmetry break in the actomyosin sys-
tem underlying cell migration has been studied theoretically
from different starting points, including actin polymeriza-
tion [12–15], myosin motor protein contraction [16–18] and
cellular adhesion to substrates [19,20]. These physics-based
analyses have been complemented by mathematical analysis
of the reaction-diffusion equations that describe the signaling
networks that control actomyosin flow inside cells [21–23].

On the experimental side, gaining a better understanding
of the mechanisms underlying cell migration traditionally
had to rely on controling cell behavior through genetic or
biochemical means. Recently, however, optogenetics for the
cytoskeleton has been introduced as a new and powerful
tool to experimentally control the protrusive and contrac-
tile activity of cells in a temporally and spatially controlled
manner [24–26]. In this context, one usually engineers a
light-sensitive construct into the cell that activates a central
regulator for the process of interest, e.g., the G-proteins Rac1
for actin polymerization and RhoA for myosin II contractility,
respectively. Is is easy to understand that local control of actin
polymerization leads to directed protrusions and therefore
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cell migration, as demonstrated experimentally [27–30]. In
addition this strategy has already been applied to break the
symmetry of actin-containing synthetic cells [31]. However,
it is less clear how optogenetic control of contractility could
lead to cell migration. Until now, optogenetic activation of
myosin II contractility in single cells has been shown to lead
to increased traction forces and intracellular flow [32,33], but
it has not been used yet to control cell migration, although the
level of myosin II activity is in fact known to influence the
velocity of motile cells [34–37].

Here we address the question if and how optogenetics can
be used to control cell migration from a theoretical point of
view. A natural framework to mathematically analyze this
situation is the so-called active gel theory [38–40]. Here
we use its simplest variant, which does not consider local
polarization of the cytoskeleton, but only its velocity field
driven by local active stresses. Such a hydrodynamic sys-
tem is strongly determined by its boundary conditions and
in general one can distinguish between two approaches when
modeling cell migration. The traditional way to apply active
gel theory to cell migration is to assume that the polymer-
ization at the cell membranes provides kinematic boundary
conditions [38,39,41]. One disadvantage of this approach is
that cell length then follows as a dynamical variable that
cannot be controlled by other means. In general, this ap-
proach is well suited to explain cell migration optogenetically
controlled through actin polymerization. Here, however, we
are interested in the complementary situation that cell mi-
gration is controlled by contractility. This question has been
addressed before in the framework of active gel theory by
using an elastic boundary condition [18,42,43], which im-
plies that cell size is controlled by elasticity-related processes,
representing the outcome of the interplay between tension
in the cell contour, bulk compressibility of the cell, control
of water flux through the membrane, and adhesion to the
environment [44,45]. Using an active gel model which in-
cludes the myosin II concentration field, it has been shown
that motile solutions are possible for intermediate levels of
contractility [18,43]. Here we follow a similar route but use
an even simpler version of the elastic boundary model, which
does not take myosin II concentration into account. In the
spirit of a minimal model approach, we also disregard the
effect of adhesion sites, which are known to lead to non-
linear processes (in particular, stick-slip oscillations) in the
context of cell migration [20,46–48]. Using the minimal active
gel model with elastic boundary conditions, we can per-
form a comprehensive mathematical analysis of optogenetic
control as a spatiotemporally constrained perturbation to the
active stress. To make better contact to the situation in cells,
we finally extend our analysis to boundary conditions with
protrusion.

This work is organized as follows. We start by introduc-
ing the minimal model for intracellular flows. We consider
a one-dimensional Maxwell model with active stresses that
drive intracellular flow with a frictional coupling to the en-
vironment. We show that such a model can be induced to
migrate due to optogenetic activation, but that this migration
will stop when optogenetic activation is turned off due to
resymmetrization of intracellular flow. We also show that this
model is able to qualitatively describe the dynamics of the

FIG. 1. Scheme of the active Maxwell model. The cell has a
variable length L = l+ − l− where l± denote its boundaries in one
dimension. The cell’s interior is described by the rheological model
of a spring with elastic modulus E coupled in series to a dashpot
with viscosity η, comprising a Maxwell element. In addition, we
demand the material to be frame-invariant, leading to properties of
a corotational Maxwell material. This element is coupled in par-
allel to the active stress σact. To the surrounding, the coupling is
via viscous friction with friction coefficient ξ . We apply elastic
boundary conditions (stiffness k, rest length L0) and consider the
continuum limit.

actomyosin network along one-dimensional stress fibers dur-
ing optogenetic activation. On this background, we then study
the effect of including polymerization at the boundaries. We
find that only asymmetric situations can lead to the emergence
of a motile state. We close with a summary of our results and
an outlook on potential further research.

II. MINIMAL ACTIVE GEL MODEL

A. Model definition

To describe the effects of optogenetic perturbations, we
consider a one-dimensional (1D) section across the cell. A
minimal approach has to account for the following facts: (i)
The cytoplasm is mainly viscous, i.e., it will flow at long
timescales, while it can sustain stresses at short timescales. We
hence use a Maxwell model, where we can consider the purely
viscous limit if needed for further simplification. (ii) Flows in-
side the cell are balanced by friction forces with the substrate
the cell sits on. For simplicity, we neglect focal adhesions
and inhomogeneities and assume a homogeneous friction co-
efficient. (iii) Concerning the 1D boundary conditions, one
has to account for the fact that cells tend to keep a typical
size which is the result of the interplay between different
processes, including cortical tension and bulk compressibil-
ity. We hence implement an effective spring with a certain
rest length and stiffness. (iv) The cell is an active material,
continuously converting metabolic energy into local motion,
hence an active contractile stress is considered in the bulk. The
overall activity level is assumed to be homogeneous across the
cell, while optogenetic perturbations can be modeled as local,
spatiotemporal changes in this contractility.

Figure 1 shows a schematic sketch of our model. As it
is common in active gel theory, the active stress σact is cou-
pled in parallel to an infinitely compressible (corotational)
Maxwell element describing the passive response of the cell.
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Assuming that there is only a velocity in x direction, the
constitutive relation relating the total stress σ and the strain
ε is then [38,39,49]

η∂tε = [1 + τ∂t + τv∂x](σ − σact ), (1)

with τ = η/E defining the Maxwell relaxation time, E and
η being the elastic (shear) modulus and the viscosity, respec-
tively, and v = ẋ the flow velocity. The cell is coupled to the
substrate via viscous friction

∂xσ = ξv, (2)

with ξ being the homogeneous friction coefficient. Using
∂tε = ∂xv yields an equation for the stress only

η

ξ
∂2

x σ =
[

1 + τ∂t + τ

ξ
(∂xσ )∂x

]
(σ − σact ). (3)

The length scale
√

η/ξ is known as the hydrodynamic decay
length. In the following we will assume that the active back-
ground stress σact is a constant, so the terms ∂tσact and ∂xσact

will disappear. However, they will reappear for optogenetic
activation due to its dependence on time and space.

As a spreading or moving cell is a moving boundary prob-
lem, one has to consider the left and right boundary, l−(t ) and
l+(t ), of the cell and consequently the cell’s length L(t ) =
l+(t ) − l−(t ), as functions of time. We consider an elastic
boundary condition [18,42,43]

σ (l±(t ), t ) = −k
L(t ) − L0

L0
, (4)

with reference length L0 and effective spring constant k. The
boundaries are assumed to flow with the gel, i.e., the velocity
v there is also given by Eq. (2),

l̇±(t ) = v(l±(t )) = 1

ξ
∂xσ (x = l±(t ), t ). (5)

We nondimensionalize the equations by rescaling length by
L0, time by ξL2

0/k and stress by k to obtain the boundary value
problem (BVP)

L2∂2
x σ − T ∂tσ − T (∂xσ )2 − σ = −σact,

σ (l±(t ), t ) = −[L(t ) − 1],

l̇± = ∂xσ (l±(t ), t ), (6)

with only two dimensionless parameters: a relative length
scale L =

√
η/(ξL2

0 ) comparing viscous and frictional damp-
ing of the cytoplasm flow and a renormalized Maxwell
relaxation time T = (kτ )/(ξL2

0 ) = (kη)/(ξEL2
0 ). Note that

all mechanical/dynamical parameters, η, E , k, ξ , together
with the rest length, determine the relaxation time of the
system as a whole. We also note that the purely viscous case
corresponds to T = 0; in this case two terms disappear from
Eq. (6), a linear one often considered as an approximation for
small flow velocities in the so-called linear Maxwell model,
and a nonlinear one resulting from the frame invariance.

