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Towards the Heider balance: Cellular automaton with a global neighborhood
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We study a simple deterministic map that leads a fully connected network to the Heider balance. The map
is realized by an algorithm that updates all links synchronously in a way depending on the state of the entire
network. We observe that the probability of reaching a balanced state increases with the system size N . Jammed
states become less frequent for larger N . The algorithm generates also limit cycles, mostly of length 2, but
also of length 3, 4, 6, 12, or 14. We give a simple argument to estimate the mean size of basins of attraction
of balanced states, and we discuss the symmetries of the system including the automorphism group as well as
gauge invariance of triad configurations. We argue that both symmetries play an essential role in the occurrence
of cycles observed in the synchronous dynamics realized by the algorithm.
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I. INTRODUCTION

In recent years, social phenomena have become an at-
tractive field of research for scholars in statistical physics
and computer science [1–4]. This interest is motivated by
the spreading awareness that most of the important problems
faced by mankind are created by people themselves. On the
other hand, the emerging science of complexity [5] widens
the list of algorithms and methods applicable to dynamic
processes in social networks [1,6].

Here we focus on modeling the process of removal a cogni-
tive dissonance [7] in social relations within a fully connected
social network. During this process, the network evolves
towards the so-called Heider balance, also called structural
balance, where the dissonance is removed [8–10]. To the best
of our knowledge, there are five different algorithms designed
to model this process: two Monte Carlo algorithms [11,12]
and three deterministic ones [13–16]. The first two distinguish
only positive (friendly) and negative (hostile) relations. The
next two are deterministic and rely on numerical solutions of
differential equations for relations being represented by real
numbers, which are either limited to the range (−1,+1) [13]
or may tend to ± infinity in a finite time [14]. The advan-
tage of the latter approach [14] is that the equations may be
solved analytically. The last method [15,16] is a deterministic
synchronous cellular automaton, where the states of links are
updated based on a local rule. Recently, the Monte Carlo
simulations [12] have been generalized by including thermal
noise [17,18] and a specific aging of the relations [19]. On
the other hand, the differential equations [13] have been used
to simulate asymmetric links, which mimic unreciprocated
relations [20,21].
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We note that most theoretical results on the Heider bal-
ance, including mathematical theorems [9], Monte Carlo
simulations [11,12], and differential equations [13,14], have
been obtained for fully connected networks. Two recent ap-
proaches [15,16] deal with finite neighborhoods. In Ref. [15],
the rule of updating links, both deterministic and synchronous,
is akin to the one used here. A deterministic and synchronous
rule applied to a fully connected network is missing in the
literature on the subject, and our motivation is to fill the gap.
On the other hand, our results on cycles, reported below, are
for small or moderate groups (N less than 30), where the
presence of bilateral social relations between all individuals
is not surprising [22].

In a balanced state, the relations in each triad of actors
conform to the following rules [23]:

(i) A friend of my friend is my friend.
(ii) An enemy of my friend is my enemy.
(iii) A friend of my enemy is my enemy.
(iv) An enemy of my enemy is my friend.
When translated to signs of relations, the four rules allow

us to distinguish balanced from imbalanced triads. In the
balanced state, the product of the three signs is +1 in each
triad. The process of reducing the dissonance in the network
is equivalent to a minimization of the negative sum over all
triads,

U = −
N∑

i< j<k

�i jk = −
N∑

i< j<k

si js jkski, (1)

where the sign si j = ±1 represents the symmetric relation
between actors located in the nodes i and j of the network.
One can think of U as the energy of the system. As shown
in [9], when all triads are balanced, then the whole network is
split into two groups, internally friendly and mutually hostile.
Clearly, in such states there is no cognitive dissonance about
who is friend and who is enemy.

The rest of the paper is composed as follows. In the
next section, we describe the algorithm. Next (Sec. III) we
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graphically demonstrate that for N = 3, 4 the system evolves
immediately (in one time step) towards a balanced state, while
for N = 5, short limit cycles, of length 2, are also possible. In
Sec. IV we discuss symmetries of the system. In Sec. V we
report the results on the influence of the system size on the
number of transient iterations and on the probability of bal-
anced states. Section VI is devoted to the limit cycles observed
in larger systems. The paper is concluded by a discussion of
results in Sec. VII and a summary in Sec. VIII.

