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Increased oscillatory power in a computational model of the olfactory bulb
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Several neurodegenerative diseases impact the olfactory system, and in particular the olfactory bulb, early in
disease progression. One mechanism by which damage occurs is via synaptic dysfunction. Here, we implement a
computational model of the olfactory bulb and investigate the effect of weakened connection weights on network
oscillatory behavior. Olfactory bulb network activity can be modeled by a system of equations that describes a set
of coupled nonlinear oscillators. In this modeling framework, we propagate damage to synaptic weights using
several strategies, varying from localized to global. Damage propagated in a dispersed or spreading manner
leads to greater oscillatory power at moderate levels of damage. This increase arises from a higher average level
of mitral cell activity due to a shift in the balance between excitation and inhibition. That this shift leads to
greater oscillations depends critically on the nonlinearity of the activation function. Linearized analysis of the
network dynamics predicts when this shift leads to loss of oscillatory activity. We thus demonstrate one potential
mechanism involved in the increased gamma oscillations seen in some animal models of Alzheimer’s disease,
and we highlight the potential that pathological olfactory bulb behavior presents as an early biomarker of disease.
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I. INTRODUCTION

The olfactory system, and in particular the olfactory bulb
(OB), is implicated in early stages of a number of neu-
rodegenerative diseases, including two of the most prevalent,
Alzheimer’s disease (AD) and Parkinson’s disease (PD) [1–3].
In both AD and PD, olfactory deficits occur years before diag-
nosis and often before other symptoms [2,4–9]. Furthermore,
the OB is a site of early pathology in both diseases [7,10–15],
with resulting aberrant neural activity [16–21]. We hope that
computationally modeling olfactory bulb activity in disease-
like conditions can help to further shed light on mechanisms
of dysfunction, identify markers of disease, and bring atten-
tion to the opportunity the OB presents for earlier diagnosis
of neurodegenerative illnesses.

The OB is the first processing area for incoming odor
information [22], but exactly how it is represented is an on-
going question for which there are various theories, mainly
revolving around combinatorics of principal neuron activ-
ity [23–26]. Oscillations in neural activity in the bulb may
also play a part in encoding odor identity, and they are
likely important to odor recognition or information trans-
fer, or both [27]. Neural networks can exhibit a variety
of dynamical behaviors [28]; the push-pull nature of the
excitatory-inhibitory interactions of the OB make it an in-
teresting example of a nonlinear oscillator [29]. In addition,
studying the robustness of the system’s oscillations has rele-
vance to the neurodegenerative diseases mentioned above.

The oscillatory behavior of the OB in the gamma range
(40–80 Hz) is driven by reciprocal synaptic interactions
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between the dendrites of excitatory mitral cells and in-
hibitory granule cells [27,30] (also called dendrodendritic
synapses [31]). That is, mitral cells excite granule cells,
which in turn inhibit the mitral cells, leading to gamma
band oscillatory activity. Other frequencies of oscillations
are present in the bulb as well, namely theta (2–12 Hz) and
beta (15–30 Hz). The precise manner in which PD or AD
impacts these oscillations and other OB functions is still a
matter of investigation [1,2], although studies have found
perturbations in this oscillatory activity in animal OBs in
the presence of both PD-like pathology [16,32] and AD-like
pathology [18–21,33].

More generally, the effects of PD and AD pathology on
neurons is a very active area of study, with various alterations
of neuron function resulting from overexpression or injection
of pathological protein (see [34,35] for reviews of PD pathol-
ogy, see [36–38] for reviews of AD pathology). Synaptic
dysfunction is one effect for which there is evidence in both
AD [39,40] and PD [41–44], with studies finding (for exam-
ple) decreased spine density [17,19,45], decreased synaptic
proteins [19,20], reduced vesicle release [46], increased
synaptic junction distance [20], and decreased synaptic trans-
mission [47].

Computational studies of the effects of AD on neural net-
works have focused largely on the hippocampus and cortical
areas, especially effects on memory formation and storage
(see [48] for review). In PD, most computational models
simulate various effects of dopamine loss in the basal ganglia
network, exploring changes in network output and oscillatory
activity, as well as effects of deep brain stimulation therapy
(see [49,50] for reviews). Importantly, we are not aware of any
works that examine the impact of neurodegenerative damage
on a computational model of the olfactory bulb.
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Many excellent and insightful computational models of
the OB exist [51], focusing on various aspects of the olfac-
tory system, such as generating oscillatory behavior [52–54],
glomerular layer computations [55], and odor computations
and representation [25,56].

