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Multilayer network structure enhances the coexistence of competitive species
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The concept of a multiplex network can be used to characterize the dispersal paths and states of different
species in a patch habitat system. The multiplex network is one of three types of multilayer networks. In this
study, the effect of a multiplex network on the long-term stable coexistence of species is investigated using
the concept of metapopulation. Based on the mean field approximation, the stability analysis of a two-species
system shows that, compared to the single layer network, the multiplex network is more conducive to the
stable coexistence of species when one species has a stronger colonization ability. That is, in such a patch
habitat system, if the dispersal paths of the stronger species are different than those of the weaker species, then
the larger the heterogeneity of the dispersal network of the stronger species is, the more likely the long-term
stable coexistence of species. This result provides a different perspective for understanding the biodiversity in
heterogeneous habitats.
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I. INTRODUCTION

The mechanism of species coexistence, especially that
of competitive species, remains one of the most important
theoretical issues in the study of biodiversity [1–4]. Some
theoretical and experimental ecological studies have shown
that a heterogeneous habitat, or spatial heterogeneity of en-
vironment, is one of the most important factors affecting
the long-term stable coexistence of species [5–8]. The so-
called Levins metapopulation idea in ecology [9–13] assumes
that the patches of habitat suitable for a species are dis-
tributed across a landscape (where, in the Levins model, the
metapopulation is defined as a population of local populations
inhabiting an infinitely large patch network, and the size of a
metapopulation is measured by the fraction of patches occu-
pied at any time), and that, over time, there is a dynamical
process of colonization and extinction: the colonization of
empty patches by occupied patches sending out colonizing
propagules and the extinction of local populations on occu-
pied patches (see also [14]). For simplicity, the Levins model
assumes that all local populations are identical and hence have
the same behavior [9,10,12,13]. This assumption implies that
the extinctions occur completely independently in different
habitat patches [12,13]. On the other hand, the Levins model
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also assumes that the colonization of empty patches is not
affected by distance, that is, all patches are equally connected
to other patches (not necessarily to all other patches), which
is called the mean-field approximation [12]. Based on these
two assumptions, the Levins model shows clearly that a single
species metapopulation can be long-term stable if the colo-
nization rate (denoted by c) is larger than the extinction rate
(denoted by e) [12].

In fact, according to Levins’ definition of metapopulation
[10], the dispersal path of a species between habitat patches
determines the connection between habitat patches for this
species [15,16]. This means that a patch habitat system can
be regarded as a dispersal network, where (i) the nodes of the
network represent the habitat patches, which have two states,
occupied and unoccupied patches, respectively, and (ii) the
edges between the nodes and their distribution characteristic
represent the dispersal path of species between habitat patches
[15–22]. Furthermore, when there are two or more species in
a patch habitat system and each patch is suitable for any one
of these species that may have different dispersal paths (or
different dispersal networks), then this patch habitat system
can be regarded as a multiplex network [23–27]. The multi-
plex network is one of three types of multilayer network [28],
that is, a network system consisting of several component
networks with the same nodes but different edge distribution
characteristics.

The concept of multilayer network has not only been
widely used in the analysis of social, traffic, and commu-
nication systems, etc. [23,29–32], but it has also been used
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to reveal the mechanism of biodiversity in some ecological
studies [33,34]. For example, a study showed that there may
be an intricate relation between interspecies competition and
mutualism in a multilayer network system [33]. Moreover,
a recent simulation study has shown that a multilayer net-
work structure may promote biodiversity in a heterogeneous
environment [34], which may imply a new mechanism of
species coexistence in a patch habitat system. The main aim
of this paper is to develop the theoretical basis that underlies
these simulation results. In particular, what is the dynamic
mechanism behind biodiversity in these systems? To answer
this question, based on the concept of metapopulation pre-
sented by Levins [10], we present a simple multiplex network
model under mean-field approximation to reveal theoretically
the general principle of multiplex network in promoting, or
maintaining, biodiversity in this study.

II. A TWO-SPECIES MULTIPLEX NETWORK MODEL

We here consider only two competitive species (called
species 1 and 2, respectively) in a patch habitat system con-
sisting of N patches, where N is assumed to be large and, for
each species, each patch is assumed to be habitat suitable,
but the two competitive species cannot simultaneously exist
in one single habitat. Therefore, at any time t each patch is in
exactly one of three possible states, that is, occupied by a local
population of species 1, or by a local population of species
2, or not occupied (i.e., empty patch). Moreover, we also
assume that (i) at any time t , each local population living in an
occupied patch will go extinct with rate e [12]; (ii) at any time
t , each empty patch can only be successfully colonized by
the local population living in one of its neighboring occupied
patches with colonization rate c [12]; and (iii) when species
1 and 2 compete for an empty patch at the same time, the
colonization ability of species 1 is stronger than that of species
2 in the sense that only when species 1 fails to colonize,
species 2 has the opportunity to colonize [35], that is, species
1 is the stronger species in the competition over unoccupied
patches, while species 2 is the weaker species. Finally, as
stated at the beginning of this paper, species 1 and 2 may have
different dispersal paths between N habitat patches.

Let G1 = {V, E1} and G2 = {V, E2}, where V =
{1, 2, . . . , N} is the set of nodes and E1, E2 ⊆ V × V are
two sets of edges between nodes, respectively. G1 and G2

are then two undirected networks with the same N nodes
that are assumed to be connected, which correspond to the
dispersal paths of species 1 and 2, respectively. That is,
each node represents a habitat patch, and the sets E1 and
E2 represent the dispersal paths of species 1 and species 2
between the habitat patches, respectively. Therefore, G1 and
G2 constitute a multiplex network system [28] (see Fig. 1).
Let (g(s)

i j )N×N denote the adjacency matrix of Gs for s = 1, 2,

in which g(s)
i j = 1 if and only if there is an edge between node

i and node j, denoted by (i, j), with (i, j) ∈ Es, otherwise
g(s)

i j = 0.
Furthermore, let γi(t ) denote the state variable of node i

at time t for i = 1, 2, . . . , N , which is defined as γi(t ) = 0 if
node i is empty, γi(t ) = 1 if node i is occupied by species

