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An advection-diffusion-reaction model for autologous chemotaxis of two cells in an interstitial flow is
analyzed. Each cell secretes ligands uniformly over its surface; the ligands are absorbed by surface receptors
anisotropically due to the flow and interaction between ligand fields around each cell. The absorption is
quantified in terms of a vectorial anisotropy parameter, A, which is proportional to the first moment of the
ligand concentration field about the surface of each cell. We consider the physiologically relevant limit of a weak
interstitial flow, where the Péclet number, Pe, which characterizes the relative importance of ligand transport
via advection to diffusion, is small. We further assume that the cells are separated at a distance that is large
compared to the sum of their radii. These conditions allow us to utilize a reciprocal theorem and the method of
reflections to construct an asymptotic approximation for A to first order in Pe for widely separated cells. We find
that interactions between the cells: (i) reduce the flow-aligned ligand anisotropy around each cell and (ii) lead to
a component of A that is perpendicular to the flow direction. The interaction is long ranged, decaying with the
inverse distance between cells to leading order. We finally discuss how interactions between multiple cells could
affect our findings.
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I. INTRODUCTION

Autologous chemotaxis (AC) refers to the migration of
a cell due to small molecules, or ligands, that the cell se-
cretes and subsequently detects via surface receptors. Spatial
symmetry breaking is a necessary feature of this autocrine
signaling mechanism: A cell is supposed to secrete lig-
ands uniformly over its surface and, in contrast, detect
them nonuniformly, thereby garnering information about the
anisotropy of its environment. Said information is used by
the machinery of the cell to direct migration. The pioneering
studies of Swartz and co-workers demonstrated that interstitial
flow in the extracellular matrix provides the key symmetry
breaking for AC [1,2]. Specifically, interstitial flow drives
advective flux of secreted ligands that breaks the fore-aft
symmetry of their concentration field around a cell [3–6]. This
asymmetry is detected by the cell as an anisotropic flux to its
surface receptors. Hence, the cell senses the directionality of
the interstitial flow and can migrate accordingly. AC guided
by interstitial flow due to lymphatic drainage has been im-
plicated as a driver for cancer metastasis, where cells traffic
from a primary tumor to other body parts [7,8]. Experiments
have shown AC of breast cancer and melanoma cells [2,9],
glioblastoma cells [10,11], and endothelial cells [12].

Recently, Fancher et al. [13] proposed and analyzed an
advection-diffusion-reaction transport model for AC of a sin-
gle cell, focusing on the sensory precision of absorption
and reversible binding models for ligand detection. Those
authors also note that cells do not undergo AC in isola-
tion, however. Indeed, more generally, multicellular sensing
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is acknowledged to be relevant in the collective migration of
groups of cells exposed to chemoattractant gradients [14–18].
Specifically, AC of cancer cells can be promoted by adja-
cent fibroblast cells [19]. Further, migration depends on cell
seeding density: At sufficiently high density the direction of
cancer cell migration can even reverse from downstream to
upstream of the interstitial flow. In this case, a mechanical
pressure-sensing mechanism is claimed to be the dominant
driver for migration, suggesting that AC is inhibited at larger
seeding density [9]. In particular, neighboring cells induce
paracrine signaling cues, since the distribution of a secreted
ligand around one cell affects the distribution around other
cells. The goal of the present work is to quantify how such
interaction between cells affects AC. To this end, we analyze
a minimal mathematical model, in the spirit of Ref. [13], for
advection-diffusion-reaction transport of a secreted ligand be-
tween neighboring cells in an interstitial flow. Examining the
interaction between two cells is a natural extension to the anal-
ysis of [13]. As we will show below, in this case one can still
obtain analytical results for the ligand anisotropy around each
cell, which furthers understanding of how cell interactions
affect AC. Our main predictions are that interaction between
cells (i) reduces the flow-aligned ligand anisotropy around
each cell and (ii) leads to a component of the anisotropy that is
perpendicular to the flow direction. Moreover, the interaction
is long ranged: The influence of a cell on the anisotropy of
the ligand field around a neighbor decays as the inverse of the
center-to-center distance between the pair.