II. ALGORITHM

In this paper, we study a discrete time evolution, which is
deterministic and synchronous as for cellular automata [15],
however—as in [11,13]—the basic update rule depends on the
state of the entire network,

si j (t + 1)

=
{

sgn
( ∑N

k �=i, j sik (t )sk j (t )
)

if
∑N

k �=i, j sik (t )sk j (t ) �= 0,

si j (t ) otherwise
(2)

for all pairs i �= j. The sum runs through all vertices k other
than i and j. The most important difference from a typical
cellular automaton is that the neighborhood of an updated
edge (2) increases with the system size, hence the term
“global” in the title. The difference from the Monte Carlo
method is that in a single step of the algorithm, all links
are updated simultaneously, based on the previous state of
the system. This is a deterministic rule on a fully connected
network.

The update rule (2) is equivalent to

si j (t + 1) =
{

si j (t ) if − Ui j (t ) ≡ ∑N
k �=i, j �i jk (t ) � 0,

−si j (t ) otherwise,
(3)

where the sum in the last equation runs over all triads sharing
the edge i j. The update rule (2), or equivalently (3), can be
interpreted as a majority rule according to which the sign of
the edge i j adjusts to the sign of the majority of triads of
which it is a part. Clearly, if the updates (3) were applied asyn-
chronously, edge by edge, they would either leave energy (1)
unchanged, U (t + 1) = U (t ) if Ui j (t ) � 0, or reduce it to

U (t + 1) = U (t ) − 2Ui j (t ) (4)

if Ui j (t ) > 0, as a result of changing the signs of triads con-
taining the edge i j. The update rule (3) would never increase
energy. For synchronous updates this is not the case. The
synchronous dynamics is much more complex, which makes
it very interesting.

Let us also note that for odd N the second line in Eq. (2)
may be omitted because the sum of an odd number of terms
±1 is never zero. For even N the second line of Eq. (2) means
“do nothing if there is no majority.” This choice is similar to
the Nash equilibrium where an actor does not change strategy
if s/he cannot profit from the change [24]. This choice is also
akin to the delay of updating, applied in [25] to eliminate
“unstable” attractors in Boolean networks. We shall mention
an alternative solution later while discussing symmetries of
the system.

The rationale behind Eq. (2) is the same as in [11–16].
Namely, the relation si j of i with j is improved if the relations
sik and sk j are both friendly (“friend of my friend”) or both
hostile (“enemy of my enemy”). In two other cases (“friend
of my enemy” or “enemy of my friend”) the relation si j is
deteriorated. Here, as in [13], this consultation of relation si j

is extended over all agents k of the network. The difference
with [13] is that here links are updated in one time step. The
same kind of updating was applied in [15] for a local neigh-
borhood. Our approach is complementary to the previous
ones [11–16]. As we demonstrate below, the results obtained
within this approach are qualitatively new. They broaden the
spectrum of the types of behavior that can be observed in the
evolution of social networks that are trying to achieve Heider
balance.

III. SMALL SYSTEMS

For N = 3, there are eight distinct configurations—(+ +
+), (+ + −), (+ − +), (− + +), (− − +), (− + −), (+ −
−), and (− − −)—that can be grouped into four distinct
classes of indistinguishable unlabelled configurations, which
we denote by A, A∗, B, B∗; see Fig. 1. The notation with the
star superscript will become clear later. The class A has three
positive links, B has two, B∗ has one, and A∗ has no positive
links. The classes A, B∗ are balanced while A∗ and B are
imbalanced. The class cardinality is the number of distinct
labeled configurations. The cardinalities of the classes A and
A∗ are equal to 1, while those of B and B∗ are equal to 3.
The transitions between classes generated by the synchronous
majority rule (2) are shown in Fig. 1. One can also list all
configurations for N = 4, 5, . . . . Let us first discuss in detail
the case N = 5, which illustrates a variety of interesting ef-
fects. Later we will return to N = 4. The distinct unlabeled
classes on the complete graph K5 are collected in Table I. In
the table, one can also see the multiplicities of the classes as

FIG. 1. Top: configuration classes for N = 3. The class cardinal-
ities are given in the upper right corners of the plaquettes. In the
lower right corner, in parentheses, the numbers are given of balanced
and imbalanced triads. The same coding is applied below. A starred
class X ∗ is obtained from X by swapping all signs: +1 to −1 and
−1 to +1. Bottom: flow diagram representing transitions between
the classes, under the synchronous update rule (2).
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TABLE I. Classes of unlabeled configurations for N = 5, their
cardinalities, and the numbers of balanced and imbalanced triads.