FIG. 1. The ecosystem of metapopulation with multiplex net-
work. The red, blue, white nodes on the network represent patches
which are occupied by species 1, species 2, and empty, respectively.
Panel (a) illustrated the ecosystem in a multiplex network. The in-
tralayer edges using dashed line indicate the same node on different
layers. Panel (b) is the visualization of the multiplex network in the
form of edge-colored multigraph

1, and γi(t ) = 2 if node i is occupied by species 2. This
implies that γi(t ) should be considered to be a random vari-
able for i = 1, 2, . . . , N . Let n0(t ), n1(t ), and n2(t ) denote
the numbers of empty, species 1, and species 2 nodes at
time t , respectively. Then, we have nz(t ) = ∑N

i=1 δK (γi(t ), z)
for z = 0, 1, 2, where δK is the Kronecker delta function.
Obviously, the frequencies of empty, species 1, and species
2 nodes at time t are x0(t ) = n0(t )/N , x1(t ) = n1(t )/N ,
and x2(t ) = n2(t )/N , respectively, with

∑2
i=0 xi(t ) = 1. Let

ds(i) = ∑N
j=1 g(s)

i j denote the degree of node i in Gs for s =
1, 2. So, the average degree of Gs is d̄s = ∑N

i=1 ds(i)/N and
the degree variance in Gs is σ 2

s = ∑N
i=1[ds(i) − d̄s]2/N for

s = 1, 2, and the covariance of G1 and G2 in degree is σ1,2 =∑N
i=1[d1(i) − d̄1][d2(i) − d̄2]/N .
Let k1(i) denote the number of neighboring nodes occupied

by species 1 of node i in G1 at time t and, similarly, k2(i) the
number of neighboring nodes occupied by species 2 of node i
in G2 at time t for i = 1, 2, . . . , N , which are given by

k1(i) =
N∑

j=1

g(1)
i j δK (γ j (t ), 1),

k2(i) =
N∑

j=1

g(2)
i j δK (γ j (t ), 2), (1)

respectively. Note that 〈δK (γi(t ), z)〉 ≈ xz(t ) for z = 0, 1, 2,
where the angular bracket stands for the expectation. This
means that we assume that for large N , the expected proba-
bility that each node is an empty node, or a species 1 node,
or a species 2 node, is the same as the frequency of empty
nodes, or species 1 nodes, or species 2 nodes, in the all
nodes, that is, the assumption of random uniform distribu-
tion. Based on this assumption, δK (γ j (t ), 1) and δK (γl (t ), 2)
can be also regarded as independent random variables ap-
proximately for j, l = 1, 2, . . . , N but j �= l . Therefore, k1(i)
and k2(i) are random variables obeying the binomial dis-
tributions k1(i) ∼ B(d1(i), x1(t )) and k2(i) ∼ B(d2(i), x2(t )),
respectively, for i = 1, 2, . . . , N , that is, 〈ks(i)〉 = ds(i)xs(t )
and 〈k2

s (i)〉 = d2
s (i)x2

s (t ) + ds(i)xs(t )[1 − xs(t )] for s = 1, 2.
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On the other hand, we have also

〈k1(i)k2(i)〉 =
〈

N∑
j=1

g(1)
i j δK (γ j (t ), 1)

N∑
j=1

g(2)
i j δK (γ j (t ), 2)

〉

=
N−1∑
j=1

N∑
l= j+1

[
g(1)

i j g(2)
il 〈δK (γ j (t ), 1)δK (γl (t ), 2)〉

+ g(2)
i j g(1)

il 〈δK (γ j (t ), 2)δK (γl (t ), 1)〉]
= x1(t )x2(t )ψ (i), (2)

where

ψ (i) =
N−1∑
j=1

N∑
l= j+1

[
g(1)

i j g(2)
il + g(2)

i j g(1)
il

]

=
N∑

j=1

g(1)
i j

N∑
j=1

g(2)
i j −

N∑
j=1

g(1)
i j g(2)

i j (3)

= d1(i)d2(i) −
N∑

j=1

g(1)
i j g(2)

i j .

It is easy to see that the term
∑N

j=1 g(1)
i j g(2)

i j is exactly the
number of shared neighbors of node i in both G1 and G2. For
convenience, let μ(i) = ∑N

j=1 g(1)
i j g(2)

i j . Then, Eq. (2) can be

rewritten as

〈k1(i)k2(i)〉 = x1(t )x2(t )[d1(i)d2(i) − μ(i)] (4)

for i = 1, 2, . . . , N .
For G1 �= G2, if node i is empty, then the probability that

it is successfully colonized by species 1, denoted by ρ1(i),
is ρ1(i) = 1 − (1 − c)k1(i), and the probability that it is suc-
cessfully colonized by species 2, denoted by ρ2(i), is ρ2(i) =
(1 − c)k1(i)[1 − (1 − c)k2(i)]. We can see that for all possible
i = 1, 2, . . . , N , if the parameter c is large (or it is close to
1, i.e., c → 1), then we must have ρ1(i) > ρ2(i) if k1(i) �= 0
at any time t . This strongly implies that the long-term stable
coexistence of species 1 and 2 in this system should be im-
possible if c → 1. So, we here consider only the possibility
of stable coexistence of species 1 and 2 when c is small. For
small c, ρ1(i) and ρ2(i) can be approximated as

ρ1(i) ≈ ck1(i) − c2

2
k1(i)[k1(i) − 1],

ρ2(i) ≈ ck2(i) − c2k1(i)k2(i) − c2

2
k2(i)[k2(i) − 1], (5)

respectively. Note that 〈ks(i)〉 = ds(i)xs(t ) and 〈k2
s (i)〉 =

d2
s (i)x2

s (t ) + ds(i)xs(t )[1 − xs(t )] for s = 1, 2, and that
〈k1(i)k2(i)〉 = x1(t )x2(t )[d1(i)d2(i) − μ(i)]. Then the
expectations of ρ1(i) and ρ2(i) can be given by

〈ρ1(i)〉 =
(

c + c2

2

)
d1(i)x1(t ) − c2

2

[
d2

1 (i)x2
1 (t ) + d1(i)x1(t )[1 − x1(t )]

