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Hysteresis loop area scaling exponents in DNA unzipping by a periodic force: A Langevin
dynamics simulation study
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Using Langevin dynamics simulations, we study the hysteresis in unzipping of longer double-stranded DNA
chains whose ends are subjected to a time-dependent periodic force with frequency ω and amplitude G keeping
the other end fixed. We find that the area of the hysteresis loop, Aloop, scales as 1/ω at higher frequencies, whereas
it scales as (G − Gc )αωβ with exponents α = 1 and β = 1.25 in the low-frequency regime. These values are
same as the exponents obtained in Monte Carlo simulation studies of a directed self-avoiding walk model of a
homopolymer DNA [R. Kapri, Phys. Rev. E 90, 062719 (2014)], and the block copolymer DNA [R. K. Yadav
and R. Kapri, Phys. Rev. E 103, 012413 (2021)] on a square lattice, and differs from the values reported earlier
using Langevin dynamics simulation studies on a much shorter DNA hairpins.
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I. INTRODUCTION

The unzipping of a double-stranded DNA (dsDNA) by a
mechanical force, which is an initial step in biological pro-
cesses like DNA replication and RNA transcription [1], has
been studied over two decades both theoretically [2–8] and ex-
perimentally using single-molecule manipulation techniques
[9–13]. The two strands of a dsDNA, whose ends are exerted
by a pulling force, is found to unzip to two single strands if
the force exceeds a critical value. The unzipping transition,
which is now well established, is a first-order phase transition.
If the externally applied force is oscillatory in nature, then
it unzips and rezips the two strands of the DNA in each
cycle, and the force-extension isotherm shows a hysteresis.
There have been many studies of hysteresis in unbinding and
rebinding of biomolecules in recent years because it reveals
important information about the kinetics of conformational
transformations, the potential energy landscape, and control-
ling the folding pathway of a single molecule and in force
sensor studies [13–17].

In recent years, the behavior of a dsDNA under a pe-
riodic force with frequency ω and amplitude G has been
studied by using Brownian dynamics (BD) or Langevin dy-
namics (LD) simulation of an off-lattice coarse-grained model
for short chains which are limited to a maximum number
of N = 16 base pairs and 32 monomers [18–22], and by
using Monte Carlo (MC) simulations of DNA chains hav-
ing 1024 monomers with N = 512 base pairs on a (D =
1 + 1)-dimensional square lattice [23–26]. Both LD and MC
simulation studies show the existence of a dynamical phase
transition, where the DNA can be taken from the zipped state
to an unzipped state via a new dynamical state. The area of the
hysteresis loop, Aloop, which represents the energy dissipated
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in the system, is found to scale as 1/ω at higher frequen-
cies, whereas at low frequencies, Aloop scales as Gαωβ , or
(G − Gc)αωβ , where Gc is the critical force needed to unzip
the DNA for the static force case. The values of the expo-
nents α and β obtained in BD/LD and MC simulations are,
however, different. In BD/LD simulation studies on shorter
DNA hairpins [18–22], a chain having 2N monomers, whose
first N monomers are complementary to the rest half. The
monomers of the chain are chosen in such a manner that
the ith monomer from the anchored end can bind only with
the (N − i)th monomer of the chain, thus mimicking a base
pair of the DNA. One end of the chain is anchored at the
origin and an external time dependent periodic force g(t ) is
applied on the free end along x direction and its distance
from the origin, x(t ), is monitored. In MC simulation studies
[23–26], the strands of DNA are represented by two directed
self-avoiding walks (DSAWs), which do not cross each other,
on a (D = 1 + 1)-dimensional square lattice. Whenever the
ith monomers of walks (mimicking complementary bases) are
unit distance apart, there is a gain in energy (base pairing).
Two strands of the DNA at one end are always kept fixed at
origins O and O′ and the other end monomers are subjected
to a time-dependent periodic force g(t ) and the separation,
x(t ), between them is monitored. In both BD/LD and MC
simulation studies, the average force-distance isotherms ob-
tained from the time series show hysteresis loop whose area
is studied as a function of G and ω. Initial BD/LD simula-
tion studies reported exponent values α = β = 1/2 [18–20].
These were later modified to α = 0.33 and β = 1/2 [21].
However, a different set of exponents, α = 1 and β = 1.25,
were obtained for longer homopolymer DNA chains in MC
simulation studies [24]. Very recently, the DSAW model has
been extended to study the unzipping of a block copolymer
DNA subjected to a periodic force, and the same set of expo-
nents (α = 1 and β = 1.25) were obtained [26]. This inspired
us to perform LD simulation studies on a longer DNA chains
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and investigate the true values of the loop area exponents at
low-frequency regime. Our hypothesis is that the different set
of exponents obtained in earlier BD/LD studies, as compared
to MC studies, are due to the presence of strong finite-size
effects because of shorter chain lengths used in those studies.