In the present study, we implemented the Li-Hopfield
model [52], a rate-based model with units representing small
populations of neurons. The model replicates gamma band
oscillatory activity found in the OB [see [52] compared to
electroencephalogram (EEG) studies [57] and microelectrode
recordings of extracellular potential, also called local field
potentials [58]]. The oscillations are produced solely via in-
teraction between model mitral cell (MC) units and granule
cell (GC) units, as supported by findings that dendrodendritic
interactions between MCs and GCs alone were sufficient for
gamma band oscillatory activity [58,59]. While the model
excludes certain aspects of the OB network (such as beta oscil-
lations [60]), it captures some key behaviors, and its simplicity
enables semianalytical and numerical treatments that are not
accessible in more complex models.

The original Li-Hopfield work only implemented a one-
dimensional (1D) connection architecture; here, we expand
the model to various sizes and 2D connection structures. We
found that the 1D and 2D networks operate similarly, but in
different regimes. Importantly, on the scale of the original
Li-Hopfield model, we found that for some types of damage,
2D networks show a significant enhancement of gamma oscil-
latory power at moderate levels of damage to the connections
between MCs and GCs. Analysis of the model network’s
behavior shows that this results from an increased excitability
of the MC population due to a reduction of inhibition, with
the nonlinearity of the activation function being essential. The
balance of excitation and inhibition is important for robustness
of oscillatory activity. As a result, we would expect to see an
increase in oscillatory power at moderate levels of damage to
the reciprocal connections between excitatory and inhibitory
cells in these types of oscillatory networks.

For the remainder of this paper, we first detail the gov-
erning equations of the Li-Hopfield model and describe how
the model is modified for larger sizes and 2D connection
structure. We then lay out the method of delivering damage
to the network and explain how oscillatory activity in the
network is characterized. The resulting increase in oscillatory
activity and the underlying mechanisms are explored, with ob-
servations about the differences between 1D and 2D networks.
Finally, we discuss the relevance to experimental studies, the
limitations, and the future directions of the work presented
here.

II. METHODS

A. Li-Hopfield model

The Li-Hopfield model describes the internal state (rep-
resentative of membrane potential) and output state (or cell
activity, representative of firing rate) of mitral and granule
cells over an inhale-exhale cycle. Each MC and GC model
unit represents a subset or small population of MCs or GCs,
with the weight matrices H0 and W0 representing the dendro-
dendritic synaptic connections between MCs and GCs. For

TABLE I. The parameters for the model are as given by Li and
Hopfield [52,61]. The model is evaluated at time steps representing
1 ms and runs for 395 ms. Thus all times t below are in ms.

Parameter Value

Ib,i 0.243
Ic,i 0.1
α 0.15

gy(yi )

{
2.86 + 2.86 tanh( yi−1

2.86 ) if yi < 1
2.86 + 0.286 tanh

( yi−1
0.286

)
if yi � 1

gx (xi )

{
1.43 + 1.43 tanh( xi−1

1.43 ) if xi < 1
1.43 + 0.143 tanh

( xi−1
0.143

)
if xi � 1

Iodor,i

⎧⎨
⎩

0 if t < 25
0.00429(t − 25) if 25 � t < 205
0.00429(t − 25)e−0.03(t−205) if t � 205

simplicity, MC-MC and GC-GC interactions are not consid-
ered here since synaptic interactions in the region giving rise
to gamma oscillations are predominantly reciprocal MC-GC
synapses [30,58,59].

The model is governed by the following set of equations:

ẋ = −H0 gy(y) + Ib + Iodor(t ) − αx, (1)

ẏ = W0 gx(x) + Ic − αy, (2)

where x and y are vectors containing the internal state of
each MC unit and each GC unit, respectively. The functions
gx(x) and gy(y) are sigmoidal activation functions [52] that
translate internal state into output state, Ib is tonic uniform
background excitatory input to the mitral cells, Ic is tonic
uniform excitatory centrifugal input to the granule cells, and
α is the decay constant, which is taken to be the same for
mitral and granule cells in this model. Random noise is added
to Ib and Ic in the form given in the original Li and Hopfield
paper [52]. Iodor is excitation from the odor input, which rises
linearly with inhale and falls exponentially with exhale. In
principle, Iodor could have different levels of input for each
mitral cell. In the simulations here, we defined it to be uniform
for simplicity and because damage should affect all odors. The
exact functions and values for the parameters can be found
in Table I, and are as given in [52,61]. H0 and W0 are the
matrices that define the connections from granule to mitral
cells (inhibitory, as indicated by the negative sign) and from
mitral cells to granule cells (excitatory), respectively.

