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Balanced-imbalanced transitions in indirect reciprocity dynamics on networks
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Here we investigate the dynamics of indirect reciprocity on networks, a type of social dynamics in which the
attitude of individuals, either cooperative or antagonistic, toward other individuals changes over time based upon
their actions and mutual monitoring. We observe an absorbing state phase transition as we change the network’s
link or edge density. When the edge density is either small or large enough, opinions quickly reach an absorbing
state, from which opinions never change anymore once reached. In contrast, if the edge density is in the middle
range, the absorbing state is not reached and the state keeps changing, thus being active. The result shows an
effect of social networks on spontaneous group formation.
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I. INTRODUCTION

Social relations are characterized by being of either a
cooperative (friendly) or an antagonistic (unfriendly) nature.
However, it can also happen that friends become foes or foes
become friends [1], i.e., an individual network link can turn
from positive to negative or negative to positive. Hence un-
derstanding the temporal evolution of such behavior-changing
processes is essential for getting deeper insight into the func-
tions of real social networks.

To gain such insight, agent-based modeling approaches
have turned out to be versatile. One of the earlier models on
how people change their attitude towards others was based
on indirect reciprocity [2,3], which is commonly observed in
human behavior and is closely related to the evolution of co-
operation in human society [4]. In this model, people change
their attitude (of either liking or disliking) through their action
and observation of the actions of others. A typical example of
such dynamics (action rules and norms) is as follows: First,
people are cooperating with only those they like. Second, they
get to like those who cooperate with those whom they like and
do not cooperate with those whom they dislike.

In spite of the importance of indirect reciprocity, the dy-
namics of social networks induced by indirect reciprocity has
not yet been fully understood. Previous studies have focused
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on the case of fully connected networks (i.e., systems in which
all people know each other) [5,6]. It was found that indirect
reciprocity can result in a split of the society into clusters, only
within which people are cooperative. However, the real social
networks are usually not fully connected. Therefore, we focus
our attention on the dynamics of indirect reciprocity in such
networks of agents, and we examine whether agents split into
fixed clusters as in the case of fully connected networks. In
this study, among several variations of the indirect reciprocity
dynamics, we focus on the Kandori assessment rule [7]. Com-
paring to another type of indirect reciprocity model in which
an agent can get to like those who cooperate with those who
he dislikes, the Kandori rule is said to be more strict because
an agent dislikes the people in the same case. And this rule is
suggested to be one of the most efficient and robust rules to
promote cooperation [3,7].

This paper is organized such that after this Introduction, in
Sec. II we describe the model of indirect reciprocity. Then
we first present the simulation results in Sec. III and then
develop the mean-field analysis for the model in Sec. IV.
Finally, in Sec. V we summarize the results and discuss their
implications.

II. THE MODEL

Let us consider a nondirected network of agents G =
(V, E ), where V = 1, . . . , N is the set of agents or network
nodes, and E is the set of links or network edges ei j ∈ E be-
tween agents i and j, meaning that they know each other. Here
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FIG. 1. Schematics of the model. (a) Donor, recipient, and a
third-party observer. (b) Observers in a network. Agents not labeled
either donor, recipient, or observers do not observe the interaction
between the donor and recipient.

the structure of the network is assumed not to change in time,
i.e., being static, while the agents have their opinion about
their neighbors and change it in time, i.e., being dynamic. We
denote the opinion of the agent i about the agent j by σi j . If
the agent i likes the agent j at time step t , then σi j (t ) = 1, but
if the agent i dislikes j, then σi j (t ) = −1. The opinions do not
need to be reciprocal, so that i may dislike j even if j likes i.