]
,

〈ρ2(i)〉 =
(

c + c2

2

)
d2(i)x2(t ) − c2x1(t )x2(t )[d1(i)d2(i) − μ(i)] − c2

2

[
d2

2 (i)x2
2 (t ) + d2(i)x2(t )[1 − x2(t )]

]
, (6)

respectively.
Furthermore, the expected change rates of x1(t ) and x2(t ) in the time interval (t, t + �t ) (where we take �t = 1/N), denoted

by 〈�x1(t )〉/�t and 〈�x2(t )〉/�t , respectively, can be given by

〈�x1(t )〉
�t

=
〈
−

N∑
i=1

δK (γi(t ), 1)e
/

N +
N∑

i=1

δK (γi(t ), 0)ρ1(i)
/

N

〉
= −x1(t )e +

〈
N∑

i=1

δK (γi(t ), 0)ρ1(i)

N

〉
,

〈�x2(t )〉
�t

=
〈
−

N∑
i=1

δK (γi(t ), 2)e
/

N +
N∑

i=1

δK (γi(t ), 0)ρ2(i)
/

N

〉
= −x2(t )e +

〈
N∑

i=1

δK (γi(t ), 0)ρ2(i)

N

〉
. (7)

For the terms 〈∑N
i=1 δK (γi(t ), 0)ρs(i)/N〉 for s = 1, 2, based on the mean-field approximation [36] [where for each of ρs(i) for

i = 1, 2, · · · , N , we replace ρs(i) with
∑N

j=1 ρs( j)/N], we have the approximation〈
N∑

i=1

δK (γi(t ), 0)ρs(i)

N

〉
≈

〈
N∑

i=1

δK (γi(t ), 0)
N

N∑
j=1

ρs( j)

N

〉
=

〈
x0(t )

N∑
j=1

ρs( j)

N

〉
= x0(t )

N∑
j=1

〈ρs( j)〉
N

. (8)

For convenience, let

φ1 =
N∑

i=1

〈ρ1(i)〉
N

= cd̄1x1(t ) + c2

2
d̄1(1 − d̄1)x2

1 (t ) − c2

2
σ 2

1 x2
1 (t ),

φ2 =
N∑

i=1

〈ρ2(i)〉
N

(9)

= cd̄2x2(t ) + c2

2
d̄2(1 − d̄2)x2

2 (t ) − c2

2
σ 2

2 x2
2 (t ) − c2(σ1,2 + d̄1d̄2 − μ̄)x1(t )x2(t ),
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respectively, where μ̄ = ∑N
i=1 μ(i)/N . Therefore, for large N

(�t → 0), we have

dx1

dt
= −ex1 + x0φ1 = x1[−e + (1 − x1 − x2)φ̃1],

dx2

dt
= −ex2 + x0φ2 = x2[−e + (1 − x1 − x2)φ̃2], (10)

where φ̃1 = φ1/x1 and φ̃2 = φ2/x2.

III. STABILITY OF THE MULTIPLEX
NETWORK DYNAMICS

For the dynamical properties of Eq. (10), it is easy to see
that if G1 = G2 (i.e., species 1 and 2 have exactly the same
dispersal path where we have d̄1 = d̄2 = d̄ and σ 2

1 = σ 2
2 =

σ1,2 = σ 2), then φ̃1 > φ̃2 for all possible 0 < x1, x2 < 1 and
x1 + x2 � 1, i.e., φ̃1 − φ̃2 = c2(x1 + x2)(σ 2 + d̄2 − d̄ )/2 >

0. This shows clearly that the stable coexistence of species
1 and 2 is impossible if G1 = G2, or, more specifically, under
our assumptions and definitions, no stable coexistence exists
for the single layer network. This result strongly implies that
the differences of dispersal paths among the stronger and
weaker species may play an important role in the long-term
stable coexistence of species.

For the situation with G1 �= G2, the stability analysis of
Eq. (10) is summarized as follows (see also Table I, and the
detailed mathematical proofs are shown in Appendix A):

(i) The trivial equilibrium (0,0) is globally asymptoti-
cally stable if −e + cd̄1 < 0 and −e + cd̄2 < 0, unstable if

−e + cd̄1 > 0 and −e + cd̄2 > 0, and a saddle point if (−e +
cd̄1)(−e + cd̄2) < 0.

(ii) If cd̄1 − e > 0, then the boundary equilibrium (x∗
1, 0)

exists with

x∗
1 = d̄1 − cD1/2 −

√
(d̄1 − cD1/2)2 + 2(cd̄1 − e)D1

−cD1

∈ (0, 1), (11)

where D1 = d̄1(1 − d̄1) − σ 2
1 < 0. We can see that (x∗

1, 0)
is asymptotically stable if A + Bx∗

1 < 0, where A =
2(d̄1 − d̄2)/cD2 and B = [D1 + 2(σ1,2 + d̄1d̄2 − μ̄)]/D2,
where D2 = d̄2(1 − d̄2) − σ 2

2 , and that (x∗
1, 0) is a saddle

point if A + Bx∗
1 > 0.

(iii) Similar to (ii), if cd̄2 − e > 0, then the boundary equi-
librium (0, x∗

2 ) exists with

x∗
2 =

d̄2 − cD2/2 −
√(

d̄2 − cD2/2
)2 + 2

(
cd̄2 − e

)
D2

−cD2

∈ (0, 1). (12)

We can see also that (0, x∗
2 ) is asymptotically stable if A > x∗

2
and that it is a saddle point if A < x∗

2 .
(iv) Let (x̂1, x̂2) denote an interior equilibrium with 0 <

x̂1, x̂2 < 1 and x̂1 + x̂2 < 1. Then, (x̂1, x̂2) satisfy −exi +
x0φi = 0 for i = 1, 2, which are quadratic equations with so-
lutions x̂( j)

i for j = 1, 2 given by

x̂( j)
1 = −(1 − A)cD1/2 + (1 + B)d̄1

−(1 + B)cD1
− (−1) j

√
[(1 − A)cD1/2 − (1 + B)d̄1]2 + 2(1 + B)D1[(1 − A)cd̄1 − e]

−(1 + B)cD1
,

x̂( j)
2 = A + Bx̂( j)

1 . (13)

The more detailed expressions are shown in Appendix A.