II. MODEL DEVELOPMENT

Consider two identical, spherical cells of radii a∗ with
center-to-center separation vector d∗ (Fig. 1). Here, and on-
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FIG. 1. Definition sketch for interaction between two cells (la-
belled “1” and “2”) undergoing AC in an interstitial flow. The cells
are separated by vector d, which makes an angle δ with the ambient
free stream U . Cells secrete ligand uniformly at rate β and absorb
ligand at rate αc, where c is the ligand concentration field and α is
the absorption velocity.

ward, dimensional variables will be decorated with an asterisk
superscript. The cells are immersed in an interstitial flow
that approaches a uniform stream U∗ at large distances from
each cell. Let c∗ denote the number density, or concentra-
tion, field of ligand exterior to each cell, which at steady
state is governed by the advection-diffusion transport equation
v∗ · ∇∗c∗ = D∗∇∗2c∗. Here D∗ is the diffusion coefficient
of a ligand, and v∗ is the incompressible (∇∗ ·v∗ = 0) fluid
velocity field. Interstitial flows in the extracellular matrix are
commonly modeled using the Brinkman equation [20] for
porous media [1,5], which approximates the effect of obsta-
cles in the matrix as a distributed resistance, or damping force,
on the flow. The Brinkman equation reads μ∗∇∗2v∗ − ∇p∗ =
μ∗κ∗2v∗, where p∗ is the dynamic pressure, μ∗ is the fluid
viscosity, and 1/κ∗ is a screening length at which viscous and
damping forces balance. We assume that ligands are secreted
from each cell surface uniformly at a rate β∗ per unit area. Lig-
ands are then absorbed by receptors via a first-order reaction
with local flux α∗c∗, where α∗ is the absorption rate with units
of length per time. Thus, at each cell surface there is a flux bal-
ance −D∗n · ∇∗c∗ = β∗ − α∗c∗, where n is the outward unit
normal to the surface. This boundary condition assumes that
fluid cannot penetrate or deform the cell, v∗ · n = 0. The con-
centration attenuates, c∗ → 0, far from each cell. Our central
goal is to calculate the anisotropy of the absorption flux over
the surface of each cell, accounting for interstitial flow and
interaction between the cells. To that end, we define a vecto-
rial anisotropy order parameter A∗ = (4πa∗2)−1

∫
α∗c∗n dS∗,

where dS∗ is an element of solid angle over the cell surface.
Clearly, A∗ = 0 if the flux is uniform. The values of A∗ for
each cell are equal since the cells are identical.

The problem is rendered dimensionless by normalizing
distance by a∗, concentration by 1/a∗3, velocity by U ∗ =
|U∗|, and pressure by an as-yet-undetermined scale P∗. The
dimensionless advection-diffusion equation is Pev · ∇c =
∇2c, in which, and henceforth, the lack of an asterisk
superscript indicates a dimensionless quantity, e.g., the dimen-
sionless concentration c = c∗a∗3 and dimensionless velocity
v = v∗/U ∗. Here Pe = U ∗a∗/D∗ is a Péclet number that
characterizes the importance of advection versus diffusion in

establishing the concentration field. Interstitial flow speeds
due to lymphatic drainage are around 1 μm/s [21,22], which
for a cell of a∗ = 10 μm and D∗ = 100 μm2/s [1] yields
Pe = O(0.1). Hence, Pe is typically small. The dimensionless
Brinkmann equation reads ∇2v − (a∗P∗/μ∗U ∗)∇p = δ2v,
where p = p∗/P∗ is a normalized pressure and δ = (κ∗a∗)2.
The dimensionless boundary conditions at the cell surfaces
are −n · ∇c = β − αc, where β = β∗a∗4/D∗ is a normalized
secretion rate, and α = α∗a∗/D∗ is a normalized absorption
rate or Damkohler number. A secretion rate of 1000 ligands
per hour [13] yields β = O(10−2). Thus, the dimensionless
anisotropy parameter A = A∗a∗3/α∗ = (4π )−1

∫
c n dS is a

function of five dimensionless groups: α, β, δ, Pe, and, finally,
the normalized separation distance d = |d∗|/a∗.