The time evolution of the model is set in such a way that at
each time step, two neighboring agents are randomly chosen,
one as the donor and the other as the recipient. The donor
cooperates with the recipient if the donor likes the recipient,
while the donor does not cooperate if the donor dislikes the
recipient. The action of the donor, either cooperating or not
cooperating, is observed by the donor (him- or herself), the
recipient, and the common neighbors of the donor and the
recipient, i.e., the third party called the observer, as depicted
in Fig. 1(a). Each observer of the donor-recipient pair updates
her/his opinion about the donor according to a given rule,
which is called the assessment rule.

In this study, we adopt the Kandori assessment rule [7]: ob-
servers get to like the donor if the observers like the recipient
and the donor cooperates with the recipient or when observers
dislike the recipient and the donor does not cooperate, while
the observers get to dislike the donor otherwise. Therefore,
the opinion of an observer k about the donor is updated as
follows:

σkd (t + 1) = σkr (t )σdr (t ), (1)

where d and r denote the donor and the recipient at time step
t , respectively. Agents other than the donor, recipient, and
the observers do not update their opinions [Fig. 1(b)]. The
agents’ initial opinions are drawn independently at random
from an even distribution of opinions, i.e., {−1,+1}, where
−1 corresponds to an antagonistic or unfriendly opinion and
+1 to a cooperative or friendly opinion (i.e., liking or dislik-
ing, respectively).

III. NUMERICAL RESULTS

In this section, we investigate the dynamics of indirect reci-
procity based on the Kandori assessment rule on Erdös-Rényi
random graphs, where each agent is linked to another agent
with the probability p. In the following, the ensemble averages
are taken over independently generated networks. Note that
the number of links can be different across samples even with
the same probability p, due to stochastic fluctuations.
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FIG. 2. Average fixation time as a function of the connection
probability for five different system sizes (N) and for 100 indepen-
dent runs, each up to 109 time steps. All these 100 samples reached
absorbing states, after which we took the sample average of the
fixation time.

First we focus on the question of whether the opinions of
agents eventually become fixed, as was found in the case of
fully connected networks [5]. Following the update rule [i.e.,
Eq. (1)], the condition that opinions do not change anymore is

σkd = σkrσdr (2)

for all the network edges edr ∈ E and all the observers k, i.e.,
d , r, and common neighbors of d and r. This condition is
equivalent to

σii = 1 for all i ∈ V, (3)

�i j ≡ σi jσ ji = 1 for all ei j ∈ E , (4)

�i jk ≡ σi jσikσ jk = 1 for all triads (i, j, k), (5)

where �i j and �i jk stand for the edge balance and triad
balance, respectively. The first condition [Eq. (3)], meaning
everyone regards her/himself well, is quickly fulfilled. The
second condition [Eq. (4)] means that the mutually connected
agents have the same opinion as each other, i.e., like or dislike.
The third condition [Eq. (5)] asks if all the triads are balanced
in the sense that friends of your friends and enemies of your
enemies are your friends.

Because the system cannot move anymore after reaching
a configuration that fulfills these conditions, we call all such
configurations an absorbing state. And because the system al-
ways has an absorbing state (e.g., ∀i, j σi j = 1), the question
is whether and when the system goes to the absorbing state. In
Fig. 2 we depict the average fixation time, which is defined as
the number of time steps taken until Eqs. (3)–(5) are satisfied.
When the connection probability p is high or low, the fixation
time is relatively short, while the time for the opinions getting
fixed or fixation time turns out to be much longer with p in
the middle range and it rapidly increases even with a small
increase of the system size N . This means that if the network
is not fully connected and the system size or the number of
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agents is moderate, i.e., N > 100, their opinion cannot split
into fixed clusters in a realistic timescale.