We can see also that if (x̂(1)
1 , x̂(1)

2 ) is an interior equilibrium,

then it must be a saddle point, and if (x̂(2)
1 , x̂(2)

2 ) is an inte-
rior equilibrium, then it must be asymptotically stable (see
Appendix A, and see also Table I). Moreover, for the situation

with (x̂(1)
1 , x̂(1)

2 ) = (x̂(2)
1 , x̂(2)

2 ) = (x̂(∗)
1 , x̂(∗)

2 ), if (x̂(∗)
1 , x̂(∗)

2 ) is an
interior equilibrium, then it must be a saddle-node bifurcation
(see Appendix A, and see also Table I).

Based on the above analysis, we here consider a special
case to show how the difference between G1 and G2 in net-
work heterogeneity influences the coexistence of species 1
and 2. In this case, for simplicity, we assume that d̄1 = d̄2 = d̄
but σ 2

1 �= σ 2
2 , that is, G1 and G2 have the same average degree,

but their network heterogeneity is not the same. Note that
A = 0 in this case. Thus, it is easy to see that the trivial
equilibrium (0,0) is unstable if −e + cd̄ > 0; if −e + cd̄ > 0,
then the boundary equilibrium (x∗

1, 0) exists and it is asymp-
totically stable (or a saddle point) if B < 0 (or B > 0); the
boundary equilibrium (0, x∗

2 ) also exists if −e + cd̄ > 0 and
it must be a saddle point. Furthermore, we can see also that the

point (x̂(2)
1 , x̂(2)

2 ) is a unique interior equilibrium if and only if

−e + cd̄ > 0 and B > 0 [i.e., σ 2
1 > d2 + d + 2(σ1,2 − μ̄)],

and it must be also globally asymptotically stable if it exists.
This result shows clearly that under the condition −e + cd̄ >

0, the increase of σ 2
1 (i.e., the increase of G1 network het-

erogeneity) will promote the long-term stable coexistence of
species 1 and 2. This strongly implies also that if G1 is a
regular network (i.e., σ 2

1 = 0), then the stable coexistence of
species 1 and 2 is impossible even if G2 is a heterogeneous
network (i.e., σ 2

2 �= 0). On the other hand, if G2 is a regular
network and G1 is a heterogeneous network, then the stable
coexistence of species 1 and 2 is possible.

In order to display more clearly the results of the above the-
oretical analysis, we show also some examples of Monte Carlo
simulations (i.e., stochastic simulations based on synchronous
update being independent of the mean-field approximation)
in Fig. 2. G1 and G2 have the same average degree in all
examples, and G2 is an exponential network generated by ran-
dom attachment with exponential degree distribution [37,38]
and its network heterogeneity is kept to be almost the same
in all examples. However, the network heterogeneity of G1

varies in the different examples, in which G1 is a regular
random network [39] in panel (a) where the degree variance is

024402-4



MULTILAYER NETWORK STRUCTURE ENHANCES THE … PHYSICAL REVIEW E 104, 024402 (2021)

TABLE I. The existence and stability of equilibria in Eq. (10).

zero (i.e., σ 2
1 = 0), an exponential network in panel (b) with

σ 2
1 > 0 but small, and a scale-free network [37] in panels (c)

and (d) with large σ 2
1 . In each of the panels, the phase diagram

of Eq. (10) is plotted on the left, and the simulation results
on the right. We can see that the theoretical predictions can
describe the properties of the simulations very well, that is,
the increase of network heterogeneity corresponding to the
stronger species will promote the long-term stable coexistence
of competitive species.

In summary, the above analysis reveals when the long-term
stable coexistence of species 1 and 2 is possible in a multiplex
network system under the condition of large N through the
deterministic dynamics Eq. (10). However, a more challeng-
ing question is how the coexistence of species 1 and 2 is
affected by the finite size of a multiplex network. To answer
this question, the effect of N on the steady-state statistics of
the system is investigated using the theory of one-step process
[40] (see section “steady-state statistics” in Appendix B). The

FIG. 2. Effect of heterogeneity of the dispersal network of the stronger species on species coexistence. The four examples are considered
here, respectively, where (i) G1 and G2 have the same average degree in all examples; (ii) G2 is an exponential network and its heterogeneity
remains approximately the same in all examples; and (iii) G1 is a regular random network in (a) with σ 2

1 = 0, an exponential network in
(b) with σ 2

1 > 0 but small, and a scale-free network in (c) and (d) with large σ 2
1 . In each panel, the phase diagram of Eq. (10) is plotted on the

left, the simulation results in continues lines and analytical prediction in dashed lines on the right. The parameters involved in these examples
are N = 1000, e = c = 0.1, and d̄ = 6; σ 2

1 = σ1,2 = 0, σ 2
2 = 12.11, and μ̄ = 0.032 in (a); σ 2

1 = 11.414, σ 2
2 = 11.628, σ1,2 = −0.064, and

μ̄ = 0.034 in (b); σ 2
1 = 48.148, σ 2

2 = 12.13, σ1,2 = −0.258, and μ̄ = 0.038 in (c); σ 2
1 = 47.312, σ 2

2 = 11.628, σ1,2 = −8.25, and μ̄ = 0.03
in (d). For each example, the initial state of the system is taken as (x0(0), x1(0), x2(0)) = (1/3, 1/3, 1/3) and it obeys the random uniform
distribution, that is, for each node i (i = 1, 2, . . . , N), the occurrences of the events γi(0) = 0, or γi(0) = 1, or γi(0) = 2 have the same
probability 1/3, respectively.
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results show clearly that when the system state is near a stable
interior equilibrium (x̂1, x̂2) of Eq. (10), the expectations of x1

and x2 are x̂1 and x̂2, respectively, and the variances of x1 and
x2, denoted by σ 2

x1
and σ 2

x2
, respectively, and the covariance of

x1 and x2, denoted by σx1,x2 , will tend to 0 if N is large enough,
that is, for large N , the dynamical properties of the system can
be described well by Eq. (10).