The weight matrices H0 and W0 dictate the connective
structure of the network. The original Li-Hopfield model
contained 10 MC units and 10 GC units, connected in mitral-
granule pairs, with each pair connecting to neighboring pairs
on a 1D ring [Figs. 1(a) and 1(b)]. For the work here, the
network was adapted to include larger numbers of MCs and
GCs. This was accomplished by initializing a matrix of the
desired size with entries of the same order of magnitude as the
original connection matrices, and then updating the nonzero
entries randomly until the desired behavior was achieved.
Because the interface between the dendrites of the MCs and
GCs, the external plexiform layer, lies on the surface of an
ellipsoid, matrices were constructed with 2D architecture for
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FIG. 1. The Li-Hopfield model. (a) Mitral cell units receive odor
input and excite the granule cell units, which in turn inhibit the mitral
cell layer. The connections between mitral and granule cell units
define a 1D ring structure. The networks implemented here have
20 units (mitral plus granule), 40 units, and 100 units. (b) Example
weight matrix defining a 1D periodic network. Light blue entries
are zero (no connection), dark blue signifies positive nonzero entries
(established connection). (c) Example of mitral cell output [gx (xi )]
over the course of a single inhale-exhale cycle. The inhalation peaks
at 205 ms, at which point the exhale begins. Parameters for the model
are found in Table I. Each mitral or granule cell unit should be
considered as representing a particular population of mitral cells.

each size in the same way (Fig. 2). Therefore, the model was
implemented in six different architectures: 20 units (mitral
plus granule), 40 units, and 100 units in 1D and 2D. It should
be noted that W0 in the original Li-Hopfield model included
extra connections that make the architecture not truly 1D.
These connections have been retained for the 1D 20 units
network, but they are not present in any of the other 1D
network structures. The specific matrices for each size can
be found on the Github repository (see the section on Code
Accessibility).

B. Damage

In our work here, we focus on damage delivered to the
weight matrices H0 and W0 (although damaging other network
components was also explored; see Appendix A). This was
partly informed by the numerous studies that point to synaptic
dysfunction as one salient effect of neurodegenerative pathol-
ogy [19,20,41–44,46]. Additionally, this aligns with the scope
of the Li-Hopfield model, which focuses on the gamma os-
cillations that arise from the excitatory-inhibitory interactions
between MCs and GCs.

FIG. 2. The 2D model. (a) The connections between mitral and
granule cell units are largely the same as in 1D, but extend in two
directions. (b) Example of a weight matrix structure defining a 2D
periodic network structure. Light blue entries are zero (no synaptic
connection), dark blue signifies positive nonzero entries (established
synaptic connection). Each MC unit connects to its GC pair, as well
as four other GC units. GCs connect to MC units following the same
pattern.

We measure damage to the network by δ, the fraction of
weight removed. In the case of W0, for example,

δ = 1 −
∑

i j Wdamaged,i j∑
i j W0,i j

, (3)

where W0 is the undamaged matrix and Wdamaged is the dam-
aged matrix.

In a given trial, damage is delivered to either H0 (the
synaptic connections from granule to mitral cells), or to W0

(the synaptic connection from mitral to granule cells). The
damage to the selected part of the network is increased, the
network runs at that damage level, and the activity is recorded.
The damage is propagated in one of three ways: flat damage
(FD), columnar damage (CD), or seeded damage (SD).

For FD, the damage is delivered to every element of the
selected matrix equally. This amounts to simply scaling the
chosen quantity uniformly. For example, if FD was applied to
H0, each element of H0 would be reduced by the same fraction
of its original value on each damage step. This continues
until the matrix is reduced to zero [see Fig. 3(a)]. FD thus
represents a global progression of pathology.

For CD, the damage is delivered to a specific matrix col-
umn (representing synaptic transmission from a particular
unit), ramped up until that element is reduced to zero, and then
that procedure is repeated successively on adjacent elements
until the maximum damage level is reached [see Fig. 3(b)].
For example, if CD was delivered to H0, damage would be de-
livered incrementally to a single column until it was reduced
to zero. The same process would then begin on the column
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FIG. 3. Schematic of damage propagation strategies. (a) Ex-
ample of FD delivered to H0 or W0 in the 1D 20 unit network.
(b) Example of CD delivered to H0 or W0 in the 1D 20 unit network.
Damage begins in a single column (in this case, column 6). For
CD, only up to half the matrix weight is removed, because in most
cases the network activity was already greatly disrupted by that point.
(c) Example of seeded damage delivered to H0 or W0 in the 1D 20 unit
network. Damage begins in a single column (in this case, column 6).

to the right, and this process is continued until half of the
columns are removed [Fig. 3(b)]. This is representative of a
very local pathological spread.

SD is a hybrid of FD and CD. Damage is first delivered
to a single column, and on the next damage step, damage
is delivered to that column again, as well as to neighboring
elements. For example, if SD was enacted on H0 in a 1D
network, it would begin on one column, say column 6. On the
subsequent damage step, the damage would then be delivered
to columns 5, 6, and 7. This spreading continues with each
damage level until the matrix is reduced to zero [Fig. 3(c)]. SD
thus represents a pathology that begins locally but becomes
more global as damage spreads.