The next question is how the opinion of an agent evolves
before it reaches the absorbing state. To investigate the time
development, we introduce an order parameter imbalance I as

I =
{

1 −
∑

i, j,k �i jk

6Ntriad
(Ntriad > 0),

0 (Ntriad = 0),
(6)

where Ntriad is the number of agent triads.
As we show here, with some reasonable assumptions, the

imbalance is equal to 0 in the absorbing states and it is ex-
pected to be 1 in the case of random opinions. Therefore,
the purpose of this order parameter is to evaluate how far the
system is from the absorbing state and how near to the random
state. We note that there might be other quantities with similar
properties to the imbalance, to serve as an order parameter.
Let us examine Eq. (1) to see how the order parameter works.
First, the update of the self-image of the donor at time step t
is as follows:

σid (t + 1) = [σdr (t )]2 = 1. (7)

It means that the agents like themselves and never change
their opinion once they take an action as a donor. Therefore,
the first condition [Eqs. (3)] is quickly satisfied for all the
agents. Next, the update of the opinion of the recipient on the
donor is

σrd (t + 1) = σrr (t )σdr (t ). (8)

After some transient time, i.e., t � 1, where σrr = 1 as we
have just discussed above, it reduces to

σrd (t + 1) = σdr (t ). (9)

Then if the edge ei j does not have any common neighbors,
once i takes an action to j or vice versa, then σi j = σ ji is
realized and they never change their opinion. On the other
hand, if the edge ei j has common neighbors, the relation
σi j = σ ji is not always maintained in the long run, because
σi j may change when the agent i observes the agent j’s action
to a common neighbor. Therefore, a nontrivial condition for
the absorbing states is

σi j = σ ji (10)

for all the edges ei j having common neighbors. Finally, the
update of the opinion of common neighbors cannot reduce
from Eq. (1), therefore another nontrivial condition for a fixed
state is

σi jσkiσk j = 1. (11)

Summing up these arguments, I = 0 is equivalent to the
condition for the opinion being in a fixed state, under the
assumption σii = 1 and σi j = σ ji for all the edges ei j not
having common neighbors, which are quickly satisfied.

In Fig. 3 we show the time development of the imbal-
ance for the network of size N = 100. For the connection
probability p < 0.01 or p > 0.99, the imbalance goes quickly
down to zero. In contrast, the imbalance remains positive if
0.01 < p < 0.99. This means that in the middle range values
of the edge density, the system relaxes to a nonabsorbing
stationary state. In these nonabsorbing stationary states, the

FIG. 3. Time development of imbalance, averaged over 100 sam-
ples, in the case of (a) sparse and (b) dense random networks with
N = 100 agents. Error bars represent standard error.

imbalance fluctuates around a finite value. This observation
implies that even when the action in one time step increases
the number of balanced triads, the newly balanced triads make
other balanced triads more likely to become imbalanced. With
the current dynamics of our model, we have not observed the
system reaching jammed states, which some related models
are known to have [12]. Therefore, we do not exclude the
possibility that the nonabsorbing states include jammed states,
from which absorbing states are not reachable.

We also investigate the effect of the system size N on
the time development of imbalance. When the network is
sparse [Fig. 4(a)], the time-series of imbalance I scales as
I (t, p, N ) ∼ I (t/N2, pN2, 1), but when it is dense [Fig. 4(b)]
it scales as I (t, 1 − p, N ) ∼ I (t/N2, (1 − p)N, 1). In both
cases, the time development becomes N2 times slower when
the system size gets larger.

As the next step, we examine more closely how the sta-
tionary imbalance depends on the edge density. In Fig. 5 we
show the time-average and temporal fluctuation of imbalance
after allowing the network of agents to run for 5 × N2 time
steps of relaxation. Note that 5 × N2 time steps is not enough
for fixation to absorbing states even for much smaller net-
work sizes (Fig. 2), but it is enough for the system to relax
to stationary states (Fig. 4). We have also confirmed that
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FIG. 4. Imbalance as a function of time. The effect of the sys-
tem size on the time development. The imbalance is averaged over
100 samples. Time-series for different p and N are compared with
(a) pN2 = 1 and (b) (1 − p)N = 1.