IV. DISCUSSION

The theory of metapopulation provides a basic theoreti-
cal framework for understanding the dynamics of population
and community in heterogeneous habitats, or in patch habitat
systems, in which the fundamental idea of metapopulation
persistence is a stochastic balance between local extinctions
and recolonizations of empty habitat patches [12,13]. The
various factors affecting metapopulation dynamics have also
been investigated by many theoretical studies, for example,
the studies on how the metapopulation colonization rate and
extinction rate vary as a function of the overall level of
patch occupancy in the Levins model [9–11], the source-sink
metapopulations [13,41], the model of two-species Levins
metapopulations [42], and the spatially explicitly models
of metapopulation [12], etc. However, none of these theoret-
ical studies have considered whether the different dispersal
paths of different species in a patch habitat system will af-
fect the long-term stable coexistence of species. For instance,
the study on two-species Levins metapopulations (including
competing species, predator-prey metapopulations, and mu-
tualism) mainly emphasizes the effects that the rate of patch
turnover as well as the amount of habitat destruction has on
the metapopulation persistence [13], but does not consider
the influence of dispersal paths of species. However, a recent
study based on numerical simulations shows that the species
coexistence in a patch habitat system could be promoted by
the the dispersal network heterogeneity of competitive species
[34]. This result may suggest a different possible mecha-
nism of competitive species coexistence in heterogeneous
environments.

In this study, different from the classic theoretical studies
of metapopulations, we present a simple multiplex network
model (it is one of three types of the multilayer network [28])
to explore how the difference of dispersal paths of different
species in a patch habitat system affects the long-term stable
coexistence of competitive species, in which the ecological
differences among different species are only reflected in their
dispersal path and their priority in colonizing empty patches.
Moreover, under the condition of large network size, our the-
oretical analysis also depends on the method of mean-field
approximation which may make the result valid in the limited
regime of application. Although we realize that all of our as-
sumptions may not hold for a given ecosystem, they provide a
possible theoretical way for understanding why the difference
of dispersal paths of different species in a patch habitat system
is conducive to species coexistence. Our main result shows
clearly that, in a patch habitat system, if the dispersal paths of
the species with stronger colonization ability is different than
the dispersal paths of the weaker species, then the larger the
heterogeneity of dispersal network of the stronger species is,

the more possible the long-term stable coexistence of species
should be. This also implies that for multispecies Levins
metapopulations, the difference between the dispersal patterns
of different species may play a very important role in the dy-
namic characteristics of the metapopulations. Therefore, our
theoretical analysis not only provides a different perspective
for understanding the mechanism of maintaining biodiversity
in a heterogeneous environment (or in patch habitat system),
but also provides a challenging research direction for the
development of metapopulation theory.
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APPENDIX A: STABILITY ANALYSIS OF EQ. (10)

For G1 = G2, note that d1(i) = d2(i) = d (i) and
〈k1(i)k2(i)〉 = x1(t )x2(t )[d2(i) − d (i)] for i = 1, 2, . . . , N .
Then, 〈ρ1(i)〉 and 〈ρ2(i)〉 can be rewritten as

〈ρ1(i)〉 = cx1(t )d (i) + c2

2
x2

1 (t )d (i) − c2

2
x2

1 (t )d2(i),

〈ρ2(i)〉 = cx2(t )d (i) +
(

c2

2
x2

2 (t ) + c2x1(t )x2(t )

)
d (i)

−
(

c2

2
x2

2 (t ) + c2x1(t )x2(t )

)
d2(i), (A1)

respectively, for i = 1, 2, . . . , N , and we have also

φ1 = cd̄x1(t ) − c2

2
(σ 2 + d̄2 − d̄ )x2

1 (t ),

φ2 = cd̄x2(t ) −
(

c2

2
x2

2 (t ) + c2x1(t )x2(t )

)
(σ 2 + d̄2 − d̄ ),

(A2)

where d̄ = ∑N
i=1 d (i)/N and σ 2 = ∑N

i=1 (d (i) − d̄ )
2
/N .

Then φ̃1 > φ̃2 for all possible 0 < x1, x2 < 1, i.e., φ̃1 −
φ̃2 = c2(x1 + x2)(σ 2 + d̄2 − d̄ )/2 > 0. This shows clearly
that the stable coexistence of species 1 and 2 is impossible
if G1 = G2, or, more specifically, under our assumptions and
definitions, the single layer network cannot lead to the long-
term stable coexistence of species.

For the situation with G1 �= G2, the stability analysis of the
boundaries of Eq. (10) is given by the following:
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(i) The point (0,0) is a trivial equilibrium of Eq. (10)
and it is globally asymptotically stable if e/c > d̄i for i =
1, 2, unstable if e/c < d̄i for i = 1, 2 and a saddle point if

(e/c − d̄1)(e/c − d̄2) < 0 since the Jacobian matrix about
(0,0) is (−e + cd̄1 0

0 −e + cd̄2
).

(ii) The point (x∗
1, 0) with

x∗
1 = −

[
d̄1 − c

2
D1 −

√(
d̄1 − c

2
D1

)2
+ 2D1(cd̄1 − e)

]/
(cD1) ≈ 1 − e/(cd̄1) ,

where D1 = d̄1(1 − d̄1) − σ 2
1 < 0 since d̄1 > 1, is a boundary equilibrium if e/c < d̄1. Note that the Jacobian matrix about

(x∗
1, 0) is (

x∗
1

[ − e/(1 − x∗
1 ) + (1 − x∗

1 ) c2

2 D1
]

∂ ẋ1
/
∂x2|(x∗

1 ,0)

0 (1 − x∗
1 ){c(d̄2 − d̄1) − c2

2 [D1 + 2(σ12 + d̄1d̄2 − μ)]x∗
1}

)
.