C. Characterizing network oscillatory activity

The average oscillatory power, Pavg, is calculated by first
high-pass filtering the mitral cell activity above 15 Hz to
ignore theta band (2–12 Hz) activity, which was beyond the
scope of the present study. Next, the power spectrum [P( f )]
is calculated for each mitral cell from 125 to 250 ms using
Scipy’s periodogram function [63]. This time window cap-
tures the oscillatory behavior during the most active part of
the cycle [see Fig. 1(c)] while ignoring the spurious signals
that can arise at higher levels of damage that are not actually
due to gamma band oscillatory activity (see Fig. S2 [62]). The
power spectrum is then integrated over all frequencies, f , for
each cell (see Figs. 13 and 14 in Appendix B and Figs. S2
and S3 [62] for example power spectra) and averaged over the
mitral cell population (N) to get Pavg,

Pavg = 1

N

N∑
i=1

∫ ∞

0
Pi( f )df . (4)

FIG. 4. Effect on oscillatory power. (a) Average oscillatory
power (Pavg) for FD, CD, and SD delivered to H0 in the 2D 100 cell
network plotted against damage as a fraction of total synaptic weight
removed (damage level, δ). (b) Pavg for SD delivered to H0 in the 1D
and 2D 100 cell networks. FD and SD to H0 or W0 result in a rise in
Pavg for the 2D network, while CD to the 2D network and any kind
of damage to the 1D network do not in general (see Figs. 9–11 in
Appendix A for Pavg for each network and damage type). The sharp
peak in Pavg for FD to H0 at δ = 0.95 is due to a sharp rise and drop in
MC unit output states rather than to oscillatory activity, as illustrated
by Fig. 14 in Appendix B. Example cell activity at various δ and
associated power spectra can be found in Figs. S2 and S3 [62].

Each quantity is averaged over five trials with differently
seeded noise. For CD and SD, the trial is then repeated using
each cell as the starting point and the values are averaged
again over all starting cells.

D. Code accessibility

The simulations are run in Python using Scipy’s solve_ivp
function [63] on Ubuntu 18.04, and all code/software de-
scribed in the paper is freely available online [64].

III. RESULTS

A. Damage to W0 and H0

The effect of damage on average oscillatory power depends
on the damage scheme. FD and SD to H0 or W0 in 2D net-
works results in increases in Pavg at intermediate levels of
damage [Fig. 4(a)], but CD rarely shows an increase in Pavg

(see Fig. 10 in Appendix A). Thus, an increase of oscillatory
power requires global progression of damage to some degree.
While this rise in Pavg is ubiquitous among 2D networks with
FD and SD, Pavg decreases monotonically for most 1D cases
[see Fig. 4(b)]. For the work shown here, damage was only
delivered to either H0 or W0, but delivering damage to both
has a similar effect of increased oscillations at intermediate
levels of damage (see Fig. 12 in Appendix A) and relies on
the same principles presented hereafter.

The increase in oscillatory power in 2D networks results
from larger MC activity amplitude (as opposed to, say, re-
cruitment of previously inactive units). Figure 5 shows an
example cell from the 2D 100 cell network at no damage and
at the level of flat damage corresponding to the maximum
Pavg. The increase in amplitude shown is seen for all active
cells in 2D networks receiving FD. Similar effects are seen
for SD, though the following treatment will be done for FD
for simplicity.

The question is then why does the output state amplitude
increase? To understand this, we look at the internal state
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FIG. 5. Cell activity compared at different damage levels.
(a) Output state of mitral cell number 35 in the 2D 100 cell net-
work with no damage. (b) Output state of mitral cell number 35
in the 2D 100 cell network with FD to W0 at damage level 0.75
(Wdamaged = 0.75W0). This was the damage level at which average
oscillatory power was maximized.

of the MC units. The increase in output state amplitude is
not due to increased amplitude of internal state oscillations.
Rather, it is because of increased average internal state. As
a simple measure of internal state amplitude, we inspect the
largest peak and the lowest trough between 180 and 220 ms
(the time window during which output state oscillations are
the greatest) for active units (defined as units that had an
individual oscillatory power greater than 0.001). When the
null damage case is compared to the damage level at which
Pavg is maximized, the distance from peak to trough is similar
(0.7562 ± 0.0808 for δ = 0 and 0.6765 ± 0.1300 for δ at
which Pavg is maximized). The difference is in the increase
in the average internal state and how that translates into the
output state. Though both the minimum trough and the max-
imum peak increase, only the increase in maximum peak has
an effect on the output state because the trough still lies below
the threshold of the activation function (see Fig. 6). This
illustrates that the nonlinearity is essential for the increase in
Pavg to manifest.