B. Steady-state solutions

We first determine the possible steady-state solutions by
assuming a constant cell velocity V and no length change,
L̇ = 0. It is useful to map the problem on the unit interval

by changing into internal coordinates u = (x − l−)/L. To sim-
plify the boundary conditions we introduce the deviation of
the stress from the elastic boundary contribution as

s(u, t ) = σ (u, t ) + (L(t ) − 1). (7)

For a steady-state solution the stress deviation s can only
depend on the internal coordinate u, which yields

L2

L2
∂2

u s + T V

L
∂us − T

L2
(∂us)2 − s + (L − 1) = −σact,

s(u±) = 0, ∂us(u±) = V L, (8)

with u− = 0 and u+ = 1.
This equation can be rewritten as a dynamical system, i.e.,

two first-order differential equations as given in Appendix A.
For nonmotile solutions, i.e., V = 0, the boundary conditions
then imply that the solution corresponds to a fixed point with
s ≡ 0 and a condition for the length of the nonmotile steady-
state solution,

L̂ = 1 − σact. (9)

Hence, the length of the cell decreases with increasing con-
tractile active stress. This solution ceases to exist for too large
stresses, σact > 1, when the elastic boundary condition cannot
counteract the contractile stress anymore.

Concerning motile solutions with V �= 0, it can be shown
that, due to the boundary conditions, such solutions must
correspond to periodic orbits in phase plane. However, the
dynamical system is a gradient system with a potential, given
by Eq. (A2), and thus no periodic orbits exist [50]. Note that
this is also true for the approximation of a linear Maxwell
material, neglecting the quadratic term (∂xσ )2 in Eq. (6),
which can be considered as an approximation for small flow
velocities. Details are given in Appendix A.

C. Analytical solution for the purely viscous case

For the internal dynamics of cells, often it is assumed
that the elastic component can be neglected, since the relax-
ation time is much smaller than the experimental timescales
observed for processes like cell spreading or motility [17].
The purely viscous case with T = 0 can be solved analyti-
cally: one can integrate Eq. (8) directly and find the Green’s
function, allowing to obtain the general solution for arbitrary
lengths L,

s(u, t ) = [σact + (L − 1)]

{
1 − cosh

(
L
L (u − 1/2)

)
cosh(L/2L)

}
. (10)

Using this solution and Eq. (6), one gets the governing equa-
tion for the cell length, L̇ = l̇+ − l̇− = [∂us(1) − ∂us(0)]/L,

L̇ = 2

L (1 − L − σact ) tanh(L/2L). (11)

Since L > 0 one has L̇ < 0 (>0) if L > 1 − σact (<1 −
σact) and hence a relaxation toward the nonmotile steady state.

For small perturbations around the steady state L̂ = 1 −
σact we expand the length as L(t ) = L̂ + δL(t ) [with δL(t =
0) = δL0] up to second order and get

δL(t ) = α δL0 exp(αt )

α − β δL0 [exp(αt ) − 1]
, (12)
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FIG. 2. Finite-volume simulations for the purely viscous model.
Panel (a) shows the resulting cell length L (in units of the rest
length L0) as a function of time (numerical/analytical results in
black/green). Panel (b) shows the stress deviation from the boundary
condition s = [σ + (L − 1)] and the internal velocity field u̇, for the
time point indicated by the gray axis tick in panel (a). Parameters:
T = 0, L = 1, σact = 0.5.

with

α = − 2

L tanh(L̂/2L), β = − 1

L2
[1 − tanh2(L̂/2L)].

This solution is an exponential relaxation toward the station-
ary length L̂ with relaxation time 1/α and a higher-order
correction.

D. Numerical solution

To numerically solve our general model, we slightly refor-
mulated the boundary value problem, introducing the rescaled
stress σ̂ = Lσ and the cell’s center position G = (l+ + l−)/2.
This procedure results in an advection-diffusion equation with
source term that can be solved with the finite-volume method.
Details can be found in Appendix B.

We first studied the viscous case, T = 0, as shown in
Fig. 2. Starting with a stress-free slab (s ≡ 0) and L̇ = Ġ =
G = 0, we see a relaxation behavior of the cell’s length to-
ward the stationary solution with L = L̂ for different starting
lengths L(0), cf. Fig. 2(a). The numerical result is in good
agreement with the second order perturbative solution given
in Eq. (12), cf. the green curves. In the cell’s interior, there is
the typical cosh-shaped stress profile which is contractile or
extensile, as well as anterograde or retrograde flow inside the
cell, see Fig. 2(b), again in agreement with the analytical so-
lution Eq. (10). Note that the flow inside the cell is negligible
and that the length change dominates the material flow in the
laboratory frame. Our simulations also show that increasing
(decreasing) L leads to slower (faster) relaxation, which can
be traced back to L2/L2 being the effective diffusion constant
[see Eq. (B2)]. Changes in L, however, do not change the
results qualitatively. Changing the active stress σact only shifts
the stable length L̂ according to Eq. (9), as long as σact < 1.

To understand the influence of the viscoelastic material
properties, we next considered different Maxwell relaxation
times T , but now starting with a symmetry-broken initial

FIG. 3. Finite-volume simulations for the active Maxwell model
starting with an asymmetric initial stress, showing resymmetrization
and motility arrest. Panels (a) and (b) show length relaxations (L in
units of L0) for L2 = 1 and varying T , and for T = 0 and varying L2,
respectively. The stress deviations from the boundary condition s and
the internal velocity fields u̇ are shown in panel (c) for the stated time
points for fixed L2 = 1. Panels (d) and (e) show the cell velocities Ġ
and cell lengths L of all simulations in panels (a)–(c), respectively,
with time rescaled by T /L2. In panel (d) all curves collapse onto
a single curve, showing that the resymmetrization timescale is de-
termined by T /L2. The solid/dashed lines correspond to the linear
and the dotted ones to the (corotational) convected Maxwell model.
The models show only slight deviations during resymmetrization.
Parameters: σact = 0.5, corresponding to L̂ = 0.5.

condition for the stress for which we by way of example chose

σ̂ (u, 0) = −L(0)[L(0) − 1] [1 + 0.3 sin(2πu)]. (13)

The results are summarized in Fig. 3. Figure 3(a) shows that
increasing the Maxwell time leads to slower length relax-
ations. Figure 3(b) exemplifies our prior observation that, for
the purely viscous case, increasing the viscous length scale
leads to slower relaxation. As expected from the lack of
motile steady states discussed above, the symmetry-broken
initial state is rapidly resymmetrized in all cases, cf. Fig. 3(c),
which shows the time development by plots for three different
time points. Interestingly, this resymmetrization happens on a
much faster timescale than the one for the length relaxation
process. Note that for the purely viscous model (T = 0),
resymmetrization is instantaneous, as a consequence of the
symmetrical solution, Eq. (10), only depending on L. The
broken symmetry of the initial state induces a transient net cell
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velocity Ġ, which goes to zero as the cell resymmetrizes, cf.
Fig. 3(d). Rescaling time by T /L2 in simulations for different
T and L2 in Figs. 3(d) and 3(e) shows that all cell velocities Ġ
collapse onto a single curve, implying that T /L2 determines
the timescale of resymmetrization. Figure 3(e) shows that
this is not true for the length relaxation, which agrees to the
nonlinear dependence of the relaxation timescale on L2 of
the perturbative viscous (T = 0) solution Eq. (12). Neglect-
ing the term quadratic in ∂xσ in Eq. (6) corresponds to the
linear Maxwell model, which constitutes a small flow velocity
approximation. This simplification yields similar results with
only small deviations during resymmetrization, cf. Fig. 3(c),
in agreement to the small internal flow velocities u̇. Note that
these differences are so small that they do not visibly change
the length and velocity dynamics, cf. Figs. 3(a), 3(b) and 3(d).