III. RESULTS

The advection-diffusion equation cannot be solved exactly
due to the complexity of the two-sphere geometry, which
generally yields a concentration field that varies in three spa-
tial dimensions. The exception is when the separation vector
between the cells is aligned with the ambient flow: In this
case, the concentration is axially symmetric about d∗. Here
we invoke physically realistic simplifying assumptions to ul-
timately obtain an asymptotic, closed-form, approximation
to the anisotropy order parameter. First, the permeability in
the extracellular matrix is sufficiently low that δ = O(103)
[2,13]. This means that the viscous stresses in Brinkman’s
equation can be dropped: The resulting flow is described
by Darcy’s law, ∇p = v, with pressure scale P∗ = δμ∗U ∗κ∗
chosen to balance damping. Using the continuity equation and
no-penetration condition at the cell surface, it is seen that
the resulting velocity field is the same as in irrotational flow,
with p playing the role of velocity potential. This implies
that the tangential component of the velocity field does not
vanish at the cell surface, which is expected to lead to an
overestimation of A, since the flow can more easily advect
ligands adjacent to the surface. Second, we assume that the
cells are widely separated, d � 1. This will enable us to
calculate interactions between their concentration fields via
the method of reflections [23–26]. Third, in accordance with
physiological and in vitro conditions, we assume that Pe is
small. One might think this to imply that advection is a weak
perturbation to the purely diffusive (Pe = 0) concentration
field. However, the limit Pe → 0 is singular for advection-
diffusion problems in unbounded flows [27,28]. Specifically,
even though Pe is small, advection is as important as diffusion
at large distances from each cell, r = |r| = O(1/Pe), where r
is the position vector from the center of a cell. Physically, the
ligand concentration field is primarily dictated by diffusion at
a distance r = O(1) from a cell, with an algebraic decay like
1/r for a cell that is a net source of ligand. However, at r =
O(1/Pe) the concentration field is “screened” by advection
with the imposed flow, such that it decays exponentially with
increasing distance. (This exponential decay occurs almost
everywhere: The exception is a thin wake region downstream
of the cell, where the algebraic 1/r decay persists.) Matched
asymptotic expansions are needed to construct perturbative
solutions at small Pe, where the concentration field has sep-
arate expansions in inner [r = O(1)] and outer [r = O(1/Pe)]
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regions. This approach was used in Ref. [13] to evaluate the
equivalent of our anisotropy parameter A through O(Pe) for an
isolated spherical cell. In particular, those authors determined
the first, O(Pe), advective contribution to the concentration
field in the inner region, which possesses the requisite fore-aft
asymmetry for a nonzero anisotropy parameter. It is unclear
how to extend their analysis to two (or more) cells: Aside from
the forbidding algebra, there is a conceptual issue of whether
the separation distance between cells is such that one cell sits
in the outer or inner region of the concentration field of the
other.