well as the corresponding numbers of positive and negative
triads, which are displayed in parentheses (�+,�−). It is not
a complete list of configurations for N = 5, because we have
left out the configurations that can be obtained from those
shown in the table, swapping the positive and negative links.
Such configurations will be denoted by a star; for instance, A∗
is obtained from A so it consists only of negative edges. B∗ is
obtained from B and thus it has a single positive edge and nine
negative ones, etc. We shall refer to starred classes as dual
classes. A change of signs of all edges applied twice leaves
them unchanged, then we have A = A∗∗. The complete graph
K5 has 10 links, and thus there are 210 = 1024 configurations.
Adding cardinalities of all classes from Table I and of the
corresponding dual classes, one finds that the sum is indeed
equal to 1024. One should note that the classes O and Q are
self-dual, that is, O = O∗ and Q = Q∗, and that the classes
P and T , as well as R and S, are mutually dual P = T ∗
and R = S∗. Therefore, in order to avoid double counting,
the multiplicities of these classes should be counted once, as
opposed to those of other classes from the table, which should
be counted twice in order to take into account contributions
from the class and its dual partner.

Let us now study the action of the transformation rule (2)
on the classes. The result is illustrated in Fig. 2 as a flow dia-
gram, which indicates which class is mapped into which. The
diagram has seven connected components, each representing a
different basin of attraction. The symbol F2 means a union of
two classes, F2 = F ∪ F ∗, and similarly for other letters. The

FIG. 2. Flow diagram representing transitions between unlabeled
classes for N = 5, under the synchronous update rule (2).

double letters PT 2 and RS2 are used for dual classes to un-
derline that T 2 = P2, and similarly R2 = S2. The attractors
in Fig. 2 can be divided into two different types: absorbing
classes, and limit cycles of order 2. There are five absorbing
classes: A, I , J∗, C, and K∗, and two limit cycles of order 2:
(D∗, N) and (L, M∗). Three absorbing classes are balanced: A,
I , and J∗, and two are imbalanced: K∗ and C. Interestingly,
the absorbing classes K∗ and C correspond in fact to the limit
cycles of length 2, which are internal cycles between different
configurations from the same class. The cycles are shown in
Fig. 3. To summarize, for N = 5 we observe absorbing states,
as well as limit cycles of length 2.

IV. SYMMETRIES

The discussed system has a high symmetry. The basic sym-
metry is related to the automorphism group of the complete
graph, which forms the skeleton of the system. The other sym-
metry is related to gauge invariance of triads. Let {�i jk}i< j<k

be the list of values of the products �i jk = si js jkski for all
triads. The following transformation applied to all edges i j:

si j → s′
i j = σisi jσ j, (5)

where σi = ±1, for i, j = 1, . . . , N , leaves all the products
invariant,

�′
i jk = s′

i j s
′
jks′

ki = si js jkski = �i jk, (6)

FIG. 3. Internal limit cycles within C class (left) and K∗ class
(right).
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because each sigma is squared, yielding σ 2
i = σ 2

j = σ 2
k = 1.

As a consequence, the same set of values

{�i jk}i< j<k → {�′
i jk}i< j<k = {�i jk}i< j<k (7)

can be represented by distinct edge configurations. Borrowing
terminology from high-energy physics, the configurations rep-
resenting the same set of �’s can be called Gribov copies [26].
Since one can have two values σi = ±1 (5) for (N − 1) ver-
tices, there are 2N−1 Gribov copies. For one vertex (it does not
matter which one), one should have only one value σi = 1,
because as one can see from Eq. (5), when all σ ’s are equal
to −1, all edges acquire the same values, s′

i j = si j , as in the
primary configuration.

To see how it works, let us consider again the case N = 5.
There are 24 = 16 copies of each configuration. The config-
uration from class A can be easily copied to a configuration
from class I by choosing σi = −1 for one vertex and σ j = 1
for all remaining vertices j �= i. In this way, all edges attached
to i will change sign, yielding a configuration from the class
I . If we choose σi = σ j = −1 for two vertices, and σk = 1 for
all remaining ones, k �= i, j, we obtain a configuration from
class J∗. There is one configuration in class A, five in class I ,
and ten in class J∗, altogether 16 copies. In a similar way, one
can identify copies of any (labeled) configuration.

Coming back to the internal cycles in class C and class K∗
that we discussed earlier (Fig. 5), one can easily see that the
consecutive configurations are Gribov copies of one another.
Actually, this is also a feature of many limit cycles that we
observe for higher N .