At this point we can conclude that the model gives a
good description of how the actomyosin system flows inside
an adherent cell with a typical size. In the next section we
therefore can turn to the effect of optogenetic perturbations.
As shown in Fig. 3, more complex material properties (namely
viscoelastic rather than viscous) allow the system to have short
periods of motility, but as the asymmetry relaxes rapidly, also
the movement rapidly stops. The model is hence unable to
describe self-polarization due to the lack of motile states as
found in Sec. II B.

III. OPTOGENETIC CONTROL

A. Model definition

We now turn to the effect of optogenetic control of the
cytoskeleton. Different experimental strategies have been im-
plemented, but most of them are similar in the sense that one
engineers a light-sensitive process into the cellular control
circuits for the cytoskeleton. Typically the effect of light is
to recruit a GTP-exchange factor to the membrane, where it
activates a member of the Rho-family of small GTPases, e.g.,
Rac1 for actin protrusions [27–30] or RhoA for actomyosin
contraction [32,33]. In the latter case, which is of special
interest for the present work, the main effect is a local increase
in active stress σact due to actin polymerization and assembly
of myosin II minifilaments.

The effect of a localized optogenetic activation can be
incorporated in the model by adding a spatiotemporally con-
strained additional term to the active stress. Experimentally
the used laser spots have typical spatial profiles that can
easily be described mathematically. The resulting biochem-
ical activation has a kinetic profile determined by reactions
and diffusion that can be measured, e.g. by using fluorescent
probes [29,51]. To describe these processes, here we introduce
a dimensionless spatiotemporal “shape function” �(x, t ) and
replace σact → σact + σopt, where σact is, as before, the homo-
geneous contractile stress and σopt = ε �(x, t ) is the localized
contribution from optogenetic activation.

Rescaling the optogenetic stress level ε with k, we obtain
instead of Eq. (6) the modified nondimensional BVP

L2∂2
x σ − T ∂tσ − T (∂xσ )2 − σ

= −σact − ε � − εT ∂t� − εT (∂xσ )(∂x�), (14)

where the boundary conditions and equations determining
the position and length are unchanged. Note the existence

of the last two terms, stemming from the time- and space-
dependence of the shape function.

As suggested by the experimental situation, we assume that
� factorizes,

�(x, t ) = �t (t ) · �s(x, t ), (15)

with one factor describing the turn-on and turn-off process
of the signal, which only depends on time t , and one fac-
tor describing the spatial shape of the signal. Importantly,
the latter depends on the spatial coordinate x but also on t ,
due to changes in the cell’s length (reflected by the internal
coordinate u).

We consider two main protocols: either the signal is con-
sidered to be fixed in the stationary laboratory coordinates or
it is considered to be fixed in comoving coordinates (i.e., it is
moved along with the cell). The former is what is typically—
for simplicity—realized experimentally, but the latter should
also be realizable and is instructive concerning cell motility.

From our previous analysis we know that the model has
only the nonmotile steady state given by Eq. (9). After the sig-
nal has been turned off again, i.e., for �t (t ) ≈ 0, we have the
same equations studied in the last section, implying relaxation
to the only stable solution, provided the length remains in the
stable regime L > 0. The optogenetic signal should therefore
only induce a perturbation of the known steady state during
activation.

To get a first insight into the effect of the perturbation,
we consider a steady-state solution (with L̇ = 0, Ġ = V , with
V = 0 describing the resting state) for the purely viscous case
(T = 0) and a comoving stress field and shape function, i.e.,
σ = σ (u) and � = �(u). Using again the stress deviation s,
in analogy to Eq. (8) we now have

L2 1

L2
∂2

u s − s = −(L − 1) − σact − ε�, (16)

with the same boundary conditions s(u±) = 0 and ∂us(u±) =
V L. This equation can be integrated to obtain an equation for
the perturbed length

L̂ = 1 − σact − ε

∫ 1

0
�(u)du +

∫ 1

0
s(u)du. (17)

The stationary length is therefore changed in the following
way: the integrated signal gives an additional active stress,
which tends to decrease the length of the cell, while the
resulting stress profile s in the steady state counteracts this
active stress, since the active stress is not compensated by
the boundary stress from cell contraction. Therefore, a total
contractile stress in the nonmotile steady state,

∫
sdu > 0,

leads in principle to a larger length. However, we will see in
the numerical simulations that this contribution from the stress
field is negligible. Therefore the integral over the optogenetic
signal stress can be used as a good estimate to determine the
perturbed stationary length.

For the numerical simulations we use the auxiliary stress
field in internal coordinates σ̂ (u) = Lσ (l− + uL, t ). The two
protocols, i.e., the signal either fixed in comoving or in lab-
oratory coordinates, are denoted with superscripts cm and x,
respectively.

For the shape function in internal coordinates, we mainly
use a box-shaped spatial shape function �s that spans from uon
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FIG. 4. Finite-volume simulations for the viscous model with a
cell-centered activation (with box-shaped temporal and spatial shape
functions) for different activation strengths ε. Shown in panel (a) is
the resulting length of the cell L (in units of L0) as a function of
time for a signal that is fixed in comoving coordinates. The shaded
area shows the activation time from ton = 1 to toff = 36 and the
horizontal lines indicate the approximate theoretical new stationary
length L̂ap, cf. Eq. (18). Panels (b) and (c) show the stress deviation
from the boundary condition s = [σ + (L − 1)] during early and late
activation, respectively, with timepoints indicated as gray axis ticks
in panel (a) and given above. Parameters: T = 0, L = 1, σact = 0.5,
uon = 0.4, uoff = 0.6.

to uoff : i.e., �box(u, 0) = 1 for u ∈ [uon, uoff ] and �box(u, 0) =
0 otherwise. To test the influence of the details of the spatial
shape of the activation spot, we also considered a smooth
Gaussian shape function (with the center located at (uon +
uoff )/2, standard deviation ω = (uon − uoff )/2 and normal-
ization such that the integral is identical to the one of the
box-shaped spatial shape function).

For the temporal switching behavior (temporal shape func-
tion) we also considered several signal types: introducing
a turn-on time ton and a turn-off time toff , we use a box-
shaped temporal shape function �box

t , a continuous tanh-type
box function �tanh

t and an exponentially plateauing activation
function �

exp
t . Note that the latter has been used successfully

to describe the activation behavior and reaction time of sig-
naling pathways in optogenetic experiments on stress fiber
dynamics [32]. Specific formulas for all shape functions are
given in Appendix C.