Therefore, to analyze the coupled influence of two-cell
interactions and interstitial flow on AC we adopt a different
strategy. We will construct an integral relation, based on the
reciprocal theorem in transport phenomena [29], which allows
calculation of A through O(Pe) using only the purely diffusive
(Pe = 0) concentration field. To begin, we consider a single
cell in a background ligand field c∞. Ultimately, c∞ will rep-
resent the field due to a second cell. Let c′ = c − c∞ denote
the disturbance from the background due to a cell at r = 0.
This disturbance satisfies Pev · ∇c′ = ∇2c′, subject to c′ → 0
as r → ∞, and n · ∇c′ − αc′ = −(n · ∇c∞ − αc∞) − β at
r = 1. Let c̃ denote the concentration belonging to an “aux-
iliary problem” that satisfies Laplace’s equation, ∇2c̃ = 0,
around the cell. Evidently, there is an integral relation between
the disturbance and auxiliary fields,∫

c̃(v · ∇c′ − ∇2c′) dV +
∫

c′∇2c̃ dV = 0, (1)

where dV is a volume element of fluid exterior to the
cell. Equation (1) leads to the following expression for the
anisotropy order parameter (see Appendix):(

1 + α

2

)
A = 1

2
∇c∞|r=0 + 5Pe

60
∇(v · ∇c∞)|r=0

+ Pe

8π

∫
(c − c∞)v · ∇

(
r
r3

)
dV

+ O(Pe2). (2)

First consider an isolated cell in a ligand-free background,
c∞ = 0. The irrotational velocity field is

v = U + 1

2r3
U ·

(
I − 3rr

r2

)
, (3)

where U is a unit vector along the free stream and I is the
identity tensor. At Pe = 0 the cell acts as an isotropic source,
or monopole, with ligand concentration field c = γ /r, where
γ = β/(1 + α) represents the monopole strength. Inserting
this field and (3) into (2) yields (see Appendix)

A = γU
4(2 + α)

Pe + o(Pe) as Pe → 0. (4)

This result is in agreement with Eq. (7) of Ref. [13]: Our
assumption of Darcy flow corresponds to w = 2 in their no-
tation and their scalar anisotropy factor A is normalized by
the average concentration over the cell surface, which requires
dividing (4) by γ . We reemphasize that in Ref. [13] the
O(Pe) contribution to the anisotropy parameter was obtained
by solving for the inner concentration field through O(Pe); in

contrast, our use of the reciprocal theorem (2) only requires
the diffusive (Pe = 0) concentration field around the cell.
Physically, Eq. (4) implies that the ligand concentration is po-
larized along the direction of the interstitial flow, in proportion
to the flow strength; the polarization, or anisotropy, increases
linearly with the secretion rate, β; and the anisotropy de-
creases with increasing absorption rate, α. This last behavior
arises as increasing α reduces the time that a secreted ligand
can be advected along flow streamlines before it is absorbed
by the cell.

We now analyze interaction between two cells in an in-
terstitial flow. The ambient flow U is taken along the Z axis
of a Cartesian frame (X,Y, Z ). The two cells are labeled “1”
and “2.” Let (x, y, z) be a particle-fixed Cartesian system with
origin at the centroid of cell 1: the z axis passes through
the line of centers of the two cells and is at an angle δ to
the Z axis, and the y axis is taken as normal to the plane
of U . Thus, U = cos δez − sin δex, where ez and ex are unit
vectors along the z and x axes, respectively. Spherical polar
coordinate systems (r1, θ1, φ) and (r2, θ2, φ) attached to the
centers of cells 1 and 2, respectively, are also introduced. Here
φ is the common azimuthal angle in the xy plane, and the
polar angles θ1 and θ2 are measured counterclockwise from
the z axis. The two-cell configuration is thus specified by the
angle γ and center-to-center separation distance d (Fig. 1).
To a first approximation at large d the ligand concentration
at Pe = 0 is a superposition of the sources due to each cell
in isolation: c ∼ c(1) + c(2) as d → ∞, where c(i) = γ /ri.
Thus, the ligand field due to cell 1 appears to cell 2 as a
uniform background at leading order, c(1) = γ /d + O(1/d2).
Cell 2 responds to this paracrine signal by generating a har-
monic first reflection, c(21), say, to satisfy the flux condition
at its surface, ∂c(21)/∂r1 − αc(21) = −(∂c(1)/∂r1 − αc(1) ). A
simple calculation shows that c(21) = −γα/[(1 + α)dr2] +
O(d−2). Hence, the disturbance field around cell 2 is c −
c∞ ∼ γ {1 − α/[d (1 + α)]}(1/r2) + O(1/d2). Inserting this
expression into (2) yields