Thus, (x∗
1, 0) is locally asymptotically stable if 2(d̄2 − d̄1) − c[D1 + 2(σ12 + d̄1d̄2 − μ)]x∗

1 < 0 and a saddle point if
2(d̄2 − d̄1) − c[D1 + 2(σ12 + d̄1d̄2 − μ)]x∗

1 > 0.
(iii) Similar to (x∗

1, 0), the point (0, x∗
2 ) with

x∗
2 = −

[
d̄2 − c

2
D2 −

√(
d̄2 − c

2
D2

)2
+ 2D2(cd̄2 − e)

]/
(cD2) ≈ 1 − e/(cd̄2)

is also a boundary equilibrium if e/c < d̄2, where D2 = d̄2(1 − d̄2) − σ 2
2 < 0 since d̄2 > 1. Note also that the Jacobian matrix

about (0, x∗
2 ) is (

(1 − x∗
2 )(cd̄1 − cd̄2 − c2

2 D2x∗
2 ) 0

∂ ẋ2
/
∂x1|(0,x∗

2 ) x∗
2

[ − e/(1 − x∗
2 ) + (1 − x∗

2 ) c2

2 D2
]) .

Thus, (0, x∗
2 ) is locally asymptotically stable if cd̄1 − cd̄2 − c2

2 D2x∗
2 < 0 and a saddle point if cd̄1 − cd̄2 − c2

2 D2x∗
2 > 0.

The interior positive equilibrium of Eq. (10), denoted by (x̂1, x̂2) with 0 < x̂1, x̂2 < 1, can be obtained from the equations

−e + (1 − x1 − x2)φ̃1 = 0,

−e + (1 − x1 − x2)φ̃2 = 0. (A3)

Note that φ̃1 = φ̃2 ⇒ x2 = A + Bx1, where A = 2(d̄1 − d̄2)/(cD2) and B = [D1 + 2(σ1,2 − μ̄ + d̄1d̄2)]/D2 [this means that
the stability conditions of boundaries (x∗

1, 0) and (0, x∗
2 ) can be also re-expressed succinctly as (x∗

1, 0) is stable if A + Bx∗
1 < 0;

and (0, x∗
2 ) is stable if A > x∗

2]. Note also that the two possible solutions of Eq. (A3), denoted by (x̂(1)
1 , x̂(1)

2 ) and (x̂(2)
1 , x̂(2)

2 ),
respectively, can be given by

x̂(1)
1 =

−(1 − A) c
2 D1 + (1 + B)d̄1 +

√
[(1 − A) c

2 D1 + (1 + B)d̄1]2 − 2(1 + B)D1e

−(1 + B)cD1

= 1 − A

2(1 + B)
− d̄1

cD1
−

√
[(1 − A) c

2 D1 + (1 + B)d̄1]2 − 2(1 + B)D1e

(1 + B)cD1
(A4)

x̂(1)
2 = A + Bx̂(1)

1 ,

and

x̂(2)
1 =

−(1 − A) c
2 D1 + (1 + B)d̄1 −

√
[(1 − A) c

2 D1 + (1 + B)d̄1]2 − 2(1 + B)D1e

−(1 + B)cD1

= 1 − A

2(1 + B)
− d̄1

cD1
+

√
[(1 − A) c

2 D1 + (1 + B)d̄1]2 − 2(1 + B)D1e

(1 + B)cD1

x̂(2)
2 = A + Bx̂(2)

1 . (A5)

Thus, the conditions for the existence of interior equilibrium can be shown as

(i) The interior equilibrium point (x̂(1)
1 , x̂(1)

2 ) exists if cd̄1 − e > 0, cd̄2 − e > 0, A + Bx∗
1 < 0, and A > x∗

2 ; or cd̄1 − e > 0,
cd̄2 − e > 0, A + Bx∗

1 > 0, A > x∗
2 , |(1 − A)D1/2| < −(1 + B)d̄1, and [(1 − A)cD1/2 + (1 + B)d̄1]2 > 2(1 + B)D1e.
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(ii) The interior equilibrium (x̂(2)
1 , x̂(2)

2 ) exists if cd̄1 − e > 0, cd̄2 − e < 0, and A + Bx∗
1 > 0; or cd̄1 − e > 0, cd̄2 − e > 0, A +

Bx∗
1 > 0, and A < x∗

2 ; or cd̄1 − e > 0, cd̄2 − e > 0, A + Bx∗
1 > 0, A > x∗

2 , |(1 − A)D1/2| < −(1 + B)d̄1, and [(1 − A)cD1/2 +
(1 + B)d̄1]2 > 2(1 + B)D1e.

In particular, if [(1 − A)cD1/2 + (1 + B)d̄1]2 − 2(1 + B)D1e = 0, then we have

x̂(∗)
1 = x̂(1)

1 = x̂(2)
1 = 1 − A

2(1 + B)
− d̄1

cD1
, x̂(∗)

2 = x̂(1)
2 = x̂(2)

2 = A + Bx̂(∗)
1 . (A6)

It is also easy to see that the point (x̂(∗)
1 , x̂(∗)

2 ) is an interior equilibrium if cd̄1 − e > 0, cd̄2 − e > 0, A + Bx∗
1 > 0, A > x∗

2 ,
|(1 − A)D1/2| < −(1 + B)d̄1, and [(1 − A)cD1/2 + (1 + B)d̄1]2 = 2(1 + B)D1e.

Note that the Jacobian matrix about (x̂(i)
1 , x̂(i)

2 ) for i = 1, 2 is(
x1

[ − φ̃1 + (1 − x1 − x2) c2

2 D1
] −x1φ̃1

x2[−φ̃2 − (1 − x1 − x2)c2(σ1,2 − μ̄ + d̄1d̄2)] x2
[ − φ̃2 + (1 − x1 − x2) c2

2 D2
])∣∣∣∣(

x̂(i)
1 ,x̂(i)

2

),
and the eigenvalues of this matrix satisfy

λ1 + λ2 = −φ̃1(x1 + x2) + (1 − x1 − x2)
c2

2
[x1D1 + x2D2]|(x̂(i)

1 ,x̂(i)
2 ) < 0

and

λ1λ2 = x1x2

[
−φ̃1 + (1 − x1 − x2)

c2

2
D1

][
−φ̃2 + (1 − x1 − x2)

c2

2
D2

]∣∣∣(
x̂(i)

1 ,x̂(i)
2

)
+x1x2φ̃1[−φ̃1 − (1 − x1 − x2)c2(σ1,2 − μ̄ + d̄1d̄2)]|(x̂(i)

1 ,x̂(i)
2 )

= x1x2(1 − x1 − x2)
c2

2

[
(1 − x1 − x2)

c2

2
D1D2 − φ̃1[D1 + D2 + 2(σ12 + d̄1d̄2 − μ)]

]∣∣∣(
x̂(i)

1 ,x̂(i)
2

)
= x1x2(1 − x1 − x2)

c4

2
D1D2(1 + B)

[
1 − A

2(1 + B)
− d̄1

cD1
− x1

]∣∣∣(
x̂(i)

1 ,x̂(i)
2

).