B. Centered activation

We consider the purely viscous model. We solved it nu-
merically, using the stationary solution with homogeneous
stress as initial data, to study the response to an optogenetic
activation in the cell’s center. Figure 4 shows results for an
optogenetic signal applied in the comoving frame (as the cell
does not move, laboratory frame yields the same result) for
varying strength of the optogenetic signal ε. The signal was
chosen to be box-shaped in both space and time. One clearly
sees that the cell length relaxes to a new stable length while
the signal is turned on. The signal strength ε determines how
much the cell is contracted. This contraction can be so large,
that for ε = 1, L → 0, cf. Eq. (9). Figure 4 also shows as hor-
izontal lines the approximate theoretical result, cf. Eq. (17),
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FIG. 5. Finite-volume simulations for the viscous model for cen-
tered activation in cm frame with different shape functions. Panel
(a) shows the resulting length of the cell L (in units of L0) as a
function of time and the theoretical approximation for the station-
ary perturbed length L̂ap from Eq. (18). Panel (b) shows the stress
deviation from the boundary condition s = [σ + (L − 1)] and the
internal velocity field u̇ for the time points indicated by the gray axis
tick in panel (a) and given above. Different optogenetic signals �

where applied as specified in the legend. Parameters: T = 0, L = 1,
σact = 0.5, ε = 0.4, uon(t = 0) = 0.4, uoff (t = 0) = 0.6.

which in the comoving frame reads

L̂ap = 1 − σact − ε

∫ 1

0
�(u; L̂ap)du. (18)

Hence, in this case the integral over � in internal coordinates
depends on the length L̂ap, yielding a quadratic equation in the
length. The obtained theoretical length predicts the new sta-
tionary length for the activated cell very well, suggesting that
the integral of the activation term is indeed the determining
quantity for the length.

Figure 5 investigates the effect of different shape functions
for the optogenetic perturbation for constant signal strength
ε = 0.4. We used box versus Gaussian spatial shape func-
tions and the three temporal shape functions (box, tanh, and
exponential) modeling the turn-on and turn-off process. For
Gaussian and box-shaped spatial shape functions the resulting
new lengths coincide, which again shows the dependence on
the integrated signal only, cf. Eqs. (17) and (18). Also, both
signals lead to similar stress profiles in the stationary activated
state, cf. Fig. 5(b), showing only small differences in the
internal stress (deviation) field s in the stationary perturbed
state, but rather large ones in the internal flow field u̇. There
the fields with Gaussian activation are much smoother, due to
the smoothness of the perturbation.

Concerning the temporal shape function �t we used a
box signal (with ton = 6 and toff = 31), a smooth tanh-box-
function, see Eq. (C8), as well as an exponential plateauing
function, Eq. (C9). Naturally, smoother shape functions
smoothen the dynamics. Nonetheless the same relaxation be-
havior toward the new stationary length after turning on the
signal and toward the initial length after turning off the signal
is obtained. The profiles in Fig. 5(b) agree for the temporal
shape functions in the region where the length is relaxed to-
ward the new stationary length during optogenetic activation.
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Note that, for the given parameters, the exponential shape
function yields slower dynamics and the new equilibrium
length is reached only at the end of activation.

These results suggest that the exact form of the temporal
shape function is not of significance for the modeling of the
cell’s behavior, provided the turn-on and turn-off process is
of short duration compared to the time of the optogenetic
perturbation in total. For slowly changing activation the tem-
poral shape function determines the exact shape of the length
change (cf. the exponential shape function). In the follow-
ing we hence mostly focus on the box shape functions for
simplicity.

C. Asymmetric activation and kymographs

We know from our previous analysis that motile steady-
state solution states that are initially symmetry broken
resymmetrize on a short timescale. We now investigate asym-
metric optogenetic activation, actively breaking the symmetry
in the cell, with the aim to effect motile states, at least when
using comoving activation.

We performed simulations with flat initial profiles to which
an optogenetic perturbation is applied with temporal and spa-
tial box signals and an asymmetric spatial shape function �s.
To roughly characterize the spatial asymmetry we introduce
an asymmetry parameter

δ = uoff + uon

2
− 1

2
∈

[
−1

2
,

1

2

]
, (19)

where δ < 0 (δ > 0) characterizes the offset of the optoge-
netic signal to the left (right) with respect to the cell’s center.

Figure 6 investigates the case of a comoving activation
signal. Figure 6(a) shows that the stationary length does not
change with different asymmetry parameter δ, which again
verifies that the integrated optogenetic signal determines the
dynamics of the cell’s length. Figure 6(b), however, shows that
the cell velocity increases for signals with larger δ, implying
that optogenetic activation in the cell’s periphery has a larger
effect than in the cell’s center. This is in accordance with the
fact that a larger δ leads to larger asymmetry in the cell, as
can be also seen in the profiles in Fig. 6(c). During activation
a larger asymmetry in the stress deviation and the flow pro-
file can be observed. The velocity is positive for a negative
δ, meaning that asymmetric optogenetic signals that lead to
additional contractions determine the polarity of the moving
cell with the additional contraction in the trailing half, which
is in accordance to both experimental [10,11] and theoreti-
cal [18,52] observations. Note that we have resymmetrization
and motility arrest rapidly after the optogenetic signal has
been switched off (at the end of the shaded gray area in Fig. 6)
in accordance with our expectation from our previous results.

We next compared the two different experimentally acces-
sible protocols—fixing the activation in either the comoving
or the laboratory frame—again using box-shaped signals.
Figure 7 shows kymographs, i.e., the positions of material
points as a function of time, and the cell length and velocity
as previously. The kymographs are plotted twice, the upper
panels using the internal coordinate system (u) and the lower
panels the fixed laboratory coordinates (x).
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FIG. 6. Finite-volume simulations for asymmetric activation
with temporal and spatial box shape functions and for different asym-
metry parameters δ, cf. Eq. (19). Panel (a) shows the length of the cell
L (in units of L0) as a function of time for a signal fixed in comoving
coordinates. Panel (b) shows the cell’s velocity Ġ and in panel (c) the
stress deviation from the boundary condition s = [σ + (L − 1)] and
the internal velocity field u̇ are shown for the time points indicated
by the gray axis ticks in panels (a) and (b). The shaded area in panels
(a) and (b) marks the time window of activation, here from ton = 1
to toff = 26. Parameters: T = 0, L = 1, L(0) = 0.5, σact = 0.5, ε =
0.4, uon(t = 0) = 0.4 + δ, uoff (t = 0) = 0.6 + δ.

Figure 7(a) shows the result for a perturbation fixed in the
comoving frame. We see that the signal in this frame moves
with the cell in the laboratory system (lower panel), but stays
fixed in width upon length changes of the cell, as it should.
After a short adaptation period, the cell’s velocity becomes
constant and the cell attains a constant velocity, as can be
also seen from Figs. 7(c) and 7(d). During the activation the
material flows toward the activation center, which can also be
seen in the flow profiles u̇ in Fig. 6(c). Finally, as expected,
the motility arrests shortly after the signal ends.

Figure 7(b) shows the simplest experimental protocol,
where the signal is fixed in the laboratory frame, in compari-
son. One can see that the cell contracts and moves aside until it
has “escaped” the activation region. After that it relaxes again
to the stationary length without optogenetic perturbation, L̂,
without moving the trailing edge into the region of activation.
Overall the cell has moved a certain fraction of its size only.