the increase of simulation time 10–30 times longer does not
change the following results qualitatively. We observe that
the stationary imbalances for the different system sizes are
scaled well by N p2 in the sparsely connected networks and by
N (1 − p) in the densely connected networks, as depicted in
Figs. 5(c) and 5(e). When N p2 < CL ∼ O(1) or N (1 − p) >

CU ∼ O(1), i.e., when the network is quite sparse or quite
dense, the stationary imbalance is equal to zero and the system
reaches absorbing states. While both of them rapidly increase,
the system remains more random with larger fluctuation as
N p2(1 − p) exceeds 1. The temporal fluctuations show peaks
at around the same scaled boundary area. This means that the
systems remain far from absorbing states for the moderate
edge density, while for more sparse or dense edge densities
they show large fluctuations. However, when the edge density
is quite sparse or dense and p exceeds certain values, the
system reaches absorbing states.

These observations indicate that the edge density p causes
transitions between the absorbing phase in which the system
goes to the absorbing state and the active phase in which the
system does not relax to the absorbing state [8,9]. Note that, as
N increases, the absorbing regions of p (basins) get narrower:
lower transition point p∗ ∼ N−1/2 and higher transition point

p∗ ∼ 1 − 1/N (Fig. 6). Furthermore, a more detailed analysis
of the phase transition behavior with the order of the transi-
tion, transition point, and possible critical exponents is beyond
the scope of this study. Instead, we will next focus on the
mean-field analysis.

IV. MEAN-FIELD ANALYSIS

In this section, we show that the transitions between the
absorbing and active phases at N p2(1 − p) ∼ 1 are consistent
with a mean-field approximation for the indirect reciprocity
dynamics. For our analysis, we introduce tetrad balance
(Fig. 7) for each tetrad (four-node clique) as

�i jkl ≡ σikσilσ jkσ jl = �ikl� jkl , (12)

in addition to the edge balance �i j and triad balance �i jk

already defined in Eqs. (4) and (5). Note that the tetrad balance
is by definition invariant under the exchange of the first two
suffixes and the latter suffix pair:

�i jkl = � jikl = � jilk . (13)

For the mean-field analysis, we use the averages of these
quantities:

� ≡ 〈�i j〉 =
∑

i> j �i j

Nedge
, (14)

� ≡ 〈�i jk〉,=
∑

i, j,k �i jk

6Ntriad

(
= 1 − I

)
, (15)

� ≡ 〈�i jkl〉 =
∑

i> j

∑
k>l �i jkl

6Ntetrad
, (16)

as the order parameters of indirect reciprocity dynamics,
where Nedge, Ntriad, and Nquad are the number of edges, triads,
and tetrads in the system.

As shown in the Appendixes, a mean-field approximation
on the indirect reciprocity dynamics yields the dynamical
equations of the order parameters in the following closed
form:

d�

dt
= 1

Nedge
[(1 − �) + T (� − �)], (17)

d�

dt
= 1

6Ntriad
[T {2(1 − �) + (� − �)}]

+ 1

6Ntriad

[
Q(� − �) + R(�2 − �)

]
, (18)

d�

dt
= 1

6Ntetrad
R{(1 − �) + 2(� − �)}

+ 1

6Ntetrad
2(S1 + S2)�(� − 1). (19)

Here T , Q, R, S1, and S2 are the numbers of subgraphs on
which the balance quantities are affected by an interaction
between a pair of donors d and r, i.e., T for triads of d , r, and
a third-party observer o [Fig. 8(a)]; Q for tetrads of d , r, and
third-party observers o and p [Fig. 8(b)]; R for trusses of d , r,
and a third-party observer o, and a nonobserving neighbor n
[Fig. 8(c)]; S1 for tetrads of d , a third-party observer o, and two
nonobserving neighbor n and m [Fig. 8(d)]; and S2 for tetrads
of d , two third-party observer o and p, and a nonobserving
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FIG. 5. (a) Time-average and (b) temporal fluctuation of stationary imbalance on random networks. Time-average and temporal fluctuation
are calculated over 100 time points for 5 × N2 to 10 × N2 time steps. Lines represent sample averages, and error bars represent standard error
over 100 different time-series for N � 200 and 50 time-series for N = 400. Panels (c), (e) and (d), (f) show the zoomed-in parts of (a) and
(b) around the lower and upper transition points, respectively.