We conclude this section by discussing yet another issue
related to the symmetry of the system. As mentioned, for odd
N the update rule (2) amounts to a pure majority rule

si j (t + 1) = sgn

⎛
⎝ N∑

k �=i, j

sik (t )sk j (t )

⎞
⎠. (8)

The results of the action of this rule on a configuration,
and a configuration obtained from it by changing globally
all signs si j → s′

i j = −si j , are identical since the additional
minus signs cancel on the right-hand side of the equation.
This reduces the complexity of the problem. The reduction
does not apply for even N since the second line of the update
rule (2) depends on individual signs. As a result, it has to be
considered separately how this rule works on the configuration
and its double partner. One can, however, slightly modify the
update rule (2) in order to restore the symmetry with respect
to the global change of all signs,

si j (t + 1) = sgn′

⎛
⎝ N∑

k �=i, j

sik (t )sk j (t )

⎞
⎠, (9)

where the function sgn′ is a modified sign function such
that sgn′(x) = 1 for x � 0 and sgn′(x) = 0 otherwise. For
large N , the number of cases when the argument is exactly
equal to zero decreases, so one can expect that for large N
the difference between the effects of applying the modified
rule (9) and the original one (2) disappears. In Table II we list
configuration classes for N = 4, and in Fig. 4 we illustrate the

TABLE II. Unlabeled configuration classes for N = 4.

difference between the basins of attraction for the two rules.
We see that some states move from one basin to another.

V. SIZE EFFECTS

The number of L links is N (N − 1)/2 and the update (2) of
each link requires the calculation of a sum of N − 2 terms (2),
so the computational complexity of a single update of the
whole system is O(N3). Denote τ the number of transient
updates until a fixed point or a limit cycle is reached. Nu-
merical results on average τ (N ), for a system with N nodes,
are shown in Fig. 5. Let us make a rough estimate of the
computational cost of the transient part of the process. τ (N )
seems to increase logarithmically for large N , so the mean
computational cost of reaching either a fixed point or a cycle
is O(N3 ln N ). This is more than N4/3 for the Local Triad Dy-
namics, p = 1/2 [11], where p is the probability of converting
(+ + −) → (+ + +). On the other hand, this is much less
than the cost of solving numerically N2/2 equations [13].

We have also evaluated the fraction B of balanced states
among the steady states. The results are shown in Fig. 6. In
general, the fraction B increases with N . This result is similar
to the result [11] that the probability of imbalanced steady
(jammed) states decreases with the system size. The values
of B follow different patterns for odd and even values of N .

FIG. 4. Left: flow diagram for the update rule (3). Right: flow
diagram for the update rule (9).
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FIG. 5. The average number, τ = τ (N ), of transient time steps vs
the systems size, N . The mean τ (N ) was calculated from 104 process
repetitions for N < 30, 5 × 103—for 30 < N < 103, 400—for larger
N .

The even-odd effect comes from the second line of Eq. (2),
which for even N prevents some changes towards the balance.

While we do not have a detailed understanding of the
dependence of B on the system size, some hints can be drawn
from analogous data shown in [11], Fig. 4. Each state that is
qualified as jammed in the Constrained Triad Dynamics [11],
where the updates are sequential, is jammed also in our case.
On the contrary, the synchronous update dynamics applied in
our study classifies also other states either as jammed or as
belonging to limit cycles. In [11], there are no jammed states
at all until N = 9; therefore, the probability of such states rises
from zero to a local maximum at N = 9 and then decreases
gradually for larger systems in a way that is dependent on
the initial number of positive links. In our case, the same
probability J (see Table III) rises from zero to a maximum
at N = 6 and later decreases. The increase of the fraction B

FIG. 6. The fraction, B, of balanced states vs the system size, N .
The results for odd N’s are plotted with circles, while for even N’s
they are plotted with triangles. The statistics is the same as in Fig. 5.

TABLE III. The fraction of balanced states B, of jammed states
J , and of limit cycles C, as dependent on the system size N . The
statistics is the same as in Fig. 5.

N B J C

5 0.5329 0.0 0.4671
6 0.5844 0.2385 0.1771
7 0.6302 0.0 0.3698
8 0.7403 0.0412 0.2185
9 0.6468 0.0150 0.3382
10 0.9135 0.0378 0.0487
11 0.8954 0.0030 0.1016
12 0.9403 0.0335 0.0262
13 0.9329 0.0011 0.0660
14 0.9494 0.0359 0.0147
15 0.9560 0.0008 0.0432
16 0.9482 0.0397 0.0121
17 0.9672 0.0009 0.0319
18 0.9468 0.0424 0.0108
19 0.9748 0.0019 0.0233
20 0.9462 0.0448 0.0090
21 0.9758 0.0029 0.0213
22 0.9504 0.0417 0.0079
23 0.9783 0.0045 0.0172
24 0.9410 0.0500 0.0090
25 0.9808 0.0065 0.0127
26 0.9457 0.0478 0.0065
27 0.9786 0.0094 0.0120
28 0.9421 0.0523 0.0056
29 0.9800 0.0097 0.0103
30 0.9398 0.0544 0.0058
50 0.9412 0.0552 0.0036
75 0.9670 0.0302 0.0028
100 0.9466 0.0508 0.0026

of balanced states is additionally moderated by the fraction
C of limit cycles, which are absent in the case of sequential
dynamics [11].