As a last study we investigated the effects of the temporal
on-off dynamics of the signal on the internal flow, consid-
ering for simplicity again a central perturbation that can be
compared to existing experiments. Figure 8 shows the two ver-
sions of the kymographs for a temporal box signal [Fig. 8(a)]
and the, more realistic, exponentially plateauing activation
signal [Fig. 8(b)], that was successfully used in Ref. [32].
Note that our one-dimensional model shares some general
features with the model proposed there for the dynamics along
stress fibers in fibroblasts: in Ref. [32] also an active Maxwell
model was considered, but with elastic coupling to the sub-
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FIG. 7. Shown are kymographs (space-time plots) for an applied
optogenetic activation signal that is comoving with the cell (a) or
fixed in the laboratory frame (b), respectively. The curves traced in
panels (a) and (b) correspond to trajectories of material points and the
value of the box shape function �, corresponding to the optogenetic
activation strength, is depicted in red. The thick lines are the cell
boundaries. The upper panels in panels (a) and (b) show the flow in
internal coordinates (u) and the lower panels in the laboratory frame
(x). Panels (c) and (d) show the resulting cell length and velocity, re-
spectively. Asymmetric box signals with uon(t = 0) = 0.2, uoff (t =
0) = 0.4, ton = 1, toff = 26 were applied. Other parameters: T = 0,
L = 1, σact = 0.5, ε = 0.4.

strate while the in-plane boundary conditions were free. The
kymographs in Figs. 8(a) and 8(b) show inwards flow of the
material during activation, even outside the activation region.
Figure 8(c) shows again the cell’s length. As soon as the signal
ends, the flow is reversed and the material returns to the initial
configuration. This is in qualitative agreement to the exper-
imentally obtained kymographs in Ref. [32], as exemplified
in Fig. 8(d). Comparing the temporal profiles, we see that the
activation and adaptation periods that are modeled with the
exponential plateauing function lead to smoother changes in
the trajectories, matching the experimental results better, but
no further qualitative changes are observed.

IV. EFFECT OF POLYMERIZATION

A. Model definition

In motile cells one typically observes an increased actin
polymerization at the leading edge, usually triggered by acti-
vation of signaling proteins like Rac1 or Cdc42. Due to the
mechanical resistance of the cell membrane, this protrusion
is partially converted into retrograde flow. In nonmotile yet
spreading cells, both protrusive activity and retrograde flow
are symmetric, occurring along the whole cell periphery. To
complement our analysis by these important features, we now
consider polymerization at the boundaries by introducing the
polymerization velocities v±

p for the right and the left edge,
respectively. We assume that the local polymerization velocity
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FIG. 8. Kymographs for optogenetic activations with different
time profiles. The curves in panels (a) and (b) correspond to tra-
jectories of material points and the value of the shape function �,
corresponding to the optogenetic activation strength, is shown in
color. The thick lines are the cell boundaries. The upper panels in
panels (a) and (b) show the flow in internal coordinates (u) and
the lower ones in the laboratory frame (x). The panels compare
a temporal box signal (a) to an exponentially plateauing signal
(b), both with uon(t = 0) = 0.4, uoff (t = 0) = 0.6, ton = 1, toff = 8.
Panel (c) shows the resulting cell length and panel (d) an experimen-
tal kymograph along a stress fiber upon optogenetic activation in the
box region (modified from Ref. [32]). Parameters: T = 0, L = 1,
σact = 0.5, ε = 0.4.

acts in addition to the internal flow velocity ∂xσ (l±(t ), t )/ξ
from Eq. (5), i.e.,

l̇± = 1

ξ
∂xσ (l±(t ), t ) + v±

p . (20)

Note that in general these kinematic boundary conditions
do not conserve gel mass. To achieve this, one had to con-
sider additional bulk depolymerization and conservation laws,
which we neglect here, in agreement with our assumption
from above that the gel is infinitely compressible. We again
restrict our discussion to the purely viscous case and obtain,
cf. Eqs. (8) and (16), the modified nondimensionalized BVP

L2 1

L2
∂2

u s − s + (L − 1) = −σact − ε�,

s(u±) = 0, ∂us(u±) = Ll̇± − Lv±
p . (21)

The equation for s can be solved using the Green’s func-
tion. For this we assume box-shaped temporal and spatial
shape functions, where activation is between uon and uoff . In-
serting this solution into the equation for L̇ = l̇+ − l̇− results
in an ODE for the length, similarly to Eq. (11). The equation
for the general case, Eq. (D2), is given in Appendix D, with
special cases discussed in more detail below. Based on the
length in the steady state, the corresponding velocity can be
determined via V = (l̇+ + l̇−)/2 and yields Eq. (D3). Im-
portantly, the resulting length equation only depends on the
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polymerization velocity difference �vp = v+
p − v−

p , while the
cell’s center of mass velocity only depends on the average
velocity vp = (v+

p + v−
p )/2. Our results are in agreement to

previous findings for a fixed length [53,54]. In the following
we discuss instructive examples to demonstrate the effect of
polymerization while keeping the focus on flows effected by
active contraction.

B. Half-activated, symmetrically spreading cell

First we consider a half-activated cell with uon = 0 and
uoff = 1/2. In that case we can simplify the length Eq. (D2) to
read

L̇ = − 1

L [2σact + 2(L − 1) + ε] tanh(L/2L) + �vp. (22)

The steady-state equation L̇ = 0 then leads to an algebraic
equation determining the steady-state length. Knowing this
length, the velocity can be calculated according to Eq. (D3)
to be

V = vp + ε

2L tanh(L/4L). (23)

To determine the steady state, we can therefore either in-
tegrate the BVP Eq. (21) using the finite-volume method as
before, or use numerical root finding methods to solve the
algebraic equation for the length and insert the result into the
equation for V .

Looking at Eqs. (22) and (23) one finds that the viscous
length scale L enters as a saturation parameter for the length
dependence in the tanh-term. Hence, it determines how far the
system is in the nonlinear regime for polymerization �vp and
vp added to the unperturbed steady state (without activation)
L̂ = 1 − σact and V = 0 and consequently determines the
strength of the effect of polymerization. It does not, however,
change the qualitative behavior, which was verified numeri-
cally. As optogenetic activation enters in the part depending
on L, L also serves as a weight determining the relative
strength of polymerization vs. optogenetic effects. This is true
irrespective of the choice for uon/off (cf. Appendix D). In the
following we therefore focus on the case L = 1.

For a symmetrically spreading cell, the polymerization ve-
locities point outwards at both edges with equal magnitude,
i.e., v+

p = −v−
p , corresponding to the nonpolarized nonmotile

state of a cell with retrograde actin flow. While vp = 0, we
have a positive polymerization velocity difference �vp. From
Eq. (22) one expects that the length increases for �vp > 0.
Figure 9 shows the steady-state length L and velocity V as
functions of �vp and the activation strength ε. We see that in-
deed the length increases with larger polymerization velocity
differences. For negative �vp we have the opposite effect, un-
til the spring and anterograde actin flow are not able to balance
both the contractile active stress and the depolymerization and
the cell collapses, resulting in a saddle-node bifurcation, cf.
Fig. 9(a). However, this case is biologically not really relevant,
as such anterograde flow has only been observed at concave
cell edges [55], which are not found at both edges along the
motility axis in single-cell motility experiments.

One also sees that increasing the optogenetic activation
strength ε leads to additional contractions, as observed earlier.
The velocity of the cell, which is positive due to the activation

FIG. 9. Shown are steady-state length and velocity for the half-
activated symmetrically spreading cell (i.e., box signal from uon = 0
to uoff = 1/2) with opposite polymerization velocities at the trailing
and leading edge, i.e., v+

p = −v−
p . The sketch above depicts the

one-dimensional slab with activation in red and arrows indicating the
(de-)polymerization direction and strength. Panels (a) and (b) show
the length and velocity as functions of the polymerization velocity
difference �vp and panels (c) and (d) as functions of the optogenetic
activation strength ε. The symbols indicate finite-volume simulations
and the curves numerical solutions of the algebraic Eqs. (22) and (23)
for L̇ = 0. Stable solution branches are traced as solid, unstable ones
as dash-dotted curves. Other parameters: T = 0, L = 1, σact = 0.5.

of the left part of the cell, increases as �vp increases, indi-
cating that internal flow can strengthen contractile motility
initiation, even if no symmetry breaking in the polymerization
is assumed, cf. Fig. 9(b). This can be attributed to the in-
creased length, which implies a larger integrated optogenetic
stress in laboratory coordinates.