The average internal state increase results from damaging
W0 or H0, which lowers the overall inhibition to the MC layer,
either directly (in the case of H0) or by reducing excitation to
the GC layer (in the case of W0). The dependence on H0 and
W0 is explored further in a simplified semianalytic approach
in the supplemental material [62].

In the Li-Hopfield work, to gain understanding of the full
numerical solution, an adiabatic approximation is made in
which the oscillations are modeled as variations around a fixed
point. This linearized analysis can explain the drop in Pavg that
follows the rise. Here, we summarize the analysis done by
Li-Hopfield; for a more detailed treatment, see the original
work [52]. Keeping the full network, we treat x and y as
deviations from the fixed points, and the governing equations
become

ẋ = −H0G′
y(y0)y − αx, (5)

ẏ = W0G′
x(x0)x − αy, (6)

where G′
y(y0) and G′

x(x0) are diagonal matrices resulting
from the linearized approximation of gy(y) and gx(x). Further

FIG. 6. Increase in average internal state results in increased
amplitude in output state. (a) Internal state of mitral cell number
35 in the 2D 100 cell network with no damage. (b) Internal state
of mitral cell number 35 in the 2D 100 cell network with FD to W0 at
damage level 0.75 (Wdamaged = 0.75W0). This was the damage level
at which average oscillatory power was maximized for FD to W0.
(c) Activation function gx (x), with dark brown marking the average
minimum trough and average maximum peak for 2D networks at
δ = 0, and light pink marking the same but at the damage level
corresponding to the maximum Pavg.

manipulation yields

ẍ + 2αẋ + (A + α2)x = 0, (7)

where

A = H0G′
y(y0)W0G′

x(x0). (8)

The analytical solution is x = xk exp −(α ± i
√

λk )t , where xk

is the kth eigenvector of A and λk is the kth eigenvalue. The
eigenvalues of A predict the presence of oscillatory behavior.
If

Re[i
√

λk] > α (9)

is satisfied, oscillations are present, with the eigenvalue that
results in the value highest above α dominating [52]. If
no eigenvalue satisfies the condition, oscillations die away
quickly.

As W0 or H0 decreases with damage, the eigenvalues of the
matrix A also decrease. Once the dominant eigenvalue falls
below the threshold set by the decay rate, the network behaves
like a damped oscillator and Pavg drops dramatically. Though
this is derived from an approximation, it faithfully predicts the
sudden reduction in Pavg (see Fig. 7).

This can also be demonstrated with a phase diagram, plot-
ting a MC unit internal state against a GC unit internal state
(similar to [29,65]). To illustrate the network’s behavior in this
way, the odor input was modeled as constant in time. Just
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FIG. 7. (a) The real part of the square root of the dominant
eigenvalue (Re[i

√
λD]) plotted against damage for the 2D 100 cell

network with FD to W0. According to the linearized analysis, when
Re[i

√
λD] falls below the decay rate, marked as a horizontal dotted

green line, oscillations are dampened. (b) Average oscillatory power
(Pavg) plotted against damage for the 2D 100 cell network with FD
to W0. The steep drop off in Pavg corresponds to the damage level
at which Re[i

√
λD] falls below the decay rate, as illustrated by the

vertical dashed line. (c) Phase plot, with mitral cell internal state (x,
mitral cell number 35) on the x-axis, and granule cell internal state
(y, granule cell number 35) plotted on the y axis, at the damage level
immediately before oscillations are quenched. The damage was FD
to W0 in the 2D 100 cell network. The activity settles into a limit
cycle, demonstrating oscillatory behavior. (d) Same as (c), but at the
subsequent damage level. The activity decays to a fixed point. For
the plots in (c) and (d) only, an odor input that is constant in time
was used.

before the eigenvalue falls below the threshold, the network
activity follows a limit cycle [see Fig. 7(c)]. However, once
it drops below threshold, a bifurcation occurs and network
activity approaches a fixed point [see Fig. 7(d)].

B. 1D networks

Network connection matrices of all types were constructed
to give roughly equivalent starting oscillatory powers with
the same average synaptic weight values. Because the 2D
networks were of necessity less sparse than the 1D networks,
this meant that the total synaptic weight in the 2D networks
was greater than for the 1D networks. Under these conditions,
we observe the increase in oscillatory power in FD trials
only in 2D networks (for example, Fig. 4). However, if the
null-damage matrices in 1D networks instead have a similar
total weight rather than the same average weight, the behavior
is largely the same, just on a smaller scale.