As we mentioned above, the fraction B of balanced states
is different for odd and even values of N because for even N ,
the right-hand side of Eq. (2) is sometimes equal to zero. We
note that as N increases, the probability of such configurations
decreases, and the results on B for even and odd values of N
approach the same asymptotic curve.

VI. LIMIT CYCLES

Obviously a limit cycle cannot be balanced because bal-
anced states are absorbing, as follows from (2). For a Monte
Carlo evolution there are no limit cycles, as the system is
driven either to a balance or a jammed state [11,12]. Here we
observe both jammed states and limit cycles. An example of a
limit cycle is shown in Fig. 7. In Table III, detailed statistics of
states leading to different attractors is presented. From these
data, the following new observations can be deduced:

(i) The increase of the fraction, B, of balanced states with
N for 14 < N < 100 is slow and it is visible only for larger
N , as shown in Fig. 6. In this smaller range of N , B is slightly
larger for odd values of N .
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FIG. 7. An example of a nontrivial limit cycle. In the figure we
show a cycle of length 6 for N = 9. The edges that have changed in
the last step are drawn with a thick line, and those that have not are
changed with a thin line.

(ii) On the contrary, the fraction J of jammed states is larger
for even values of N .

(iii) The fraction C of limit cycles decreases with N , so it
is much easier to encounter a limit cycle for small systems.
The number of limit cycles seems to be slightly larger for odd
values of N than for comparable even values.

For N = 5 and larger, we observe limit cycles of length
Lc = 2. For N = 7–11 also limit cycles of length 3 occur.
Further, Lc = 4 has been encountered for N = 9, 10, 11, and
13, Lc = 6 for N = 9 and 11, and Lc = 12 for N = 9. The
longest limit cycles we observed were of length 14 for N = 11
(Tables IV and V). To get more insight into the case N = 9,
we enumerated all initial configurations and calculated the
numbers of initial conditions which lead to cycles of a given
length. All initial 236 link configurations have been browsed.
The results are given in Table IV. Clearly, the sums of num-
bers ck in each row are equal to 36!/N1!/(36 − N1)!, where
N1 is the number of positive links (and N−1 = L − N1 is the
number of negative links).

The cycle distribution does not change when we inter-
change N1 and N−1. This is a demonstration of the global
symmetry of Eq. (2) under the change of signs of all links. The
symmetry holds only for odd values of N . For even values, the
second line of Eq. (2) breaks the symmetry, as discussed in
Sec. III.

We checked that for N = 9 even for long cycles, the energy
U either remains constant during a cycle or takes at most
two values. For Lc = 2, these values that appear alternately
are −24 and −6; the others are −52,−22,−20,−18, and
−2. For Lc = 3, the energy remains constant during each
cycle, and its value is −14,−6, or +8. For Lc = 4, a possi-
ble cycle of U is −12,−12,+4,+4; the energy fixed points
are −12,−10, or −4. For Lc = 6 either U = +2 or a cycle
appears: 0, 0, 0,+2,+2,+2. Finally, for Lc = 12 we get only
a fixed point U = −6.

To complete the overall picture, we determined the cycles
lengths also for N = 7, 11 with better statistics. For N = 7 we
browsed all initial configurations. For N = 7 the longest cycle

TABLE IV. The numbers ck of initial states that lead to cycles of given length k for N = 9. In two first columns on the left, the numbers of
positive N1 and negative N−1 links in the initial states are given. In the two last rows, the sums and fractions of all lengths of the limit cycles
are given, including those for N1 > N−1, not shown here.