The dependence of the steady-state length on the opto-
genetic activation strength ε, shown in Fig. 9(c), changes
qualitatively as �vp switches its sign. For edge depolymer-
ization we see cell collapse for finite ε. For symmetrical
polymerization we find that the length does not collapse
anymore, no matter how large the additional asymmetrical
contractile stress is. This means that even for large perturba-
tions of the contractility the cell length remains stable. This
holds true also if the additional asymmetric contractile stress
is not interpreted as an optogenetic signal but rather as a
two-compartment model for cell motility, where the activation
region has an increased myosin concentration.

Overall this suggests the conclusion that symmetrical
polymerization at both edges could be employed to
assure cell stability and is able to do so even for large
contraction driven asymmetries. This represents an alternative
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stabilization mechanism to the previously proposed
dominance of the effective elastic constraint [42].
Note that this also could settle the issue of cell
collapse occurring frequently in similar models with
asymmetric spatially dependent myosin concentra-
tion fields, as an alternative to nonlinear elastic
coupling [18,42,43].

Making a connection to Sec. III, the there-discussed case
of �vp = 0 is special and marks the transition from insta-
bility to stability for increased activation strengths. Based
on Eq. (23) we see that the stable length is given by L =
1 − σact − ε/2, which verifies the previously found approxi-
mation L̂ap, Eq. (18), for the special case of � leading to a
vanishing integral over the stress field without the boundary
conditions s.

Coming back to Fig. 9, we find that the velocity is
nonmonotonous as ε increases, cf. Fig. 9(d). This is a conse-
quence of the competition of the increasing activation strength
ε and the concomitantly decreasing length L in Eq. (23) and
can be explained by using the integrated optogenetic contrac-
tile stress in laboratory coordinates, i.e.,

εL
∫ uoff

uon

�(u)du = εL

2
= ε(1 − σact − ε/2)

2
, (24)

where in the last step, we considered the steady-state length
for �vp = 0. The length decreases as ε increases, which leads
to a decreasing integrated contractile stress. In the case of
�vp = 0 this yields a downwards parabola, with zeros at
ε = 0 and ε = 2 − 2σact, similar to the velocity V shown in
Fig. 9(d).

C. Half-activated, symmetrically moving cell

Next we consider the case of a symmetrically moving cell
with equal depolymerization and polymerization velocities at
the trailing and leading edge, v+

p = v−
p , as proposed previ-

ously [38,39,41]. This implies �vp = 0 and vp = v+
p = v−

p .
According to Eqs. (22) and (23) we therefore expect that
the length now only depends on ε, as in the previous case
for �vp = 0, and not on vp, while the velocity is offset
by vp. This was verified numerically. Figure 10(a) shows that
the steady-state length is identical to the one found in the
symmetrically spreading case for �vp = 0 [cf. green curve
in Fig. 9(c)]. Figure 10(b) shows that the velocity still has a
parabolic dependence in ε with an offset given by vp.

Overall we find that the influence of polymerization is
decoupled into the antisymmetric component �vp influencing
the length L and the symmetric component vp adding an offset
to the velocity V . Importantly, this is the case for arbitrary
signal shapes and positions.

Let us now discuss the interesting question whether an
optogenetic signal can be used to stop a moving cell. Using
an asymmetric activation at the leading edge of a moving cell,
the movement can in fact be arrested for a signal tailored to
the polymerization velocity if vp is not too large.

We can make this statement more precise by considering
the example of a half-activated symmetrically moving cell
with vp < 0 (i.e., moving to the left) and �vp = 0 with ac-
tivation region from uon = 0 to uoff = 1/2 (i.e., the cell half
close to the leading edge). We first determine εmax, which is

FIG. 10. Shown are steady-state length and velocity for the
case of a half-activated symmetrically moving cell with equal
(de-)polymerization velocities at the trailing and leading edge, re-
spectively, i.e., v+

p = v−
p . The sketch depicts the one-dimensional

slab with activation in red and arrows indicating the (de-)
polymerization direction and strength. Panels (a) and (b) depict the
length and velocity as functions of the optogenetic activation strength
ε. The symbols indicate finite-volume simulations and the curves
numerical solutions of the algebraic Eqs. (22) and (23) for L̇ = 0.
Other parameters: T = 0, L = 1, σact = 0.5.

the activation strength that yields the maximum velocity V .
In Fig. 10(b) this corresponds to εmax ≈ 1/2; in general it is
given by the solution of

sinh

(
1 − σact − εmax/2

2L

)
= εmax

4L . (25)

Then motility can be stopped if |vp| is smaller than the opto-
genetic part of V [i.e., the one proportional to ε in Eq. (23)] at
this maxmimum εmax, or

−εmax

2L < −εmax

2L tanh

(
1 − σact − εmax/2

4L

)
� vp � 0. (26)

The arrest of cell movement therefore depends on the viscous
length scale L =

√
η/(ξL2

0 ), with larger L reducing the max-
imum stoppable polymerization velocity vp. This agrees with
the previous discussion of this length scale being a weighting
factor determining the relative strength of optogenetic versus
polymerization effects.

To assess whether an arrest of a motile cell is within experi-
mentally accessible ranges, let us briefly estimate the relevant
parameters. The viscosity and active stress can be estimated
from Refs. [18,32,45] to be η = 105 Pa s and σact = 103 Pa.
The typical size of a keratocyte is L0 = 20 μm. The drag
coefficient can vary depending on the substrate, for a medium
adhesion strength [45] we estimate ξ = 2 × 1014 Pa s m−2. The
cortex stiffness can be estimated to be k = 104 Pa [18,56,57].
These parameters imply L2 � 1.25 and σact � 0.1. The max-
imum activation can then be determined from Eq. (25) to be
εmax ≈ 0.9, which is slightly larger than the experimentally
found value, which is between ε = 0.1 to 0.5 [32]. Taking
ε = 0.5, we arrive for the estimate of the maximal stop-
pable average polymerization velocity at |vp| � 81 nm s−1,
which is only slightly smaller than the experimentally found
polymerization velocity of actin (of the order of hundreds of
nanometers per second [58,59]). Note that this maximal ve-
locity could be larger in experimental realizations, due to the
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FIG. 11. Kymographs for the model with optogenetic activa-
tion and polymerization. The three different model variants differ
in the polymerization velocities (black arrows) and location of the
activation region (red) as shown schematically below the plots of
the material points (cell boundaries as thick black lines). In panel
(a) the symmetrically and in panel (b) the asymmetrically moving
cases with a stopping optical signal region are shown, with v±

p = 80
nm s−1 and v+

p = 200 nm s−1, v−
p = −40 nm s−1, respectively. In

panel (c) the symmetrically spreading case with a centered signal
with exponentially plateauing temporal shape function is shown with
v±

p = ±80 nm s−1. In panel (d) the velocites are shown for the three
cases. The parameters correspond to the experimentally relevant
parameters given in the text, i.e., L2 = 1.25, σact = 0.1, ε = 0.5,
T = 0.

increasing effect of outwards polymerization, i.e., �vp > 0,
on the optogenetically induced velocity, cf. Fig. 9(d).

D. Half-activated, asymmetrically moving cells

Asymmetric polymerization velocities occur, e.g., during
the transition into a polarized moving state or due to additional
regulatory processes. For outwards pointing v±

p we expect
to find a superposition of the length effect, caused by �vp,
and the velocity effect, caused by vp. Indeed, we found that
vp leads to an offset of the velocities (cf. Fig. 10), while
the behavior with respect to �vp is unchanged (cf. Fig. 9).
Numerically we find an overdamped relaxation toward the
motile steady state. The asymmetrical polymerization veloc-
ities are compensated for by asymmetrical flow patterns of
the actomyosin network, as visible in Fig. 11(b), leading to a
stable length and velocity. This shows the consistency of our
results, irrespective of the assumptions made on the boundary
polymerization.