A ∼ γU
4(2 + α)

[
1 − α

1 + α

1

d
+ o

(
1

d

)]
Pe (5)

as Pe → 0, which shows that the interaction reduces the
anisotropy parameter, since the O(1/d ) contribution is neg-
ative. This occurs as cell 1 acts a uniform source of ligand for
cell 2 (and vice versa), which results in a reduced anisotropy
of the absorption flux around each cell: This finding is in
agreement with finite element simulations of Ref. [9]. The uni-
formity also means that A is collinear with U . The interaction
is notably long ranged, decaying as 1/d .

The method of reflections can be continued to yield the
improved estimate (see Appendix)

(
1 + α

2

)
A = γUPe

8

[
1 − α

1 + α

1

d

]

− γ d
2d3

− γ PeU
12

·
(

I
d3

− 3
dd
d5

)

+ γ Pe

8d3

[
α − 2

7(3 + α)
U ·

(
I + dd

d2

)
− α3

(1 + α)3
U

]

+ o(Ped−3). (6)
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FIG. 2. Parallel A|| and perpendicular A⊥ components of
anisotropy order parameter A. Here Pe = 0.1, d = 10, and α = γ =
1. The dashed lines indicate the values of A|| and A⊥ for an isolated
cell.

The first line of (6) is the isolated cell and first reflection
contributions to A (5). The remaining terms complete A
through O(Ped−3): They arise from higher-order contribu-
tions to the first reflection and multiple reflections between
the cells. Notably, the anisotropy parameter is now not solely
along the direction of the free stream: A even has compo-
nents perpendicular to U . This misalignment suggests that the
paracrine signaling due to intercellular interaction interferes
with the interstitial flow aligned anisotropy due to autocrine
signaling of an isolated cell. This behavior is illustrated in
Fig. 2 by plotting the parallel, A|| = A · U , and perpendicular,
A⊥ = |A · (I − UU )|, components of the anisotropy vector as
a function of δ. Here A|| monotonically increases with δ, such
that the maximum flow-aligned anisotropy is when the cells
are perpendicular to the flow, δ = π/2. However, this increase
is accompanied by an increased misaligned anisotropy A⊥,
which also monotonically increases with δ. This highlights
a delicate interplay of intercellular interaction and interstitial
flow in AC.

IV. CONCLUSIONS

We have predicted that two-cell interactions affect AC via
(i) reduction of the flow-aligned ligand anisotropy around
each cell and (ii) generation of a component of A that is per-
pendicular to the flow direction. Our work highlights that AC
involves autocrine and paracrine signaling, the latter driven by
interactions of the ligand fields between neighboring cells. We
have deliberately used the simplest model of ligand transport
to emphasize the importance of interactions between cells. For
instance, we ignored any mechanical effects of interstitial flow
on cell migration, which have been considered in multiphase
models of AC [30–32]. Further, one could consider more
sophisticated models of ligand-receptor binding, or multiple
ligand species, some of which are released from the extra-
cellular matrix rather than secreted from the cells. Here note
that the reversible binding model in Ref. [13] corresponds,
at steady state, to the small-α limit of our absorption model.
It would also be interesting to extend our calculations to

closer separations, using twin multipole expansions [33] or
bispherical coordinates [34]. Further, our reciprocal-theorem
approach can readily be adapted to analyze nonuniform recep-
tor coverage or nonspherical cells. An important direction is to
go beyond two-cell interactions and consider AC of multiple
cells. Recall that interstitial flow screens the ligand concen-
tration field due to single cell at a (dimensional) distance
l∗
a = a∗Pe−1 at small Pe. Next, consider a suspension of cells,