N1 N−1 c1 c2 c3 c4 c6 c12

0 36 1
1 35 36
2 34 630
3 33 7140
4 32 58275 630
5 31 351792 25200
6 30 1713432 234360
7 29 7229700 1105020 12960
8 28 23731605 6311655 194400 22680
9 27 68512360 23499000 1360800 362880 272160 136080
10 26 163379286 77290290 6259680 3084480 3265920 907200
11 25 405524196 164254860 20049120 3447360 3810240 3719520
12 24 798887565 365041215 49260960 14719320 20321280 3447360
13 23 1548952020 634738860 80831520 11793600 17781120 16692480
14 22 2467970100 1093051260 140019840 39009600 46811520 9434880
15 21 3798647280 1507217040 160885440 33203520 37195200 30754080
16 20 4770389610 2096265780 240226560 79606800 100154880 21228480
17 19 5850581940 2318217300 274337280 44089920 57062880 53207280
18 18 5862580080 2640716820 326894400 98703360 123379200 22861440∑

45674454016 19215221760 2273771520 557383680 696729600 301916160
% 66.5 28.0 3.3 0.8 1.0 0.4

024307-6



TOWARDS THE HEIDER BALANCE: CELLULAR … PHYSICAL REVIEW E 104, 024307 (2021)

TABLE V. The fractions of cycle length for N = 11. The number
of encountered cycles of length 14 is 11 172 out of 1010 sampled
configurations.

Lc fraction

1 0.8987022
2 0.1007681
3 0.0002326
4 0.0001544
6 0.0001416
14 0.0000011

has length Lc = 3. These cycles of length 3 occur in 368 640
out of 221 cases (giving an approximate frequency 0.176). For
N = 11 we sampled uniformly 1010 initial states out of all
255 ≈ 0.36 × 1017 states, so the minimal frequency that can
be detected is O(10−7). The longest cycles recorded are of
Lc = 14. The frequencies of different values of Lc are given in
Table V. While analyzing the table, one has to remember that
some objects that are less frequent than the limiting frequency
O(10−7) may not show up in the sample statistics.

It is clear that the frequency of limit cycles decreases with
the system size N . Yet, as shown in Table III, cycles can
appear quite frequently for small systems, for N between 5
and 11. In sociological terms, a cycle is a permanent oscil-
lation of mutual relations, driven by the tendency to reduce
cognitive dissonance about friendship and enmity. Although
such social cycles are always subject to external perturbations,
some variations of the relations could be repeated day by day
for a relatively long time.

VII. DISCUSSION

Our result that the fraction B of balanced states increases
with N is consistent with the results of [11,12] obtained with
the stochastic algorithm of Local Triad Dynamics. We note
that the number of balanced states increases with N as 2N−1,
which is much slower than the number of all states: 2N (N−1)/2.
The increase of B with N indicates that the common size of
the basins of attraction of balanced states increases with the
system size. By definition, basins of attraction of different
states do not overlap. Then we can evaluate an average size SB

of the basin of attraction of a balanced state. As we read from
Table III and Fig. 6, the probability of the balanced state at
the end of evolution increases with N . This probability can be
evaluated as 2N−1SB/2N (N−1)/2. This means that SB increases
with N roughly as 2N2/2. Some evaluations [27] indicate that
all balanced states are equally probable. If this is the case, SB

is just the size of the basin of attraction of each balanced state,
and not only the average.

The number 2N−1 of balanced configurations is just the
number of Gribov copies of the configuration having all
balanced triads. But as we discussed in the section on sym-
metries, in fact any triad configuration has 2N−1 copies. The
question is whether one can invent an algorithm that would
avoid this 2N−1-fold degeneracy of triad configurations. The
answer is affirmative. One can use a gauge fixing procedure
that exploits the invariance (5) to fix signs of (N − 1) edges
on a spanning tree. Given a spanning tree and a configuration

of signs {si j}, one can use the invariance (5) to choose σi’s
to set s′

i j = σisi jσ j = 1 for every edge of the spanning tree.
One can do this iteratively, edge by edge of the tree: first by
choosing σ ’s at the end points of the first edge to set the edge
sign to 1, then by choosing σ at the remaining end point of a
neighboring edge, and repeating it for the next edge incident
with either of the first two, etc. One can easily convince
oneself that the freedom in choosing σi’s allows one to do fix
signs s′

i j = 1 on any acyclic subgraph. The spanning tree is
just an acyclic connected subgraph containing all N vertices.
It has (N − 1) edges. As a spanning tree we can choose a
vertex with all (N − 1) edges attached to it and fix the signs
of all these edges to 1. The remaining edges form a complete
graph KN−1. The idea is now to update only edges on this KN−1

subgraph using the original update rule (2), and leave the signs
of the (N − 1) edges on the spanning tree. In this way, we
reduce the problem from KN to KN−1. The price to pay is that
this update scheme breaks the symmetry of the original graph,
while the emergence of cycles that we discussed seems to be
deeply rooted in this symmetry.