To check the arrest of motion via optogenetics predicted
in the previous section and whether it is experimentally
accessible, we performed finite-volume simulations for the

previously described experimentally relevant parameters for
symmetrically moving and asymmetrically spreading cells.
Results are shown in Figs. 11(a) and 11(b), where we intro-
duced an activation region which lies outside the motile cell
and blocks the way in the direction of polymerization-driven
movement. For the realistic parameters we found that in both
cases the locomotion is arrested throughout the period of
activation and recommences after turn-off.

Upon increasing the average polymerization velocity vp,
first the symmetrically moving cell cannot be stopped any-
more and then even asymmetrically moving ones. The
velocity decreases until the edge of the activation region
aligns with the cell center, corresponding to the analytically
studied situation, and then increases again. The fast velocity
relaxation after turn-off, as evident from Fig. 11(d), indicates
that the time dependence is dominated by the movement of
the activation region’s edge and not by the cell’s adaptation,
which implies that the estimated limit Eq. (26) is attained as
upper boundary for the stoppable |vp| for �vp = 0.

E. Center-activated, symmetrically spreading cell

Finally, we considered a centered activation with the same
integrated signal (in internal coordinates) as in the previous
case, i.e., uon = 1/4 and uoff = 3/4. From the previous dis-
cussion we know that the length and velocity decouple from
the polymerization and that the length is primarily given by
subtracting the integral of the optogenetic activation stress
from the unperturbed stable length L̂. The equations for length
and velocity, Eqs. (D2) and (D3), now read

L̇ = − 1

L [2σact + 2(L − 1)] tanh(L/2L) + �vp

− 2ε

L
cosh (3L/4L) − cosh (L/4L)

sinh (L/L)
, (27)

and we simply have V = vp. The last term in Eq. (27), which
accounts for the optogenetic activation, shows only a relative
deviation to the corresponding term in the asymmetrically
half-activated cell of 3% for realistic parameters and |L/L| �
1. We therefore obtain similar results for the lengths as in the
half-activated cell. However, we do not have any symmetry
breaking in the activation, as the velocity is solely determined
by the average polymerization velocity vp and does no longer
depend on �vp and ε. The respective kymograph for a signal
fixed in comoving coordinates is shown in Fig. 11(c).

V. SUMMARY AND CONCLUSIONS

Here we have analyzed a mathematical framework that
allows us to study the effect of optogenetic activation of
contractility on cell spreading and migration. The cell is mod-
eled as an active gel with Maxwell viscoelasticity, reflecting
the viscous nature of the actomyosin cytoskeleton on long
timescales. However, by using elastic boundary conditions,
we also represent the fact that cells have a typical size that
is controlled by other processes not explicitly included here
(e.g., volume control by ion channels). Optogenetic activation
was introduced in the governing equation for the stress as a
localized additional contribution to the active stress. While
the spatial part of the activation profile corresponds to the
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typical laser profiles used in experiments, the temporal part is
set by the reaction-diffusion system of the used optogenetic
construct. Here we have used generic shapes which in the
future could be replaced by experimentally measured transfer
functions.

In the basic version without optogenetic activation and
without polymerization, the proposed simple model has
only one steady state, which is the resting state, i.e., non-
motile. Upon perturbation, the contractile model has different
timescales for length relaxation (slow) and for resymmetriza-
tion of internal stress and flow profiles (fast). In the purely
viscous limit, resymmetrization is instantaneous (as the an-
alytical solution is symmetric). In the viscoelastic case, the
resymmetrization timescale is determined by the ratio of the
renormalized Maxwell relaxation time and the squared rel-
ative length scale, T /L2, i.e., the only two dimensionless
parameters. The model describes generic features of spreading
cells well, but is too simple to describe spontaneous motility.

Optogenetic perturbations can be applied both in labo-
ratory and comoving frames and we discussed both cases
throughout this work. Since no motile steady state exists in
our basic model, after optogenetic activation has ceased, the
cell relaxes back to the only existing steady state, which is
the resting one. Our study of various shape functions gave the
following general results: The specific spatial shape function
does not matter for the cell’s length adaptation, only the inte-
grated signal is important. The asymmetry of the signal does
not matter for the length change, but it does matter for the
transient motility: the closer to the boundary the perturbation,
the faster the cell moves. For the temporal shape function,
the exponential protocol yields best results when compared
to experiments. It is possible to use simpler shape functions,
but care has to be taken for a consistent modeling in case
the adaptation time to the signal exceeds the experimental
activation time.

The only way to achieve persistent motility in the contrac-
tion model is to use asymmetric optogenetic activation in the
comoving frame, which should be experimentally realizable.
When using an asymmetric activation that is stationary in
the laboratory frame, the cell escapes the activation signal
and then settles down. Upon symmetric (central) activation,
the internal flow profiles are dominated by the length change
with additional flow toward the activation region. This finding
agrees qualitatively with experimental results for dynamics of
stress fibers in fibroblasts [32].

To increase complexity and include an important biological
effect that usually is also present in cells, we also consid-
ered the effect of polymerization. Because here we focus
on the role of contractility, we included polymerization as
a boundary effect; future work could also study bulk effects
of polymerization, but our approach seems appropriate since
actin polymerization for cell migration is usually effected by
signaling processes at the plasma membrane. In our theory,
the effects of polymerization can be decomposed into the
polymerization velocity difference (the outwards versus in-
wards pointing antisymmetric part of the velocities) and the
average polymerization velocity (velocities pointing in the
same directions). The velocity difference couples to the length
and outwards polymerization stabilizes the solution such that
large optogenetic activations still yield positive lengths. Since

the activation can also be interpreted as an inhomogeneous
contractile stress resulting from cell-internal processes, this
suggests a general stabilization of cell shape through polymer-
ization. The average velocity, in turn, leads to an offset adding
to the total cell velocity.

For a symmetrically spreading cell we find that opto-
genetic activation can induce motility. It also can control
polymerization-driven motility and it can arrest moving cells
in a parameter range that can be estimated analytically and
that includes the experimentally relevant parameters. These
results suggest that it is an attractive experimental strategy to
affect cell migration in a situation in which the cell already
shows protrusive activity.

To conclude, the simple model discussed here allows for
detailed studies of the effect of optogenetic perturbations
on spreading and moving cells. However, in the absence of
polymerization, cells in the model cannot maintain a broken
symmetry on their own and there is no bistability of rest-
ing and moving states. Therefore, it would be interesting to
study—along the same lines as developed here—more com-
plex models that include internal degrees of freedom, e.g.,
the spatial concentration profile of motors [18] or nonlinear-
ities, because both would allow the cell to maintain a broken
symmetry. A motor concentration field would also allow us to
separate the effects of having more motors due to assembly
and having higher levels of motor activity, a distinction that
cannot be made in our simple model. Interestingly, however,
this distinction can also not necessarily be made in optoge-
netic experiments with the Rho-pathway, which activates both
myosin II minifilament assembly and myosin II motor head
cycling.

Another interesting direction for future work is the consid-
eration of dimensionality. Optogenetics explicitly allows for
controlled spatial activation and therefore flows could also
be controlled in two or even three dimensions. For instance,
experimentally a curvature dependence of the actin flow at
the cell edge has been observed [55]. Extensions of active gel
models with myosin concentrations [60,61] to two dimensions
have already been proposed and now could be used to explore
the effect of nontrivial spatial profiles. In general, our ap-
proach can be used also for the inverse problem of predicting
appropriate illumination patterns for a desired kind of flow or
movement, and this not only for cells but also for biomimetic
systems like synthetic cells.

ACKNOWLEDGMENTS

This research was conducted within the Max Planck School
Matter to Life supported by the German Federal Ministry of
Education and Research (BMBF) in collaboration with the
Max Planck Society. We also acknowledge support by the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation)—Projektnummer 390978043. U.S.S. is a mem-
ber of the Interdisciplinary Center for Scientific Computing
(IWR) at Heidelberg.