neighbor n [Fig. 8(e)]. A truss is a four-node graph in which all
but one pair of nodes are connected. A nonobserving neighbor
for a donor-recipient pair is a node that is connected to the
recipient and to a third-party observer but not to the donor.
These equations tell that nonobserving neighbors are driving
the system toward imbalance as subgraphs with nonobserving
neighbors [Figs. 8(c)–8(e)] always decrease triad and tetrad
balance, i.e., the terms for R, S1, and S2 in Eqs. (18) and (19)
are always negative. This is because nonobserving neighbors
do not change their opinion while other observers may change
their opinion about the donor, which is on average likely to
make their triads or tetrads imbalanced.

For our present case of an Erdös-Rényi random graph
with N � 1, the expected numbers of the subgraphs of a
donor-recipient pair are

T 
 N p2,

Q 
 1
2 N2 p5,

R 
 1
2 N2 p4(1 − p),

S1 
 1
2 N3 p7(1 − p)2,

S2 
 1
2 N3 p8(1 − p). (20)
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FIG. 6. Dependency of stationary imbalance on N p2(1 − p). (a) Time-average and (b) temporal fluctuation of stationary imbalance in the
sparse edge density regions, N p2 ∼ O(1). As for Fig. 5, time-average and temporal fluctuation are calculated over 100 time points for 5 × N2

to 10 × N2 time steps, and lines represent sample averages and error bars represent standard error for 100 time-series for N � 200 and 50
time-series for N = 400. (c) Time-average and (d) temporal fluctuation of stationary imbalance in the dense edge region, N (1 − p) ∼ O(1).

By solving d�
dt = d�

dt = d�
dt = 0, the condition for � = � =

� = 1 to be the only stable fixed point of Eqs. (17), (18), and
(19) is

3

[(
2 + T

1 + T

)
− 3λ

]
+ T p(1 − 2λ) > 0, (21)

where λ ≡ R/T = N p2(1 − p) is the average number of
nonobserving neighbors of each triad. In the dense regime
where T � 1, the second term dominates and hence the
condition reduces to λ < 1/2. In the sparse regime where
T p � 1, the first term dominates. Since (2 + T )/(1 + T ) is
bounded between 1 and 2, there is a value 2/3 � λc � 1 such

FIG. 7. Tetrad balance.

that λ < λc causes the system to be absorbed. This means that
the number of nonobserving neighbors should not exceed a

FIG. 8. The subgraphs affected by the game between the donor
d and recipient r, which includes third-party observers o and p, and
nonobserving neighbors n and m. (a) Triads of d , r, and o. (b) Tetrads
of d , r, o, and p. (c) Trusses of d , r, o, and n. (d) Tetrads of d , o, n,
and m. (e) Tetrads of d , o, p, and n. Note that the recipients in (d) and
(e) are shown only to illustrate the difference between third-party
observers and nonobserving neighbors, and they are not included in
the focal tetrads.
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certain value for the system to be in the absorbing phase.
These results from the mean-field analysis are consistent with
the simulation results, in that the system has the absorbing
phase for the sparse and dense edge density regions, N p2(1 −
p) < 1, while the active phase is in the middle of them.