with small cell volume fraction s = 4π
3 n∗a∗3 where n∗ is the

cell number density, secreting ligand at Pe = 0. The ligand
concentration field due to a “reference” cell in the suspension
is screened by the other cells over a length l∗

s = a∗s−1/2. This
screening occurs as the other cells also secrete ligand, thereby
effectively consuming the concentration field due to the refer-
ence cell. Consequently, the ligand field due to the reference
cell decays exponentially with distance beyond l∗

s , as opposed
to the algebraic (1/r) decay for an isolated cell at Pe = 0. The
present analysis applies when screening due to the intersti-
tial flow dominates over screening by the suspension, which
requires that the ratio of screening lengths l∗

a /l∗
s < 1, or in

dimensionless terms Pe/s1/2 > 1. Using the definition of s,
this translates into the requirement that the cell density n∗ <

(3/4π )U ∗2/a∗D∗2 = (3/4π )Pe2/a∗3 for our analysis to be
relevant for multiple cells. As an example, taking a∗ = 10 μm
and Pe = 0.1 yields n∗ < 2.4 × 106 cells/ml. For l∗

a /l∗
s > 1

screening by the suspension dominates: Here the ligand se-
cretion by the cells in the suspension effectively smears out
the polarization of the ligand distribution around a reference
cell due to the interstitial flow, suggesting that the latter has
a relatively minor affect. This may be related to the finding
of Ref. [9] that AC is less important at high cell density. For
l∗
a ∼ l∗

s the anisotropy parameter will have a coupled depen-
dence on the cell volume fraction (s) and interstitial flow (Pe),
in analogy to problems of heat and mass transfer in fixed beds
[35,36]. We will, however, leave a more detailed analysis of
AC for multiple cells to a future study.
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APPENDIX

1. Derivation of Eq. (2)

Here we derive Eq. (2). Our starting point is Eq. (1), in
which c′ is the disturbance concentration due to a cell at the
origin (r = 0) in a background field c∞ and c̃ is an auxiliary
concentration field. The latter satisfies Laplace’s equation,
∇2c̃ = 0. We choose the auxiliary field to obey the Neumann
condition n·∇c̃ = U ·n at the cell surface r = 1 and attenuate
as r → ∞. It is readily shown that

c̃ = −1

2

U ·r
r3

. (A1)

Inserting (A1) into (1) and using the constancy of U leads to∫
c′n dS = −1

2

∫
(n·∇c′)n dS

− 1

2

∫
(Pev ·∇c′)

(
r
r3

)
dV. (A2)
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The continuity equation, ∇ ·v = 0, and no-penetration condi-
tion, n · v = 0 at r = 1, are used to manipulate the second
integral on the right-hand side of (A2) as∫ (

v ·∇c′
)( r

r3

)
dV = −

∫
c′v ·∇

(
r
r3

)
dV. (A3)

Now, at r = 1, we have the flux condition

n·∇c′ = αc′ − β − (n·∇c∞ − αc∞). (A4)

Substituting (A3) and (A4) into (A2) yields
(

1 + α

2

) ∫
cn dS =

∫
c∞n dS + 1

2

∫
(n·∇c∞)n dS

+ Pe

2

∫
(c − c′)v ·∇

(
r
r3

)
dV. (A5)

In deriving (A5) we have used the uniformity of the secre-
tion rate β over the surface, which implies

∫
βn dS = 0. The

background concentration is now expanded in a Taylor series
about the center of the particle,

c∞(r) = c∞|r=0 + r·∇c∞|r=0 + 1
2 rr : ∇∇c∞|r=0

+ 1
6 rrr

... ∇∇∇c∞|r=0 + · · · . (A6)

Therefore, we have∫
nc∞ dS = 4π

3
∇c∞|r=0 + 4π

30
∇∇2c∞|r=0

+ O(∇∇4c∞|r=0). (A7)