In this paper, we study the unzipping transition of a dsDNA
subjected to a periodic force using LD simulations in two
dimensions (2D) and compare our results to a well-established
DSAW model of a DNA on a D = 1 + 1 square lattice.
The latter model has been studied extensively, for over two
decades, using the generating function, exact transfer matrix,
and Monte Carlo techniques [5–7,23,24,24–29]. In unzipping
transition, the average of the relative distance r = |r2(N ) −
r1(N )| between the end monomers of the two strands of the
DNA (the order parameter), which is the conjugate variable
to an externally applied force, is always along the direction of
the force. The fluctuations in the transverse directions are so
small that they can be safely neglected. In the absence of any
external pulling force, the two strands of the DNA can also be
denatured thermally, purely due to the competition between
the entropy and the energy, at a temperature TM known as the
melting temperature of DNA. Unlike thermal melting, which
depends on both the model and dimension used, the force-
induced transition at T < TM was found to be independent of
both the model and the dimension. The values of the critical
force and the melting temperature are, however, model de-
pendent [5,6]. The length of the DNA simulated in this paper
for the periodic case (up to 192 monomers with N = 96 base
pairs) are six times longer than the chain lengths used in ear-
lier BD/LD simulation studies [18–22]. We first consider the
static force case and confirm that the model considered in this
paper indeed show first-order phase transition same as DSAW
model. We obtain the value of the critical force, Gc(T ), needed
to unzip the dsDNA at two different temperatures and also
the melting temperature TM for the model. Next, we consider
the periodic force case, where the force-distance isotherms
show hysteresis loop whose area, Aloop, behaves nonmono-
tonically with the frequency. We observe that the loop area
scales as Aloop ∼ 1/ω in the higher-frequency regime, whereas
it scales as Aloop ∼ (G − Gc)αωβ with exponent values α ≈ 1
and β ≈ 1.25 in the lower-frequency regime. These exponents
are similar to the exponents obtained in earlier MC simulation
studies on longer chain lengths [24,26].

The paper is organized as follows: In Sec. II, we define
the model simulated in this paper. The results are discussed in
Sec. III and summarized in Sec. IV.

II. MODEL

We model the strands of a dsDNA by beads and springs
in two dimensions (see Fig. 1). The beads of the polymer
experience an excluded volume interaction modeled by the
Weeks-Chandler-Andersen potential of the form

Ubead(r) =
{

4ε
[(

σ
r

)12 − (
σ
r

)6] + ε for r � rmin

0 for r > rmin
, (1)

where ε is the strength of the potential. The cutoff distance,
rmin = 21/6σ , is set at the minimum of the potential. The
consecutive monomers of strands are connected by the finitely

O O

g(t) g(t)
x(t)

FIG. 1. Schematic diagram of a dsDNA. One end of the DNA is
anchored at the origin (O and O′) and the strands on the free end are
subjected to a time-dependent periodic force g(t ) with frequency ω

and amplitude G.

extensible nonlinear elastic (FENE) potential [30] of the form

UFENE(r) = −1

2
kR2

0 ln

(
1 − r2

R2
0

)
, (2)

where k and R0 are the spring constant and the maximum
allowed distance between the consecutive monomers, respec-
tively. The complementary monomers of the DNA (i.e., ith
monomers of both the strands) interacts with each other via
standard LJ potential:

Ubp(r) =
{

4εp
[(

σ
r

)12 − (
σ
r

)6]
for r � rc

0 for r > rc
, (3)

where εp denotes the base pair interaction strength and rc =
2.5σ is the cutoff distance.