The mean-field Eqs. (17)–(19) provide us with further un-
derstanding of the opinion dynamics, including the timescales
of the relaxations of the order parameters (see the Appendix
D in detail). In the sparsest regime, N p = c ∼ O(1), in which
triangles are formed but the density is too small to have perco-
lated clusters of those, the asymptotic forms of the equations
tell us that an autonomous relaxation of � to 1 and the sub-
sequent relaxation of � to 1 take place fast. After these fast
relaxations, the relatively slow relaxation of � takes place as
follows:

d�

dt
= 1 − �

cN3
, (22)

meaning that � is also driven to an ordered value of 1.
In the regime with more links: N p2 ∼ O(1), which cor-

responds to the point around the percolation of triangles,
� and � relax to equilibrium values, which are 1 if c <√

2 and less than 1 if c >
√

2. This process is followed by
the slower and independent relaxation of � to 0. In more
densely connected systems in which N p = O(N ) with p <

1 − O(N−1), the asymptotic form of the dynamical equations
yields the relaxation time of all the order parameters to be of
the same order, and giving rise to a para-phase equilibrium
(�∗,�∗, �∗) = (0, 0, 0).

In the most densely connected regime in which 1 − p =
c/N , the relatively fast processes lead to relaxations of �∗ →
� and �∗ → �. The dynamics of � after these fast relaxation
follows:

d�

dt
∼ (1 − �)[1 − (1 + c)�]

2N2
, (23)

which corresponds to the equilibrium

�∗ = �∗ = �∗ = 1

1 + c
. (24)

This again tells us that the system shows a transition from
the para-phase (�∗,�∗, �∗) = (0, 0, 0) to the ordered phase
(�∗,�∗, �∗) = (1, 1, 1) at around 1 − p ∼ N−1, in the limit
N → ∞.

V. DISCUSSION

In this study, through numerical simulations and mean-
field analysis, we found that, as a result of the indirect
reciprocity, the density of social networks drastically changes
the friendship and enmity structure. In contrast with complete
or fully connected networks [5], in which agents split into
two fixed clusters and cooperate only within their own cluster,
their relations (who likes or dislikes whom) keep changing in
a wide range of network density. The friendship and enmity
structure was found to get fixed only if the network is sparse
or dense enough, i.e., p2(1 − p) < 1/N .

A similar absorbing phase transition in friendship and en-
mity networks was observed in Heider’s structural balance
models [10–20]. The structural balance models assume that
agents either mutually like or dislike each other and change

their opinion to increase their triad balance. A structural bal-
ance model on random networks at certain edge densities
shows a phase transition from an absorbing phase in sparse
networks to an active phase in dense networks [13]. In con-
trast, the present indirect reciprocity model allows agents to
have different opinions of each other and assume the action
and its observation as the reason behind the changes of their
relation. This in turn results in changes of the triad balance.
Furthermore, when we increase the edge density, the indirect
reciprocity model shows an additional phase transition from
active to absorbing phase for the higher density region, in ad-
dition to the absorbing-to-active transition in the lower density
region, as in the structural balance model.

The transition in the lower density region can have a sig-
nificant implication for a variety of complex networks. It is
common that we study, either theoretically or empirically,
sparse networks with average degree k ∼ O(1), which cor-
responds to p ∼ O(N−1) in our model. Therefore, the lower
transition point p∗ ∼ 1/

√
N is not unrealistically low, and the

transition can be relevant for various large networks such as
online social networks [21,22].

Moreover, the transition in the higher density region also
has negligible implications. The value of the higher transition
point p∗ ∼ 1 − 1/N means that the agent networks need to be
almost fully connected to be in the absorbing phase, in the
sense that agents need to know all the other agents except
for at most one agent. For large networks, e.g., for those with
millions of nodes, the requirement is likely too strict and the
transition in the higher density is unlikely to be observed.
However, important examples of signed or like-dislike so-
cial networks include those of moderate size. For example,
international relations were recently analyzed as singed net-
works [23–26], while the networks usually consist of some
hundreds of nodes. Another important example of signed
social networks of moderate size and high density is who
likes or dislikes whom in an organization (e.g., firms, schools)
[27].