As an example, we deliver FD to W0 on a 1D network, but
we begin with W0 thrice its typical value. With more weight in
the network, the initial average internal state is reduced, and
Pavg begins at a lower value. As damage is applied and the
network approaches its null condition (at δ = 2/3 because W0

FIG. 8. (a) Average oscillatory power (Pavg) for FD delivered
to W0 in the 2D 100 cell network, the 1D 100 cell network, and
the modified 1D 100 cell network. The modified network starts the
damage trial with W0,modified = 3W0,unmodified. The modified network
shows a rise in Pavg, similar in shape to the 2D network. (b) Same as
in (a), but with Pavg normalized with respect to its initial value in each
case, illustrating more clearly the similarity in behavior between the
modified 1D and the 2D networks. (c) The real part of i times the
square root of the dominant eigenvalue (Re[i

√
λD]) plotted against

δ for FD delivered to W0 in the 2D 100 cell network, the 1D 100
cell network, and the modified 1D 100 cell network. The dominant
eigenvalue of the modified network still starts below that of the 2D
network, but it stays above threshold until a similar level of damage.

is tripled), Pavg increases. This creates a trajectory of behavior
with damage that closely resembles that of the 2D network
[Figs. 8(a) and 8(b)].

This is illustrated also by the behavior of the leading eigen-
value, which indicates the presence of oscillations (as seen in
Fig. 7). With a larger weight matrix, the leading eigenvalue of
the matrix A starts at a larger value, and its trajectory is similar
to that of the 2D networks. The unmodified 1D network’s
leading eigenvalue begins about 2/3 along the trajectory of
the modified network, and so it crosses threshold at a lower
level of damage [see Fig. 8(c)].

These results demonstrate that the primary difference be-
tween the 1D and 2D networks is that they operate in different
regimes: the maximum activity state that the 2D networks can
sustain is greater than that of the 1D networks. Thus, at the
initial oscillation size in this model, the 2D networks are be-
low their maximum oscillatory power, while the 1D networks
are already at near maximum. The mechanism underlying this
difference in maximum activity is beyond the scope of this
paper, but it could be due to a greater capacity for cooperative
effects resulting from the greater level of connectivity in the
2D networks.

IV. DISCUSSION

A. Seeded damage

The linearized analysis here is carried out for flat damage,
but seeded damage, which spreads outward from a starting
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unit, shows a similar increase in oscillatory power at moderate
levels of damage and relies on the same mechanisms. That
we found similar behavior for SD is important as it better
represents a potential method of pathology progression. In
PD, for example, misfolded α-synuclein spreads from cell to
cell before neuron death [66,67] in what many believe is a pri-
onlike manner [68–70], although the precise mechanism and
the level of damage in the donor cell before transmission is
still an active area of investigation [71,72]. Similarly, evidence
suggests prionlike spread of AD pathology as well, of both
Aβ [73,74] and tau [75–77].

B. Relation to aberrant olfactory bulb activity
in animal models of disease

Our model’s mechanism for the increase in gamma band
oscillatory power is the increase in MC activity. This could
be representative of higher firing rates of participating MCs,
or of recruitment of less active MCs within the population
represented by the active units (as previously inactive units
rarely activate in our model, though they theoretically could).
The increase in MC activity is due to a reduction of inhibition,
either by decreasing GC excitation from the MCs (damage to
W0, which could represent less AMPA receptor activation in
GCs) or by decreasing inhibition of MCs by GCs (damage to
H0, which could represent less GABA receptor activation in
MCs by GABA receptor loss or reduced GABA transmission
from GCs). Either damaging W0 or H0 (or both) could be
consistent with loss of dendrodendritic synapses. Generally,
our model implies that reduced GABA transmission leads
to increased gamma oscillations, a result relevant to several
experimental studies.

Li et al. and Chen et al. measured OB activity in
mice expressing amyloid precursor protein and presenilin 1
(APP/PS1), and they found significant increases in gamma
band power associated with synaptic deficits [18,19]. Both
groups found that treatment with a GABA agonist decreased
the heightened gamma power, suggesting that increases in the
gamma band may have been due to a decrease in GABA-
induced inhibition to the MCs. Li et al. also measured
increased MC firing rates, although measurements of cell
activity were done on OB slices rather than in vivo [19]. Note
that by including PS1, these two studies may be more specifi-
cally relevant to familial AD rather than to sporadic AD [78],
and it is not clear that the effects seen were due to Aβ alone.
Other studies have also found increased gamma power in OBs
of transgenic AD mice models [20,21], with Li et al. working
with expression of p-tau (P301S mice) rather than APP. While
they also found an increase in gamma power and impaired
synaptic function, MC firing rates were decreased rather than
elevated, suggesting other mechanisms at play. Note also that
because AD-like pathology was induced by gene expression
in all of these studies [18–21], it is more relevant to the FD
modeled here rather than to SD.