The strands at one end of the DNA are anchored at O and
O′, which are 1.12σ distance apart, and the strands at the free
end are subjected to a time-dependent periodic force

g(t ) = G| sin(ωt )|, (4)

where G is the amplitude and ω is the angular frequency of
the oscillating force.

To integrate the equation of motion for the monomers of
the chain we use LD algorithm with velocity-Verlet update.
The equation of motion for a monomer is given by

mr̈i = −∇Ui + g − ζvi + ηi, (5)

where m is the monomer mass, Ui = Ubead + UFENE + Ubp

is the total potential experienced by ith monomer, ζ is the
friction coefficient, vi is the monomer’s velocity, and ηi is the
random force satisfying the fluctuation-dissipation theorem
〈ηi(t )η j (t ′)〉 = 2ζkBT δi jδ(t − t ′). The unit of energy, length,
and mass are set by ε, σ , and m, respectively, which sets
the unit of time as τ =

√
mσ 2/ε. In these reduced units, we

choose ζ = 1.0, εp = ε, k = 30ε/σ , R0 = 1.5σ , and kBT =
0.1ε. The force is measured in units of σ/ε. A time step of
�t = 0.005 is used in all simulation runs. The simulations are
done using LAMMPS software [31].

The distance between the end monomers of the two strands
is monitored as a function of time, x(t ), for various force
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FIG. 2. Average separation 〈x(G)〉 between the free strands of the DNA as a function of pulling force G for various chain lengths N =
64, 96, 128, 192, and 256 at (a) T = 0.1 and (b) T = 0.2. Plot of scaled separation 〈x(G)〉/Nd vs (G − Gc )/Nφ showing a nice collapse
for (c) T = 0.1 with exponents d = 1.10 ± 0.05, φ = 1.00 ± 0.05 and critical force Gc(T = 0.1) = 0.45 ± 0.05 and (d) for T = 0.2 with
exponents d = 1.05 ± 0.05, φ = 1.00 ± 0.05, and critical force Gc(T = 0.2) = 0.25 ± 0.05.

amplitudes G and frequency ω. Due to the periodic nature of
the applied force, the extension x(g) as a function of force g
can be obtained from the time series x(t ). This is then aver-
aged over 1000 cycles to obtain the average extension, 〈x(g)〉.
For longer chains (i.e., N = 64 and 96), the computation is
very costly in the lower-frequency regime [32]. However, it
was observed that, in this regime, the averaging over even 100
cycles is good enough to give a smooth x(g) vs g loop. To
be on a safer side, we have used 200 cycles for averaging after
leaving the first 20 cycles for the system to reach the stationary
state. For the force amplitude G and the frequencies ω used in
this work, the average extension, 〈x(g)〉, for the forward and
the backward paths is not the same and a hysteresis loop is
observed. The area of the hysteresis loop, Aloop, defined as

Aloop =
∮

〈x(g)〉dg, (6)

depends on the frequency ω and the amplitude G of the pe-
riodic force and serves as a dynamical order parameter [33].
The area of the loop, Aloop is obtained numerically using the
trapezoidal rule after dividing the interval g ∈ [0, G] into 105

equally spaced intervals, and interpolating the value of 〈x(g)〉
at the ends of these intervals using cubic splines of GNU
Scientific Library [34].

III. RESULTS AND DISCUSSIONS

A. Static case

Let us first consider the equilibrium case where the dsDNA
is subjected to a constant pulling force, i.e., g(t ) = G and
check whether the average separation behaves similarly as that
obtained from the DSAW model.

In Figs. 2(a) and 2(b), we have plotted the average separa-
tion between the strands of the DNA, where a constant pulling
force G is acting, at various G values for DNA having N = 64,
96, 128, 192, and 256 base pairs at temperatures T = 0.1 and
T = 0.2, respectively. For smaller values of the force, the av-
erage separation, 〈x(G)〉, which acts as an order parameter, is
zero showing that the two strands of the DNA are in the zipped
phase. On increasing the force value, the average separation
abruptly increases at some critical force value, Gc(T ), which
depends on the temperature, and 〈x(G)〉 ∼ N showing that the
DNA is in the unzipped phase. The critical value of force
Gc(T ), can be obtained by using the finite-size scaling (FSS)
of the form