There are several questions yet to be answered in future
studies. One is indirect reciprocity dynamics in real (or more
realistic models of) social networks. Real social networks
are not considered random, in contrast to the present model,
and the network characteristics other than edge density, such
as degree distribution or community structure, may largely
affect the indirect reciprocity dynamics and friendship-enmity
structure of our society. Yet another interesting issue is the
character of the observed transition. Although this is beyond
the scope of the present study, it would be desirable to in-
vestigate whether the transitions are continuous or not, and if
continuous, whether they belong to the directed percolation
university class [8,9].
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APPENDIX A: UPDATES OF THE EDGE BALANCE

In the following, we denote the values of variable x before
and after an update at a time step as x and x′, respectively. Let
d , r, and o be the donor, the recipient, and a common neighbor
of them at the time step (i.e., d , r, and o form a triad). Then
only the following opinions are updated after the time step:

σ ′
rd = σdr, (A1)

σ ′
od = σorσdr . (A2)

Therefore, the edge balances that can be updated to a different
sign after the time step are those on (d, r) and (d, o) edges:

�′
dr = σ ′

drσ
′
rd = σ 2

dr = 1,

�′
do = σ ′

doσ
′
od = σdo(σorσdr ) = �dor . (A3)

APPENDIX B: UPDATES OF THE TRIAD BALANCE

Update rules of the triad balance are more complicated.
The first triad to be considered is the one formed by the
donor d , the recipient r, and the observer o [Fig. 8(a)]. While
the triad balances �dro and �dor are kept under the opinion
change, the updated sign of the other four quantities depends
on the opinions before the update:

�′
odr = σ ′

odσ
′
orσ

′
dr

= (σorσdr )σorσdr = 1,

�′
ord = σ ′

orσ
′
odσ

′
rd

= σor (σorσdr )σdr = 1,

�′
rod = σ ′

roσ
′
rdσ

′
od

= σroσdr (σorσdr ) = �ro,

�′
rdo = σ ′

rdσ
′
roσ

′
do

= σdrσroσdo = �dro. (B1)

The second types of triads we should consider are those
formed by the donor d and the two observers of the time step
knowing each other, o and p [Fig. 8(b)],

�′
opd = σ ′

opσ
′
odσ

′
pd

= σop(σorσrd )(σprσdr ) = �opr,

�′
od p = σ ′

odσ
′
opσ

′
d p

= (σorσdr )σopσd p = �od pr,

�′
pod = �por,

�′
pdo = �pdor, (B2)

and because of the symmetry between o and p.
The third and last triads one must take into account involve

a nonobserving neighbor n, who is connected to observer o

and the donor d but not to the recipient r [Fig. 8(c)]. Because
of the flip of σod which takes place if �odr = −1, the follow-
ing triad balances are updated:

�′
nod = �odr�nod ,

�′
odn = �odr�odn,

�′
ond = �odr�ond . (B3)

APPENDIX C: UPDATES OF TETRAD BALANCE

We have seen that the edge balance after a time step is
determined by the triad balance, and the updates of the triad
balance can be descried by the edge, triad, and tetrad balance.
So we next consider the update rules of the tetrad balance.
Updated tetrads are divided into those that include the recipi-
ent and two third-party observers, and those that include three
third-party observers. Note that all updated tetrads include the
donor. For the latter type, we consider tetrads of d, r and o, p
[Fig. 8(b)]. Then �opdr , �r pdo, and �rod p are updated:

� ′
opdr = σ ′

odσ
′
orσ

′
pdσ

′
pr

= (σorσdr )σor (σprσdr )σpr

= (σorσdrσpr )2 = 1,

� ′
r pdo = σ ′

rdσ
′
roσ

′
pdσ

′
po

= σdrσro(σprσdr )σpo

= (σprσpoσro)σ 2
dr = �pro,

� ′
rod p = �opr . (C1)

For the former type, we consider tetrads of d and o, p, q
[Fig. 8(d)]:

� ′
opqd = σ ′

oqσ
′
odσ

′
pqσ

′
pd

= σoq(σorσdr )σpq(σprσdr )

= (σoqσorσpqσpr )σ 2
dr = �opqr,

� ′
pqod = �pqor,

� ′
qopd = �qopr . (C2)

Then, we take a mean-field treatment of the exact update
rules considered above by replacing the quantities on the
right-hand sides of the equations by the average at that time:

�i j ∼ �, �i jk ∼ �, �i jkl ∼ �, (C3)

which result in Eqs. (17)–(19).