Let us now argue why the probability of reaching the fully
balanced state asymptotically tends to unity for N → ∞ for
synchronous dynamics (2). We shall do this by comparing
the synchronous dynamics to the asynchronous one, which
we shall try to understand first. As discussed, energy never
increases when updates (3) are done asynchronously. It is still
not understood what ensures that the process of energy low-
ering will not stop before the energy minimum is reached. It
might stop if there were no links in the system for which Ui j >

0 (3). One can show, however, that there is at least one link i j
such that Ui j > 0, as long as energy U is greater than the min-
imal one. Thus the asynchronous algorithm will not stop until
the energy minimum, and thus the full balance, is reached.
For the synchronous updates (2), energy may increase. Let us
suppose that Ui j (t ) > 0 and Ukl (t ) > 0 for two disjoint edges
i j and kl , and Uab(t ) � 0 for all other edges ab. Then the
net change of energy is U (t + 1) = U (t ) − 2Ui j (t ) − 2Ukl (t ),
which is as if one updated edges asynchronously one after
another, Eq. (4). The situation gets complicated, however,
when Ui j (t ) > 0 and Ujk (t ) > 0 for two incident edges i j
and jk, and Uab(t ) � 0 for all others ab. In this case, U (t +
1) = U (t ) − 2Ui j (t ) − 2Ujk (t ) + 2�i jk (t ), because the triad
�i jk (t ) is common for sets of triads to which the edges i j
and jk belong. We see that the result of acting synchronously
on edges having overlapping triads may increase energy as
compared to the asynchronous update. In a more general situ-
ation, when there are more than two edges for which Ui j > 0,
the energy of the system may increase, U (t + 1) > U (t ), after
the update. This effect is frequently seen for small systems
and it disappears when the system size gets bigger. When the
system size increases, the system gets diluted in the sense that
two incident edges have one common triad while each of them
belongs to N − 2 triads. Thus the interference from the over-
lap is 1/(N − 2) compared to the asynchronous update and
disappears for N → ∞. Roughly speaking, for larger systems
one can expect that the synchronous update scheme behaves
like the asynchronous one for a majority of configurations. For
some configurations, however, due to their symmetry, limit
cycles are observed. They are sort of symmetry traps. The
simplest example is a configuration being a generalization
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of the configuration C that we discussed for N = 5. More
generally, for N = 2n + 1, such a configuration consists of
all positive links except n negative links, which are incident
with a vertex. One can easily see that the synchronous up-
date (2) will map this configuration into a configuration that
also has only n negative links incident with the vertex. They
are complementary to those that were negative in the original
configuration. The two configurations form a limit cycle. We
can give more explicit examples, but as of yet we do not have
a straightforward way of identifying configurations that lead
to most of the observed limit cycles, especially those of length
12 or 14. We find it a very challenging problem.

The difference between the results for even and odd values
of N , shown in Table III, can be attributed to the fact that
for even N the function sign( ) in Eq. (2) can return zero.
According to the update rule (2), in such a case the value of
the link in question remains unchanged. As a consequence,
the evolution towards the balance is stopped for some even
values of N ; hence B is smaller and J is larger there. However,
for larger values of N the zero value of the right-hand side of
Eq. (2) is less likely, and therefore the effect is weaker.

As shown in Sec. V, the length Lc of limit cycles increases
around N = 9, which makes this particular size specific. To
interpret the effect, let us recall that N = 9 has been identified
in [11,12] as the minimal size of the network where jammed
states exist. In other words, N = 9 is a boundary value be-
tween two regimes, where jammed states appear and do not
appear. It is interesting that this boundary is visible in two
different settings: the stochastic evolution towards the balance
in [11,12], and the deterministic evolution modeled by Eq. (2).
Perhaps long limit cycles can be interpreted as markers of
shallow minima of a work function also in other deterministic
models.

The global coupling of links in our approach makes it
similar to the N-K Kauffman model of genetic systems, with
the highly correlated case K = N − 1 [28]. In particular, the
number of local optima is large (here 2N−1), and the length
of adaptive walks to optima increases as a logarithmic func-
tion of N . However, what evolves here is not the nodes
but the links, which means that the counterpart of N in the
Kauffman model is the number of links, which is L ≈ N2/2.
The evolution of a given link is determined by the state of
2(N − 2) ≈ √

8L other links, which increases slower than the
dimensionality L. This indicates that the similarity with the
case K = N − 1 is incomplete.

Two comments may be added, one from a sociological
perspective and one from a computational point of view. Our
results, obtained within the cellular automata formalism, show
that the process of removing cognitive dissonance in small
groups might be counterproductive. In particular, the number

of imbalanced triads can be larger than the number of balanced
ones; this is the case of positive values of energy U . As the
real process appears in conditions of imperfect information
and a dynamically varying situation [29–32], the importance
of a time sequence cannot be neglected. Yet this effect seems
to lose its relevance for larger groups.