〈x(G)〉 = NdG
[

(G − Gc)

Nφ

]
, (7)

where d and φ are the critical exponents. In Figs. 2(c) and
2(d), we have plotted the scaled separation 〈x(G)〉/Nd for
the DNA of various chain lengths as a function of (G −
Gc)/Nφ at T = 0.1 and T = 0.2, respectively. The data for
various chain lengths collapse on a scaling curve for the

024401-3



RAJEEV KAPRI PHYSICAL REVIEW E 104, 024401 (2021)

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5

0

0.5

1

1.5

−30 −20 −10 0 10 20 30

r

T

r
/N

d
t

(T − TM )Nφt

FIG. 3. (a) Average separation 〈r〉 between the end monomers of
two strands of the DNA as a function of temperature T for various
chain lengths. (b) Scaled separation 〈r〉/Ndt vs (T − TM )Nφt showing
a nice collapse for exponents dt = 0.75 ± 0.05, φt = 1.00 ± 0.05,
and the melting temperature TM = 0.30 ± 0.01.

set of critical exponents d = 1.10 ± 0.05, φ = 1.00 ± 0.05
with critical force value Gc(T = 0.1) = 0.45 ± 0.05 for T =
0.1, and exponents d = 1.05 ± 0.05, φ = 1.00 ± 0.05 with
Gc(T = 0.2) = 0.25 ± 0.05 for T = 0.2. The unzipping ex-
ponents d = 1 and φ = 1, which are same as the exponents
obtained for the D = 1 + 1 case, show that the scaled mean
separation between the strands behave, in the thermodynamic
limit (i.e., N → ∞), as

〈x(G)〉/N ∼
{

X− for G < Gc(T )
X+ for G > Gc(T ) , (8)

i.e., having two different values with a jump discontinuity
at Gc(T ), implying the first-order nature of the unzipping
transition [2,5–7].

In the absence of a pulling force, the free ends of the
DNA can move freely in both the x and y directions and per-
form more like self-avoiding walks (SAWs). Let (x1, y1) and
(x2, y2) represent the coordinates of the end monomers of two
strands of the DNA. The distance between the end monomers
can then be obtained by r =

√
(x2 − x1)2 + (y2 − y1)2. In

Fig. 3(a), we have plotted the average separation 〈r〉 as a func-
tion of temperature T for the DNA of various lengths N = 64,
96, 128, 192, and 256. To estimate the melting temperature TM

of the DNA, we use the FSS of the form

〈r〉 ∼ NdtY[(T − TM )Nφt ], (9)

where dt and φt are the critical exponents for the denaturation
transition. When the scaled separation 〈r〉/Ndt for various
chain lengths are plotted as a function of (T − TM )Nφt , a nice
collapse is obtained for the exponent values dt = 0.75 ± 0.05,
φt = 1.00 ± 0.05, and TM = 0.30 ± 0.01 [see Fig. 3(b)]. The
melting of a dsDNA is a continuous transition in our model.
Note that, at T � TM , the exponent dt depends on dimensions
as expected. In 2D, the value dt = 0.75 is consistent with
the size exponent ν = 3/4 of a SAW in 2D [35], whereas, in
D = 1 + 1, the end separation performs a random walk in 1D
and the exponent dt = 0.5 (see, e.g., Ref. [26]) is consistent
with the size exponent ν = 1/2 of a random walker [35].

Once the melting temperature TM for the model is obtained,
it is easy to estimate the characteristic hydrogen bond energy
ε in real units and compare our results with the unzipping
experiments. If T ∗

M represents the melting temperature in real
units, then it is related to TM by TM = kBT ∗

M/ε. Using TM =
0.3 and T ∗

M = 363 K [11], we obtain ε ≈ 0.1 eV. Considering
σ = 5.17Å as the distance at which the interparticle potential
between the base pairs goes to zero, and m = 5 × 10−22 g as
the average mass of each monomer, the unit of time is ob-
tained as τ =

√
mσ 2/ε ≈ 3 ps [see Ref. [19] and references

therein]. The time and the distances are measured in real units
as t∗ = τ t and r∗ = σ r, respectively. The order of the force
is given by σ/Å ∼ 160 pN. Using similar arguments as in
Ref. [19], the temperature conversion formula to real units
below the melting temperature for our model can be obtained
as T ∗ = 363 + 280(T − 0.30) K. Therefore, the reduced tem-
perature T = 0.1 simulated in our paper corresponds to 307 K
(i.e., 34◦C). The critical force Gc = 0.45 in reduced units cor-
responds to G∗

c ≈ 14 pN similar to the critical force obtained
in the experiments [11].