APPENDIX D: ASYMPTOTIC BEHAVIOR
OF MEAN-FIELD DYNAMICS

In the sparsest regime, N p = c ∼ O(1), in which triangles
are formed but the density is small to have percolated clusters
of those, Eqs. (17)–(19) read as follows:

d�

dt
∼ c

N
(1 − �), (D1)

d�

dt
∼ c

6N
[(1 − �) + (� − �)], (D2)

d�

dt
∼ (� − 1)�

2N2
+ c[(1 − �) + (� − �)]

2N3
. (D3)
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This means that the autonomous relaxation of � to 1 and the
subsequent relaxation of � to 1 take place fast. And after
reaching these equilibrium values, the leading term of the
relatively slow relaxation of � becomes

d�

dt
= 1 − �

cN3
, (D4)

meaning that � is also driven to an ordered value 1.
In the regime with more links, N p2 = c ∼ O(1) > 1,

which corresponds to the point around the percolation of
triangles, the asymptotic dynamical equations read as follows:

d�

dt
∼ (1 − �) + c(� − �)√

cN
3
2

, (D5)

d�

dt
∼ (1 + � − 2�) − 3c�(1 − �)

6
√

cN
3
2

, (D6)

d�

dt
∼ − (1 − �)

2N2
�. (D7)

The first two equations correspond to relatively fast dynamics,
which has equilibrium at �∗ = 2c+3

(c+1)2 , �∗ = c+2
c(c+1) other than

the trivial one, (�∗, �∗) = (1, 1). Therefore, these order pa-
rameters relaxes to a not-fully-ordered value (<1) if c >

√
2.

The slower relaxation of � is a decay to 0, though it can be
very slow when c <

√
2 and hence � decays faster to the

equilibrium �∗ = 1.
In more densely connected systems in which N p = O(N )

with p < 1 − O(N−1), the asymptotic forms of the dynamical
equations are

d�

dt
∼ p

N
(� − �), (D8)

d�

dt
∼ p

6N
[−(1 − p)�(1 − �) + p(� − �)], (D9)

d�

dt
∼ −

(
p2(1 − p)

2N

)
�(1 − �). (D10)

This yields a para-phase-equilibrium (�∗,�∗, �∗) =
(0, 0, 0).

In the most densely connected regime in which 1 − p =
c/N , the asymptotic forms of the dynamical equations are

d�

dt
∼ � − �

N
, (D11)

d�

dt
∼ � − �

6N
, (D12)

d�

dt
∼ (1 − �)(1 − c�) − (1 − �)�

2N2
. (D13)

Under this dynamics, the relatively fast processes lead to
relaxations of �∗ → � and �∗ → �. Therefore, we can re-
place � in the last equation by � to obtain

d�

dt
∼ (1 − �)[1 − (1 + c)�]

2N2
. (D14)

From this we have the equilibrium

�∗ = �∗ = �∗ = 1

1 + c
, (D15)

which tells that this system shows a transition from the
para-phase (�∗,�∗, �∗) = (0, 0, 0) to the ordered phase
(�∗,�∗, �∗) = (1, 1, 1) at around 1 − p ∼ N−1, in the N →
∞ limit. Together with the results above, this system has an
ordered state as the absorbing state in the regime p < O(N− 1

2 )
and 1 − p < O(N−1), and otherwise it goes to a para-phase.
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