From a computational or a dynamic point of view, the
results indicate that the system of size close to N = 9 ex-
hibits specific properties, namely one can observe relatively
frequently nontrivial, long limit cycles. This seems to be the
result of a compromise between two effects. On the one hand,
the length of the limit cycles increases with the system size.
On the other hand, the frequency of cycles, relative to bal-
anced states, decreases with the system size. The two effects
meet for N close to 9 in the sense that for systems of the
size in this range there are already longer cycles, and on the
other hand they are sufficiently abundant to be observed when
states are sampled randomly. We are not aware of any report
on this effect in the literature. We note that the rules on friends
and enemies, mentioned in the Introduction, are equivalent
to negative XOR in Boolean Logic. Perhaps similar results
could be obtained also for other Boolean functions. In such a
case, systems of characteristic size should find application as
loosely connected components of more complex entities.

VIII. CONCLUSIONS

In this paper, we considered a process of reduction of cog-
nitive resonance, based on synchronous updates of bilateral
relations between all actors forming a group. The model is
realized by a deterministic update rule on a fully connected
network. The new and most interesting result is the appear-
ance of long limit cycles. Cycles of length 2 were observed
already in a related model [15] when using a cellular au-
tomaton with a local neighborhood, but in the model studied
in this paper the length of detected cycles is found to reach
12 for a network for N = 9 nodes, and 14 for N = 11. The
frequency of long cycles strongly decreases with the system
size, so the search of cycles, which is based on exhaustive
browsing of all configurations, becomes very computationally
expensive as N increases. It would be interesting to find an
analytic argument on the probability of limit cycles for any N .
The recently reported discovery [33] of a relation between the
Heider balance and the Kuramoto synchronization increases
the list of potential applications of the cycles.
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[27] M. J. Krawczyk, S. Kałużny, and K. Kułakowski, A small
chance of paradise—equivalence of balanced states, Europhys.
Lett. 118, 58005 (2017).

[28] S. A. Kauffman, The Origins of Order. Self-Organization and
Selection in Evolution (Oxford University Press, New York,
1993).

[29] J. W. Brehm, Increasing cognitive dissonance by a fait accom-
pli, J. Abnormal Social Psych. 58, 379 (1959).

[30] J. D. Jecker, Conflict and dissonance: a time of decision, in The-
ories of Cognitive Consistency: A Sourcebook, edited by R. P.
Abelson, E. Aronson, W. J. McGuire, Th. M. Newcomb, M. J.
Rosenberg, and P. H. Tannenbaum (Rand McNally, Chicago,
1968).

[31] J. E. Russo, M. G. Meloy, and V. H. Medvec, Predecisional
distortion of product information, J. Marketing Res. 35, 438
(1998).

[32] Y. H. Liang, Reading to make a decision or to reduce cognitive
dissonance? The effect of selecting and reading online reviews
from a post-decision context, Comput. Human Behavior 64, 463
(2016).

[33] M. T. Schaub, N. O’Clery, Y. N. Bileh, J.-C. Delvenne, R.
Lambiotte, and M. Barahona, Graph partitions and cluster
synchronization in networks of oscillators, Chaos 26, 094821
(2016).

024307-9

https://doi.org/10.1080/00223980.1946.9917275
https://doi.org/10.1037/h0046049
https://doi.org/10.1103/PhysRevE.72.036121
https://doi.org/10.1016/j.physd.2006.09.028
https://doi.org/10.1142/S012918310500742X
https://doi.org/10.1073/pnas.1013213108
https://doi.org/10.1016/j.physd.2020.132556
https://doi.org/10.1016/j.physa.2020.125640
https://doi.org/10.1103/PhysRevE.99.062302
https://doi.org/10.1103/PhysRevE.100.022303
https://doi.org/10.1016/j.physa.2020.125689
https://doi.org/10.1016/j.physa.2016.10.091
https://doi.org/10.1038/s41598-019-47697-1
https://doi.org/10.1016/0047-2484(92)90081-J
https://doi.org/10.1037/h0021234
https://doi.org/10.1103/PhysRevE.72.055101
https://doi.org/10.1016/0550-3213(78)90175-X
https://doi.org/10.1209/0295-5075/118/58005
https://doi.org/10.1037/h0047791
https://doi.org/10.1177/002224379803500403
https://doi.org/10.1016/j.chb.2016.07.016
https://doi.org/10.1063/1.4961065