B. Dynamic case

From earlier studies, it is known that when a dsDNA is
subjected to a periodic force it can be unzipped either by
keeping the amplitude G fixed and changing the frequency
ω or vice versa. If G is not very small, and ω is sufficiently
high to avoid equilibration of the DNA, then we obtain a
hysteresis loop for the average extension 〈x(g)〉, whose area,
Aloop, depends on G and ω. In Fig. 4(a), we have shown the
behavior of Aloop as a function of ω for the DNA of length
N = 64 for G = 1.5 at T = 0.1. The area of the loop increases
with the frequency, reaches a maximum and then decreases
as the frequency is increased further. The loops at four dif-
ferent frequencies, labeled by P, Q, R, and S in Fig. 4(a),
are shown in Fig. 4(b). Since the force amplitude G = 1.5
is about three times the critical force needed to unzip the
DNA at T = 0.1, the stationary state of the DNA is unzipped
state. At a higher frequency ωP = 6.28 × 10−3, the applied
force fluctuates very rapidly and the DNA does not get time
to respond to this change. As a result, the DNA remains in
the unzipped state, as indicated by the higher values of the
average extension, 〈x〉, with a small loop area. On decreasing
the frequency to ωQ = 6.28 × 10−4, the DNA still remains in
the unzipped phase but with slightly increase in the loop area.
On decreasing the frequency further to ωR = 6.28 × 10−5, the
DNA gets enough time to relax to the oscillating force. There-
fore, during the portion of the cycle where the instantaneous
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force amplitude G = 1.5 at T = 0.1. (b) Average extension 〈x〉 as a
function of force g as various frequencies indicated in (a) by arrows.
The line joining the points in these plots is just a guide for the eye.

force value is less than the critical force Gc, the two strands
of the DNA come together and the complementary base pairs
are formed, resulting the DNA in the zipped phase with a large
hysteresis loop area. This is indicated by the lower values of
the average extension, 〈x〉 for smaller g values in Fig. 4(b).
On decreasing the frequency further to ωS = 6.28 × 10−6, the
two strands have ample time to relax in the lower as well as
higher values of force thus resulting in a very small loop area
in the transition region. This loop area will eventually go to
zero on decreasing the frequency further.

In Fig. 5, we have plotted Aloop as a function of ω at
various force amplitudes G for the DNA of length N =
64. The figure shows that the frequency, ω∗(G), at which
the loop area is maximum depends on the amplitude G of the
oscillating force. We observe that for smaller G values, the
Aloop curves have broader peaks. The peak becomes narrower
with the increase in the force amplitude. Furthermore, on
increasing G, it is also observed that for amplitudes G < 2Gc,
the position of the peak [i.e., ω∗(G)] increases toward higher
frequencies, whereas for values G > 2Gc, the peak position
shifts toward lower frequencies. It is not easy to give an exact
cause for this behavior as both G and ω are competing with
each other in this region. Also, note that for G < 2Gc, the
steady state of the DNA is a zipped configuration and it cannot
be fully unzipped. Whereas, for G > 2Gc, the steady state of
the DNA is an unzipped configuration. Consequently, the way
the hysteresis loops are formed for the two cases are different
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FIG. 5. Area of hysteresis loop Aloop as a function of frequency
ω, in a semilog scale, for the DNA of length N = 64 at various force
amplitudes G. The line joining the points in these plots is just a guide
for the eye.

and have different shapes [24]. It is quite plausible that the
dependence of maximum Aloop on the frequency might be
completely different in these two different regions. The figure
also reveals that the height of the peak increases on increasing
G value. These observations are similar to the behavior seen
for the Aloop in MC simulations for the homopolymer DNA
[24]. There is one striking feature, the oscillatory behavior
of Aloop at higher frequencies for larger G values, which was
observed in MC simulations and explained as higher Rouse
modes [24], is not observed with the parameters used in this
study. However, the presence of such oscillatory behavior
of Aloop has been reported in LD simulations with different
parameters [22]. This needs further exploration.