The observations of these studies are closely related to
work by Lepousez and Lledo [58], who found that GABA an-
tagonist increased oscillations in the gamma band, and GABA
agonist had the opposite effect. However, they found that MC
firing rates were not significantly affected by GABA antago-
nist (except possibly for increased excitation of MCs that were

initially less active), instead showing that the power increase
was likely due to increased MC synchronization. Additionally,
they found an important reliance on NMDA channels in GCs,
which could be relevant to PD since NMDA receptors may
be among the targets of pathological α-synuclein [41]. Our
model is limited in this regard by a lack of explicit NMDA
activity and a clear mechanism for varying synchrony.

While the research mentioned above found increases in
gamma oscillations, it should also be noted that some studies
have found decreases in OB oscillations in the presence of Aβ.
Hernández-Soto et al. applied Aβ by injection and measured
activity in vivo in rat OBs an hour after application [33], and
Alvarado-Martínez et al. measured cell activity in mouse and
rat OB slices in vitro after bath application of Aβ [79]. Both
found overall decreases in OB activity.

To our knowledge, few studies have measured olfactory
bulb neural activity in the presence of PD-like pathology.
Kulkarni et al. recorded local field potentials in mice olfactory
bulbs after injection of α-synuclein preformed fibrils directly
into the OB. They measured a significant increase in oscilla-
tory power in the beta band (15–30 Hz) following incubation
periods ranging from 1 to 3 months. Zhang et al. modeled PD
pathology in mice by reducing the population of dopaminergic
neurons in the substantia nigra in mice [32]. They measured
an increase in the spontaneous oscillatory power of all bands,
theta (2–12 Hz), beta (15–35 Hz), and gamma (36–95 Hz).
The full extent of the mechanisms underlying the observations
in both of these studies is outside the scope of this model.
Dopaminergic input to the OB from the substantia nigra was
not modeled here, although it could be possible that the net
effect of reducing that input is less inhibition to the MC
population. As for the first study, beta oscillations in particular
require centrifugal input and rely on channels not modeled
here (although the same interactions modeled here are also
critically involved; see [60,80]). The Li-Hopfield model in-
cludes centrifugal input to the GCs in only a superficial way,
and greater detail is required to reproduce beta oscillations in
the OB.

Of note, thus far, experimental studies have shown differ-
ences between OB activity in PD-like pathology compared to
AD-like pathology. Though modeling these differences lies
outside the scope of the present model, if the disease-specific
alterations in oscillatory power in the olfactory bulb prove
robust, it provides a potential tool for differentiation in early
diagnosis of neurodegenerative disease.

C. Conclusions and future directions

Despite the limitations of the model presented here, we
believe it is nevertheless relevant to investigating the effects
of neurodegenerative damage on oscillatory activity in the
olfactory bulb. The balance between inhibitory and excitatory
activity between the MC and GC populations is essential to
gamma oscillations and depends on multiple mechanisms and
principles [58]. Here, we highlight one principle, which is
that as long as inhibition is great enough, marginal decreases
in inhibitory action will increase gamma oscillations due to
the nonlinear nature of the neural activity [81]. Because it is
unlikely that a biological network would begin close to the
regime of maximum oscillatory power (and thus close to the
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drop off seen in Fig. 7), we would expect to see this effect
with moderate damage to the inhibition.

The model here spotlighted one mechanism that may be
in play, and serves as a proof of concept that computational
modeling can help give insight into OB dysfunction. More
detailed models of the OB network and activity are needed
to explore other mechanisms and effects of neurodegenerative
damage. For example, working with a model based on work
by Osinski et al. [82] or David et al. [83] may offer insight
into the modulation of beta oscillations found by Kulkarni
et al. [16]. And a model similar to that by Li and Cleland [84]
may help investigate effects of cholinergic perturbation in AD,
as reviewed by Doty [2].

The prevalence of olfactory dysfunction in neurodegener-
ative disease presents both an opportunity and a challenge;
it is a common early symptom [1–3], yet its applicability in
diagnosis is limited by the broadness of its presence. Thus
it is important to continue the study of the mechanisms and
behavior of OB oscillations in the presence of neurodegenera-
tive damage since, as discussed above, aberrant OB oscillatory
activity may show a point of differentiation between PD and
AD pathology. Additionally, recent progress in noninvasive
measurement of human olfactory bulb activity [85] brings this
area of research closer to clinical relevance. For example,
Iravani et al. used surface electrodes to measure electroen-
cephalogram (EEG) activity originating from the olfactory
bulb in human patients, specifically in the gamma range [85].
As these techniques are developed, understanding the aberrant
OB activity in neurodegenerative diseases could be a powerful
tool for realizing earlier diagnosis of these illnesses.
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APPENDIX A: AVERAGE OSCILLATORY POWER
FOR ALL CASES

1. Other components damaged

Trials were also run with damage delivered to components
of the network beside W0 and H0, namely to the following:

(i) Granule cell layer.
(ii) Mitral cell layer.
(iii) Iodor, the input to mitral cells from the glomerular layer.
Internal damage to the mitral cell layer (MCL) or to the

granule cell layer (GCL) is implemented by multiplying the
right-hand side of the differential equation (except for the leak
term) for the given cell by some fraction less than 1, (1 − δi ).
For example,

ẋi = (1 − δi )(−
∑

j

H0,i jgy, j (y j ) + Ib,i + Iodor,i(t )) − αxi

would be damage delivered to the ith mitral cell unit. In this
case, δ is calculated as

δ =
∑

i

δi

N
,

where N is the number of mitral cells.
Figures 9–11 show average oscillatory power with damage

for each type of damage to each type of network.

2. Flat damage to both H0 and W0 in the 2D 100 unit network

Similar to FD to H0 or W0, FD to both resulted in an
increase in oscillatory power at intermediate levels of dam-
age (Fig. 12). Delivering damage to both seems to result in
approximately the mean effect of each individually, in terms

FIG. 9. Average oscillatory power (Pavg) for flat damage to W0 (a), H0 (b), GCL (c), MCL (d), and OI (e) in every network architecture (20
units 1D, 20 units 2D, 40 units 1D, 40 units 2D, 100 units 1D, and 100 units 2D). Solid lines are 2D networks, dashed lines are 1D networks.
Note that the vertical axes do not have the same scale.
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FIG. 10. Average oscillatory power (Pavg) for columnar damage to W0 (a), H0 (b), GCL (c), MCL (d), and OI (e) in every network
architecture (20 units 1D, 20 units 2D, 40 units 1D, 40 units 2D, 100 units 1D, and 100 units 2D). Solid lines are 2D networks, dashed
lines are 1D networks. Note that the vertical axes do not have the same scale.

of the maximum oscillatory power reached and the location of
the maximum.

For Fig. 12, δ was measured as

δ = 1 −
∑

i j[HdamagedWdamaged]i j∑
i j[H0W0]i j

.

Calculating δ this way is equivalent to δ in the body of
the paper for W0 or H0, as long as the damage delivered
is flat damage. Calculating δ in this manner allows us to
compare damage against the same baseline for each target. It
is also partly inspired by the linearized analysis summarized
in Sec. III, where oscillatory activity was predicted by the

matrix,

A = H0G′
y(y0)W0G′

x(x0),

where G′
y(y0) and G′

x(x0) are diagonal matrices.

APPENDIX B: ADDRESSING LATE PEAK IN AVERAGE
POWER FOR FLAT DAMAGE TO H0

Figure 13 shows the cell activity and associated power
spectra for each unit in the 2D 100 unit network at the damage
level corresponding to maximum oscillatory power for flat
damage to H0, demonstrating how oscillatory activity in the
network gives rise to Pavg. Figure 14 is the same, but for the

FIG. 11. Average oscillatory power (Pavg) for seeded damage to W0 (a), H0 (b), GCL (c), MCL (d), and OI (e) in every network architecture
(20 units 1D, 20 units 2D, 40 units 1D, 40 units 2D, 100 units 1D, and 100 units 2D). Solid lines are 2D networks, dashed lines are 1D
networks. Note that the vertical axes do not have the same scale.
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FIG. 12. Average oscillatory power for flat damage to both H0

and W0 compared to flat damage to only H0 and flat damage to only
W0 in the 2D 100 unit network.

damage level corresponding to the late peak in Pavg seen in
Fig. 4 [and in Fig. 9(b)], and it demonstrates how spurious
Pavg signals can arise at high levels of flat damage to H0.

In the case shown in Fig. 14, most units have a significant
signal in their power spectra, but no units show oscillations
(compare with Fig. 13). At high levels of flat damage to H0,
the MC unit population reaches higher levels of output state.
When odor input decreases, more than half of them drop
back down sharply during the time window over which the
periodogram is calculated (from 125 to 250 ms). This leads to
a large signal in the spectrum and the peak in Pavg that is not
actually indicative of oscillatory behavior.

FIG. 13. (a) Each panel shows the activity of a single MC unit in the 2D 100 unit network at the level of flat damage to H0 corresponding
to the greatest amount of oscillatory activity (δ = 0.6). (b) Each panel shows the power spectrum corresponding to each MC unit. This
demonstrates oscillatory activity giving rise to Pavg.
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FIG. 14. (a) Each panel shows the activity of a single MC unit in the 2D 100 unit network at the level of flat damage (δ = 0.95) to H0

corresponding to the sharp peak in Pavg seen in Fig. 4(a) in the main text. (b) Each panel shows the power spectrum corresponding to each MC
unit. Though most units have a significant signal in their power spectra, no units show oscillations.
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