The second term on the right-hand side of (A7) is rewrit-
ten using the advection-diffusion equation, ∇2c∞ = Pev ·
∇c∞. Therefore, the third term on the right-hand side
of (A7) becomes ∇∇4c∞ = Pe∇∇2(v ·∇c∞) = Pe2v · ∇(v ·
∇c∞), where in the second equality we have used the assump-
tion of irrotational flow, ∇2v = 0. Thus,∫

nc∞ dS = 4π

3
∇c∞|r=0 + 4π

30
Pe∇(v ·∇c∞)|r=0 + O(Pe2).

(A8)
Similarly,∫

nn∇c∞ dS = 4π

3
∇c∞|r=0 + 4π

10
Pe∇(v ·∇c∞)|r=0

+ O(Pe2). (A9)

Finally, substituting (A8) and (A9) into (A5) and using the
definition of the anisotropy parameter, A = (4π )−1

∫
cn dS,

yields Eq. (1).

2. Derivation of Eq. (4)

Here we derive Eq. (4). For an isolated cell c∞ = 0, so the
first two terms on the right-hand side of Eq. (2) are zero. Using
Eq. (3) and c = γ /r for the isolated disturbance at Pe = 0, the
integrand of the volume integral in Eq. (2) is

cv · ∇
(

r
r3

)
= γ

r

[
U

(
1

r3
+ 1

2r6

)
+ U ·rr

(
3

2r8
− 3

r5

)]
.

(A10)
The integrand (A10) decays as 1/r4 at large distances: Hence,
the volume integral is convergent. The integral is performed

in spherical coordinates to yield∫
cv · ∇

(
r
r3

)
dV = πγU . (A11)

Note that the 1/r4 decay of the integrand means that the con-
tribution to the integral from the concentration disturbance in
the outer region, r = O(1/Pe), is O(Pe) and thus subdominant
to the O(1) contribution from the inner region, r = O(1). This
is fortunate since the expression c = γ /r is not valid in the
outer region, where advection plays a leading-order role even
though Pe is small. Finally, inserting (A11) into (2) yields (4).

3. Derivation of Eq. (6)

Consider a pair of cells separated by a distance d and ori-
ented at an angle δ to the ambient interstitial flow (Fig. 1). The
background concentration around cell 2 due to the presence
of cell 1 is c∞ = γ /|r2 + d|, where r2 is the position vector
measured from cell 2. Therefore,

∇c∞ = −γ
r2 + d

|r2 + d|3 , (A12)

from which

∇c∞|r2=0 = −γ
d
d3

. (A13)

Cell 2 sits in a background velocity field v = U + O(d−3),
where the O(d−3) error is due to the presence of cell 1.
Therefore, we have

∇(v ·∇c∞) = −γU ·
[

I
|r2 + d|3 − 3

(r2 + d )(r2 + d )

|r2 + d|5
]

+ O(d−6), (A14)

from which

∇(v ·∇c∞)|r2=0 = −γU ·
(

I
d3

− 3
dd
d5

)
+ O(d−6). (A15)

Next, we evaluate the volume integral in Eq. (2), for which we
need c − c∞ from the purely diffusive (Pe = 0) concentration
field. To a first approximation at large d the ligand concentra-
tion at Pe = 0 is a superposition of the sources due to each cell
in isolation: c ∼ c(1) + c(2) as d → ∞, where c(i) = γ /ri. The
effect of cell 1 on cell 2 is evaluated using the identity [37]

1

rn+1
i

Pm
n (μi )

= 1

Rn+1

∞∑
s=m

(n + s)!

(s + m)!(n − m)!

(
r3−i

R

)s

Pm
s [(−1)iμ3−i],

(A16)

which enables spherical harmonics originating at cell i to
be expanded in the coordinate system of cell 3 − i, where
i = 1 or 2. Here μi = cos θi and Pm

n is an associated Legendre
polynomial of order m and degree n. Therefore, the ligand
field secreted by cell 1 near the surface of cell 2 is

c(1) = γ

d

[
1 − r2

d
P0

1 (μ2) +
(

r2

d

)2

P0
2 (μ2) + O(d−3)

]
.