The loop area, Aloop as a function of frequency ω for
amplitude G = 1 and 3, are plotted in Figs. 6(a) and 6(b),
respectively, for the DNA of various chain lengths N = 16,
32, 64, and 96. The figure shows that, similar to the MC
simulation studies [24], the peak of the area curves shift to-
ward the lower-frequency side on increasing the chain length.
Furthermore, these plots also show that the maximum of the
loop area increases with amplitude G. We use FSS of the form

Aloop = NdA(ωNz ), (10)

to obtain the behavior of Aloop in the thermodynamic limit
from finite-size chains. We obtain a nice collapse for ex-
ponents d = 1.00 ± 0.05 and z = 1.00 ± 0.05 for G = 1
[Fig. 6(c)]. These exponent values are same as that obtained in
MC simulation study [24]. However, for higher force ampli-
tudes (e.g., G = 3) we get a reasonable collapse for a slightly
higher value d = 1.15 ± 0.05. Figures 6(c) and 6(d) show
that there are strong finite-size effects and the curves for the
smallest chain length N = 16 considered in this study do not
collapse perfectly on the scaling curve. However, the data for
the higher chain lengths, N = 64 and 96, collapse perfectly on
the scaling curve for G = 1. In order to improve the quality of
data collapse at force amplitude G = 3, longer chain lengths
need to be simulated. But, due to the higher computation cost
[32], these simulations were not performed. The exponents
d = 1 and z = 1 show that the loop area scales as Aloop ∼ 1/ω

in the high-frequency regime.
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To obtain the behavior of Aloop at lower-frequency regime,
we have plotted in Fig. 7(a) (in a semilog scale) the loop area
as a function of ωβ (G − Gc)α , where Gc is the critical force
for the static force case, obtained using LD simulations for
the DNA of length N = 64 at various force amplitudes G =
1.0, 1.25, 1.5, 2.0, and 3.0 at temperature T = 0.1. We ob-
tain an excellent data collapse for exponents α = 1.08 ± 0.03
and β = 1.25 ± 0.03 and critical force Gc(T = 0.1) = 0.45
obtained for the static force case in the previous section
[Eq. (7)]. The exponents and the errors in them are estimated
by minimizing the variance obtained from Aloop curves for
various G values integrated over a decade in frequency [36].
In Fig. 7(b), the collapse obtained for Aloop curves for chain
length N = 32 at T = 0.2 for three different force amplitudes
G = 1.0, 1.5, and 2.0 are plotted with Gc(T = 0.2) = 0.25
and α = 1.09 ± 0.03 and β = 1.24 ± 0.02. The quality of
the collapse indicates that the exponent values α and β are
independent of temperature used. Furthermore, these expo-
nent values are similar to that obtained in previous studies
using MC simulations of a DSAW model of the homopolymer
DNA at T = 1 [24], and the double stranded block copoly-
mer DNA at T = 4 [26]. In the homopolymer DNA study,
the Aloop was plotted against Gαωβ . To check the quality of

collapse with newer scaled function, we have plotted the Aloop

data, for the chain length N = 512, obtained in Ref. [24]
as a function of ωβ (G − Gc)α with Gc(T = 1) = 0.678 and
α = 0.99 ± 0.03 and β = 1.25 ± 0.03. The quality of the plot
shown in Fig. 7(c) is found to be even better than the plot
shown with function Gαωβ in Ref. [24].

We can use the behavior of Aloop in low- and high-
frequency regimes to obtain the scaling function G(ω). At
lower frequencies (i.e., ω → 0), we observed that, for large
N , the Aloop scales as Gαωβ , while at higher frequencies (i.e.,
ω → ∞), Aloop ∼ 1/ω [from Eq. (10)]. These requirements
are satisfied by the scaling function