APPENDIX A: LACK OF MOTILE STEADY STATES

Introducing y1(u) = (L/L)s(u) and y2(u) = ∂us(u) − V L,
Eq. (8) can be rewritten in two-dimensional phase space to
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read

∂uy2 = + T
L2

(V L)y2 + T
L2

(y2)2 + L

Ly1

− L2

L2
(L − 1) − L2

L2
σact,

∂uy1 = L

Ly2 + L

LV L. (A1)

The boundary conditions then imply y1(0) = y1(1) = 0 and
y2(0) = y2(1) = 0. For V �= 0 we only have one fixed point,
which is not at (0,0). This means that a solution to the original
problem must correspond to a periodic orbit with period 1,
starting and ending at (0,0).

However, Eq. (A1) is a gradient system with potential

V (y1, y2) = − T
L2

(V L)
1

2
(y2)2 − T

L2

1

3
(y2)3 − L

Ly1y2

− L

L (V L)y1 + L2

L2
[(L − 1) + σact]y2, (A2)

and hence cannot have any closed orbits [50], thus proving
the nonexistence of motile steady states. Note that V (y1, y2)
without the cubic (y2)3 term constitutes a potential for the
linear Maxwell model.

APPENDIX B: NUMERICAL IMPLEMENTATION

We introduce the rescaled stress field σ̂ = Lσ into the
BVP, Eq. (14), and transform into internal coordinates. By
denoting the cell’s center by G = (l+ + l−)/2 and defining the
advection velocity field

v̂(u, t ) = Ġ(t )

L(t )
− L̇(t )

L(t )

(
1

2
− u

)
, (B1)

Eq. (14) becomes an advection-diffusion equation with source
term for the stress field σ̂ :

T ∂t σ̂ = ∂u

[(L2

L2
+ T

L2
ε�

)
∂uσ̂

]

+ ∂u

[(
v̂ − T

L3
∂uσ̂

)
σ̂

]
− T L(v̂ε∂u�) + T L(ε∂t�)

+ T
L3

[
σ̂ ∂2

u σ̂ − ε�L∂2
u σ̂

] − σ̂ + σactL + εL�.

(B2)

The boundary condition for σ̂ and the time evolution of L and
G are given by

σ̂ (0, t ) = σ̂ (1, t ) = −L(L − 1), (B3a)

L̇(t ) = l̇+(t ) − l̇−(t ) = ∂uσ̂ (1, t ) − ∂uσ̂ (0, t )

L2
, (B3b)

Ġ(t ) = l̇+(t ) + l̇−(t )

2
= ∂uσ̂ (1, t ) + ∂uσ̂ (0, t )

2L2
. (B3c)

Equation (B2) was solved using the finite-volume method,
using FiPy [62]. σ̂ was discretized on a regular mesh with
nmesh = 50 mesh points without optogenetic signals and an
increased spatial resolution of nmesh = 400 for simulations
with optogenetic perturbations. The nonlinearities in Eq. (B2)
were solved iteratively by solving the linear finite-volume

system with inserted nonlinear coefficients until the residual
vector of our solution from the nonlinear part had a norm
<10−8 [62].

Given the initial data, Eqs. (B2) and (B3a) were integrated
using the upwind finite-volume scheme [63]. Based on the re-
sulting stress field, Eqs. (B3b) and (B3c) were then integrated
using Euler stepping.

APPENDIX C: FORMULAS OF DIFFERENT
SHAPE FUNCTIONS

In the following we assume a spatial extension of the signal
given by uon, uoff ∈ [0, 1] in internal coordinates at time t = 0
for all formulas.

A shape function in the cell’s comoving system moves with
the center of the cell, G, but stays constant in width in the
laboratory frame. Defining

aon/off = L(0)

L(t )

(
uon/off − 1

2

)
+ 1

2
, (C1)

and using the characteristic function χA for set A [64], a
comoving box signal then reads

�cm
box(u, t ) = χ[aon,aoff](u), (C2)

in internal coordinates u. Note that aon/off arises when the orig-
inal uon/off ∈ [0, 1] is transformed into the comoving frame
by xon/off(t = 0) − G(0) = L(0)(uon/off − 1/2), then moved
along with the cell as xon/off(t ) = xon/off(0) − G(0) + G(t )
and finally mapped back into the u frame.

A signal that stays constant in the laboratory system (i.e., in
the x coordinates) moves in internal coordinates a (rescaled)
distance

g(t ) = G(t ) − G(0)

L(t )
(C3)

during time t and hence the signal reads

�x
box(u, t ) = χ[aon−g(t ),aoff−g(t )](u). (C4)

Since experimental laser spots are not box functions, we
also studied smooth Gaussian signals with center μ ∈ [0, 1]
and width ω in internal coordinates. The normalizations are
chosen such that the integral

∫
�s(u, t )du of the Gaussian

signal is identical to the one of a box function with ω =
(uoff − uon)/2.

Defining the rescaled center and width,

μ̃ = L(0)

L(t )

(
μ − 1

2

)
+ 1

2
, ω̃ = L(0)

L(t )
ω, (C5)

respectively, the resulting shape functions are

�cm
Gauss(u, t ) ≡ �cm

Gauss(u, t ; μ̃) =
√

2

π
exp

(
− (u − μ̃)2

2ω̃2

)
,

�x
Gauss(u, t ) = �cm

Gauss(u, t ; μ̃ − g(t )). (C6)

For the temporal shape functions, with turn-on and turn-off
times ton and toff , respectively, the box function reads

�box
t (t ) = χ[ton, toff ](t ). (C7)

024406-13



DROZDOWSKI, ZIEBERT, AND SCHWARZ PHYSICAL REVIEW E 104, 024406 (2021)

We also studied a continuous version of the box signal, using
smooth tanh-functions

�tanh
t (t ) = 1

2
tanh

(
2(t − ton)

α(toff − ton)

)
tanh

(
2(toff − t )

α(toff − ton)

)
+ 1

2
,

(C8)

where α (α = 0.1 for the given parameters) determines the
sharpness and was chosen such that the shape function is
almost at 1 respectively 0 at t = ton ± α(ton − toff ) and t =
toff ∓ α(ton − toff ). Finally, as suggested by Ref. [32], we also
considered

�
exp
t (t ) =

{
1 − exp

(
− t − ton

α(toff − ton)

)}
χ[ton,toff )(t )

+ [1 − exp (−1/α)] exp

(
− t − toff

α(toff − ton)

)

× χ[toff ,∞)(t ), (C9)

which is an exponential plateauing function with (de-)
activation time α(toff − ton), implementing that activation and
deactivation have approximately the same time constants
(here we take α = 0.2).

APPENDIX D: FULL EQUATIONS FOR LENGTH AND
VELOCITY WITH ACTIVATION AND POLYMERIZATION

Based on the solution of Eq. (21) we can derive the ODE
for the length relaxation for a shape function of � = χ[uon,uoff ].
The activation results in an additional term from integrating
the Green’s function in the activation region and evaluating
the result at the boundary. We introduce

I (ζ0, ζ1) ≡ cosh
(

L
Lζ0

) − cosh
(

L
Lζ1

)
sinh

(
L
L

) . (D1)

Similar to Eq. (11), we obtain for the length

L̇ = − 1

L [2σact + 2(L − 1)] tanh(L/2L) + �vp

+ ε

L [I (uon, uoff ) − I (1 − uon, 1 − uoff )], (D2)

where we introduced the polymerization velocity difference
�vp = v+

p − v−
p . If we know the steady-state length, then we

can calculate the velocity directly by inserting it into

V = vp + ε

2L [I (uon, uoff ) + I (1 − uon, 1 − uoff )], (D3)

where vp = (v+
p + v−

p )/2 is the average polymerization
velocity.
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