Therefore, we have that if (x̂(1)
1 , x̂(1)

2 ) is an interior equilibrium,

then it must be a saddle point, if (x̂(2)
1 , x̂(2)

2 ) is an interior
equilibrium, then it must be asymptotically stable, and if

(x̂(∗)
1 , x̂(∗)

2 ) is an interior equilibrium, λ1λ2 = 0, then it is a
saddle-node bifurcation.

These stability results are summarized in Eqs. (11)– (13)
and Table I of the main text.

APPENDIX B: STEADY-STATE STATISTICS ANALYSIS OF
THE TWO-SPECIES MULTIPLEX NETWORK DYNAMICS

1. One-step process

Note that for G1 �= G2, if the node i is empty, then the prob-
ability that it is successfully colonized by species 1, denoted
by ρ1(i), is ρ1(i) = 1 − (1 − c)k1(i), and the probability that
it is successfully colonized by species 2, denoted by ρ2(i), is
ρ2(i) = (1 − c)k1(i)[1 − (1 − c)k2(i)]. Based on the theory of
one-step process [40], we assume that, in each time step (or

in a small time interval), the system state can be changed at
most one frequency unit (i.e., 1/N), that is, or change from x1

to x1 + 1/N (or to x1 − 1/N) happens, or change from x2 to
x2 + 1/N (or to x2 − 1/N) happens, or nothing changes. So,
for the stochastic fluctuations in the frequencies of species 1
and 2 nodes, we take the one-step process with events

x1
π±

1−→ x1 ± 1/N,

x2
π±

2−→ x2 ± 1/N,

where π+
1 = ∑N

i=1 δK (γi(t ), 0)ρ1(i)/N and π−
1 = ex1 are pro-

portional to the transition probabilities from x1 to x1 + 1/N
and from x1 to x1 − 1/N , respectively, and, similarly, π+

2 =∑N
i=1 δK (γi(t ), 0)ρ2(i)/N and π−

2 = ex2 are proportional to
the transition probabilities from x2 to x2 + 1/N and from x2

to x2 − 1/N , respectively [40].
Let p(x1, x2; t ) denote the probability density distribution

that the the frequencies of species 1 and species 2 nodes equal
exactly x1 and x2, respectively, at time t . When the time step
is taken as 1/N , we have the master equation [40]

p(x1, x2; t + 1/N ) − p(x1, x2, t ) = p(x1 − 1/N, x2; t )π+
1 (x1 − 1/N, x2) + p(x1 + 1/N, x2; t )π−

1 (x1 + 1/N )

+ p(x1, x2 − 1/N ; t )π+
2 (x1, x2 − 1/N ) + p(x1, x2 + 1/N ; t )π−

2 (x2 + 1/N )

− p(x1, x2; t )[π+
1 (x1, x2) + π−

1 (x1)] − p(x1, x2; t )[π+
2 (x1, x2) + π−

2 (x2)]. (B1)
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Notice that

p(x1, x2; t + 1/N ) ≈ p(x1, x2; t ) + 1

N

∂ p(x1, x2; t )

∂t
,

p(x1 ± 1/N, x2; t ) ≈ p(x1, x2; t ) ± 1

N

∂ p(x1, x2; t )

∂x1
+ 1

2N2

∂2 p(x1, x2; t )

∂x2
1

,

p(x1, x2 ± 1/N ; t ) ≈ p(x1, x2; t ) ± 1

N

∂ p(x1, x2; t )

∂x2
+ 1

2N2

∂2 p(x1, x2; t )

∂x2
2

,

π+
1 (x1 − 1/N, x2) ≈ π+

1 (x1, x2) − 1

N

∂π+
1 (x1, x2)

∂x1
+ 1

2N2

∂2π+
1 (x1, x2)

∂x2
1

,

π−
1 (x1 + 1/N ) ≈ π−

1 (x1) + 1

N

∂π−
1 (x1)

∂x1
+ 1

2N2

∂2π−
1 (x1)

∂x2
1

,

π+
2 (x1, x2 − 1/N ) ≈ π+

2 (x1, x2) − 1

N

∂π+
2 (x1, x2)

∂x2
+ 1

2N2

∂2π+
2 (x1, x2)

∂x2
2

,

π−
2 (x2 + 1/N ) ≈ π−

2 (x2) + 1

N

∂π−
2 (x2)

∂x2
+ 1

2N2

∂2π−
2 (x2)

∂x2
2

.

Furthermore, note also that

p(x1, x2; t + 1/N ) − p(x1, x2; t ) ≈ 1

N

∂ p(x1, x2; t )

∂t
,

p(x1 − 1/N, x2; t )π+
1 (x1 − 1/N, x2) ≈ p(x1, x2; t )π+

1 (x1, x2) + p(x1, x2; t )

[
− 1

N

∂π+
1 (x1, x2)

∂x1
+ 1

2N2

∂2π+
1 (x1, x2)

∂x2
1

]

+π+
1 (x1, x2)

[
− 1

N

∂ p(x1, x2; t )

∂x1
+ 1

2N2

∂2 p(x1, x2; t )

∂x2
1

]
+ 1

N2

∂ p(x1, x2; t )

∂x1

∂π+
1 (x1, x2)

∂x1
,

p(x1 + 1/N, x2; t )π−
1 (x1 + 1/N ) ≈ p(x1, x2; t )π−

1 (x1) + p(x1, x2; t )

[
1

N

∂π−
1 (x1)

∂x1
+ 1

2N2

∂2π−
1 (x1)

∂x2
1

]

+π−
1 (x1)

[
1

N

∂ p(x1, x2; t )

∂x1
+ 1

2N2

∂2 p(x1, x2; t )

∂x2
1

]
+ 1

N2

∂ p(x1, x2; t )

∂x1

∂π−
1 (x1)

∂x1
,

p(x1, x2 − 1/N ; t )π+
2 (x1, x2 − 1/N ) ≈ p(x1, x2; t )π+

2 (x1, x2) + p(x1, x2; t )