G(ω) = BGαωβ

ωd+β + C2
, (11)

with B and C as the fitting parameters. The scaling func-
tion, G(ω), for G = 1 with exponent d = 1, and parameters
B = 0.01 and C = 0.005 obtained by data fitting, is plotted in
Fig. 6(c) by a solid line. The function fits the data extremely
well in the frequency range extended over more than four
decades. We have also plotted the same scaling function for
G = 3, with exponent d = 1.15 for parameters B = 0.001 and
C = 0.002 in Fig. 6(d). Although the scaling function G(ω)
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FIG. 7. Aloop as a function of (G − Gc )αωβ for various force amplitudes obtained (a) using LD simulations for the DNA of length N = 64
at T = 0.1 with Gc(T = 0.1) = 0.45 ± 0.05 with exponents α = 1.08 ± 0.03 and β = 1.25 ± 0.03, (b) using LD simulations for the DNA of
length N = 32 at T = 0.2 with Gc(T = 0.2) = 0.25 ± 0.05 with exponents α = 1.09 ± 0.03 and β = 1.24 ± 0.02, (c) using MC simulations
of the DSAW model of DNA of length N = 512 at T = 1 with Gc(T = 1) = 0.678 with exponents α = 0.99 ± 0.03 and β = 1.25 ± 0.03, as
obtained in Ref. [24].

fits reasonably well in the lower-frequency regime, it however
deviates with the scaled data at higher frequencies. From MC
simulation studies [24], we know that for G = 3, Aloop exhibits
an oscillatory behavior in the higher-frequency regime (visible
only for longer chain lengths) and the above scaling form
is not suitable. Since the maximum chain length simulated
in this study, is still 5 times lesser than that simulated in
Ref. [24], we do not see the oscillatory behavior of Aloop at
higher frequencies. The deviation of the simulation data from
the scaled curve G(ω) for G = 3 at higher-frequency regime
in Fig. 7(d) may be due to this very reason.

IV. CONCLUSIONS

We study the unzipping of a dsDNA subjected to a peri-
odic force with amplitude G and frequency ω using extensive
LD simulations on longer DNA chains, having up to 192
monomers with N = 96 base pairs, that are six times longer
than previous LD simulation studies [18–22]. We first study
the static force case and obtain the equilibrium average sepa-
ration between the strands of the DNA, 〈x(G)〉, as a function
of force G at two different temperatures (T = 0.1 and T =
0.2). Using the FSS of force-distance isotherms 〈x(G)〉 for
various chain lengths N = 64, 96, 128, 192, and 256, we
obtain the dimensionless critical force Gc(T = 0.1) = 0.45 ±
0.05 at T = 0.1 and Gc(T = 0.2) = 0.25 ± 0.05 at T = 0.2,
needed to unzip the DNA in the thermodynamic limit N →
∞. The FSS reveals that the scaled average separation be-
tween the strands, 〈x〉/N , has a jump discontinuity at Gc

implying a first-order nature of the phase transition similar
to the DSAW model studied earlier [2,5–7]. We also obtained
the melting temperature TM = 0.30 ± 0.01 for the model. The
melting of DNA is a continuous transition in our model.

When the DNA is subjected to a periodic force, the average
separation between the strands 〈x(g)〉, when plotted against g,
shows hysteresis whose area, Aloop, depends on the amplitude
G and the frequency ω of the oscillating force. On decreasing
the frequency, the loop area first increases from zero, reaches
a maximum value at some frequency ω∗(G), which depends
on the amplitude G, and then decreases to zero again at lower
frequencies. The FFS scaling of Eq. (10) shows that, in the
thermodynamic limit, the loop area scales as Aloop ∼ 1/ω

in the higher-frequency regime. In contrast, the loop area
which scales as Aloop ∼ (G − Gc)αωβ is found to have expo-
nent values α ≈ 1 and β ≈ 1.25, The exponent values, which
are found to be temperature independent, are same as that
obtained in earlier unzipping studies of homopolymer DNA
[24] and block copolymer DNA [26] by a periodic force on
a DSAW model using MC simulations at two different tem-
peratures. The fact that we have obtained the same values for
the exponents, α and β, at various temperatures for two differ-
ent problems, i.e., homopolymer DNA and block copolymer
DNA, where the former is studied by two different methods,
MC and LD simulations of longer chain lengths at different
temperatures strongly indicates that α = 1.0 and β = 1.25 are
the true scaling exponents for the DNA unzipping problem
that quantify the decrease of Aloop to zero at low frequencies at
all temperatures. Single molecule manipulation experiments
can shed more light on these scaling exponents.
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