(A17)
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Cell 2 responds to the field (A17) by generating a function, or
first reflection, c(21) say, which solves ∇2c(21) = 0, attenuates
at large distances, and satisfies

∂c(21)

∂r2
− αc(21)

= −
[
∂c(1)

∂r2
− αc(1)

]

= γ

[
α

d
+ (1 − α)

P0
1 (μ2)

d2
+ (α − 2)

P0
2 (μ2)

d3
+ O(d−4)

]

(A18)

at r2 = 1. The latter boundary condition is derived from the
flux condition at the cell surface, −∂c/∂r2 = β − αc, noting
that the leading-order field c(2) = γ /r2, where γ = β/(1 +
α). It is readily shown that

c(21) = γ

[
− α

1 + α

1

d

1

r2
+ α − 1

2 + α

1

d2

P0
1 (μ2)

r2
2

+2 − α

3 + α

1

d3

P0
2 (μ2)

r3
2

+ O(d−4)

]
. (A19)

Although c(21) has an error of O(d−4), to complete the calcu-
lation of the concentration around cell 2 through O(d3) we
need to consider multiple reflections. Specifically, the field
c(21) forces a harmonic reflection c(121) around cell 1 which
satisfies the flux condition

∂c(121)

∂r1
− αc(121) = −

[
∂c(21)

∂r1
− αc(21)

]
,

= − γα2

1 + α

1

d2
+ O(d−3). (A20)

at r1 = 1. Thus, we have

c(121) = γα

(1 + α)2

1

d2

1

r1
+ O(d−3). (A21)

In turn, c(121) forces another harmonic reflection c(2121) around
cell 2 which satisfies the flux condition

∂c(2121)

∂r2
− αc(2121) = −

[
∂c(121)

∂r2
− αc(121)

]

= γα3

(1 + α)2

1

d3
+ O(d−4). (A22)

at r2 = 1. Thus, we have

c(2121) = − γα3

(1 + α)3

1

d3

1

r2
+ O(d−4). (A23)

Therefore, from (A19) and (A23) we have the concentration
disturbance around cell 2 correct through O(d−3) given by

c − c∞

= γ

[
1

r2
− α

1 + α

1

d

1

r2
+ α − 1

2 + α

1

d2

P0
1 (μ2)

r2
2

+ 2 − α

3 + α

1

d3

P0
2 (μ2)

r3
2

− α3

(1 + α)3

1

d3

1

r2
+ O(d−4)

]
.

(A24)
Next, from (A10) we have that

v · ∇
(

r2

r3
2

)
=

(
1

r3
2

+ 1

2r6
2

)
(cos δez − sin δex )

+
(

3

2r6
2

− 3

r3
2

)
(sin θ2 cos φex

+ sin θ2 sin φey + cos θ2ez )

(cos δ cos θ2 − sin δ sin θ2 cos φ), (A25)

in terms of spherical coordinates around cell 2. Thus, using
(A24) and (A25), the volume integral in Eq. (2) is performed
to spherical coordinates to yield

∫
(c − c∞)v · ∇

( r
r3

)
dV

= γπ

2

[
U − α

1 + α

1

d
U + α − 2

7(α + 3)
U ·

(
I + dd

d2

)
1

d3

− α3

(1 + α)3

1

d3
U + O(d−4)

]
, (A26)

where we have used U = cos δez − sin δex and d = dez. No-
tice that there is no O(d−2) contribution to (A26) due to the
dipolar form of the concentration disturbance at this order
(A24). Finally, inserting (A13), (A15), and (A26) into Eq. (2)
yields Eq. (6) for the anisotropy order parameter A.
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