[
− 1

N

∂π+
2 (x1, x2)

∂x2
+ 1

2N2

∂2π+
2 (x1, x2)

∂x2
2

]

+π+
2 (x1, x2)

[
− 1

N

∂ p(x1, x2; t )

∂x2
+ 1

2N2

∂2 p(x1, x2; t )

∂x2
2

]
+ 1

N2

∂ p(x1, x2; t )

∂x2

∂π+
2 (x1, x2)

∂x2
,

p(x1, x2 + 1/N ; t )π−
2 (x2 + 1/N ) ≈ p(x1, x2; t )π−

2 (x2) + p(x1, x2; t )

[
1

N

∂π−
2 (x2)

∂x2
+ 1

2N2

∂2π−
2 (x2)

∂x2
2

]

+π−
2 (x2)

[
1

N

∂ p(x1, x2; t )

∂x2
+ 1

2N2

∂2 p(x1, x2; t )

∂x2
2

]
+ 1

N2

∂ p(x1, x2; t )

∂x2

∂π−
2 (x2)

∂x2
.
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Therefore, the Fokker-Planck equation (i.e., a continuous-time diffusion approximation) corresponding to the master equation
(B1) can be given by [40]

∂ p(x1, x2; t )

∂t
= − ∂

∂x1
[π+

1 (x1, x2) − π−
1 (x1)]p(x1, x2; t ) + 1

2N

∂2

∂x2
1

[π+
1 (x1, x2) + π−

1 (x1)]p(x1, x2; t )

− ∂

∂x2
[π+

2 (x1, x2) − π−
2 (x2)]p(x1, x2; t ) + 1

2N

∂2

∂x2
2

[π+
2 (x1, x2) + π−

2 (x2)]p(x1, x2; t ). (B2)

This is also called the forward Kolmogorov equation in
mathematics.

2. Steady-state statistics

Based on Eq. (10), the terms π±
1 and π±

2 can be ap-
proximated as π+

1 ≈ (1 − x1 − x2)φ1, π−
1 ≈ x1e, π+

2 ≈ (1 −
x1 − x2)φ2, and π−

2 ≈ x2e, respectively. Let (x̃1, x̃2) denote
an asymptotically stable equilibrium of Eq. (10). We now
consider the statistical characteristics of the system when the
system state is near (x̃1, x̃2). In order to show this, let ξ1 =
x1 − x̃1 and ξ2 = x2 − x̃2. This implies that the joint probabil-
ity density distribution p(x1, x2; t ) can be now rewritten as the
function of ξ1 and ξ2, i.e., p(x1, x2; t ) = q(ξ1, ξ2; t ). Using the
Taylor expansion about (x̃1, x̃2), we have

∂q(ξ1, ξ2; t )

∂t
= − ∂

∂ξ1
[a11ξ1 + a12ξ2]q(ξ1, ξ2; t )

+ D1

2N

∂2q(ξ1, ξ2; t )

∂ξ 2
1

− ∂

∂ξ2
[a21ξ1 + a22ξ2]q(ξ1, ξ2; t )

+ D2

2N

∂2q(ξ1, ξ2; t )

∂ξ 2
2

(B3)

with boundary conditions limξ1,ξ2→±∞ (q(ξ1, ξ2; t ), ∂q(ξ1,ξ2;t )
∂ξ1

,

∂q(ξ1,ξ2;t )
∂ξ2

) = (0, 0, 0), where

a11 = ∂

∂x1
[π+

1 (x1, x2) − π−
1 (x1)]

∣∣∣∣
(x̃1,x̃2 )

,

a12 = ∂

∂x2
[π+

1 (x1, x2) − π−
1 (x1)]

∣∣∣∣
(x̃1,x̃2 )

,

a21 = ∂

∂x1
[π+

2 (x1, x2) − π−
2 (x2)]

∣∣∣∣
(x̃1,x̃2 )

,

a22 = ∂

∂x2
[π+

2 (x1, x2) − π−
2 (x2)]

∣∣∣∣
(x̃1,x̃2 )

,

(B4)

and

D1 = π+
1 (x̃1, x̃2) + π−

1 (x̃1),

D2 = π+
2 (x̃1, x̃2) + π−

2 (x̃2). (B5)

We can see that Eq. (B3) and its boundary conditions also
imply that [40]

d〈ξ1〉
dt

= a11〈ξ1〉 + a12〈ξ2〉,
d〈ξ2〉

dt
= a21〈ξ1〉 + a22〈ξ2〉, (B6)

and

d
〈
ξ 2

1

〉
dt

= 2
[
a11

〈
ξ 2

1

〉 + a12〈ξ1ξ2〉
] + D1

N
,

d〈ξ1ξ2〉
dt

= a21
〈
ξ 2

1

〉 + (a11 + a22)〈ξ1ξ2〉 + a12
〈
ξ 2

2

〉
, (B7)

d
〈
ξ 2

2

〉
dt

= 2
[
a21〈ξ1ξ2〉 + a22

〈
ξ 2

2

〉] + D2

N
.

It is easy to see that the stationary solution of Eq. (B6), i.e.,
〈ξ1〉 = 0 and 〈ξ2〉 = 0, must be also asymptotically stable
[i.e., the matrix (ai j )2×2 satisfies a11 + a22 < 0 and a11a22 −
a12a21 > 0] since the equilibrium (x̃1, x̃2) is asymptotically
stable. Thus, the statistical characteristics of the system state
around the stable equilibrium (x̃1, x̃2) can be determined by
the stationary solutions of Eqs. (B6) and (B7), which are

〈x1〉 = x̃1,

〈x2〉 = x̃2,

σ 2
x1

= 〈
ξ 2

1

〉
= −a12

a11
σx1,x2 − D1

2a11N
,

σ 2
x2

= 〈
ξ 2

2

〉 = −a21

a22
σx1,x2 − D2

2a22N
,

σx1,x2 = 〈
ξ1ξ2

〉
= 1

2N

[a21D1

a11
+ a12D2

a22

] a11a22

(a11a22 − a12a21)
, (B8)

respectively, This result means that if N is large enough, then
we must have σ 2

x1
→ 0, σ 2

x2
→ 0, and σx1,x2 → 0.
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