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The edge-based compartmental modeling (EBCM) approach has been used widely to characterize the non-
recurrent epidemic spreading dynamics (e.g., the susceptible-infected-recovered model) in complex networks.
By using the probability theory, we derived an individual-based formulation for this approach, which we herein
refer to as the microscopic EBCM method. We found that both for small and large initial infection numbers, the
epidemic evolution agreed well with the ensemble averages of our stochastic simulations on different complex
networks. Moreover, we showed that the dynamical message passing model, the standard EBCM system, and
the pair quenched mean-field equations can be deduced by our microscopic EBCM method. In addition, the
microscopic EBCM method was used to analyze the effect of epidemic awareness on networks. Importantly,
the simple EBCM model for exponential awareness was developed. Our method provides a way for handling
nontrivial disease transmission processes with irreversible dynamics.
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I. INTRODUCTION

Complex networks represent a powerful tool for analyzing
the spreading dynamics of biological pathogens or computer
viruses [1,2]. A network is a structure typically consisting of
nodes and edges, whereby individuals are regarded as nodes,
and infective contacts between individuals are represented
via edges. Following the pioneering work of Pastor-Satorras
and Vespignani [3] and Newman [4], a large number of epi-
demic models have been developed, including a variety of
sophisticated analytical methods [5]. Two kinds of transient
analysis methods can be broadly distinguished in the study of
networked propagation dynamics.

(1) Macroscopic mean-field methods, such as heteroge-
neous mean-field (HMF) theory [3], effective degree (EFD)
method [6], homogeneous pair approximation (HomPA) [7],
heterogeneous pair approximation (HetPA) [8], and edge
based compartment modeling (EBCM) [9].

(2) Microscopic probabilistic methods, such as the mi-
croscopic Markov-chain approximation method (MMCA)
[10,11], quenched mean field (QMF) method [12], pair
quenched mean-field (pQMF) model [13], dynamic message
passing (DMP) [14,15], and conditional quenched mean-field
(cQMF) method [16].

In network epidemiology, the susceptible-infected- recov-
ered or removed (SIR) model and its variations [17,18] have
been frequently used to address the disease spreading in
structured populations. However, the traditional compartmen-
tal model only considered the population transitions across
different states and ignored the heterogeneity of individ-
ual interactions. Although the heterogeneity of individual
contacts is assumed in the HMF model [3], the dimension-

ality of the model is relatively high and its accuracy is
often unsatisfactory. In order to circumvent the shortcomings
of traditional compartmental models and the heterogeneous
mean-field model, Volz [19] proposed a low-dimensional pair-
type method by using a probability generating function, and
subsequently Miller [20] reduced its dimensionality and de-
veloped the edge-based compartmental modeling (EBCM) to
obtain a lower dimensional system.

It is worth noticing here that the EBCM method proposed
by Miller [20] starts from the calculation of the probability of
a node being susceptible, which is essentially different from
Karrer and Newman’s DMP approach [14]. We present here
a microscopic probability model corresponding to Miller’s
EBCM method. Motivated by this evident gap in mathemati-
cal epidemiology, we herein develop the microscopic EBCM
model (MEBCM in short) for the SIR epidemic dynamics,
from which the classical EBCM, DMP, and pQMF models can
be derived uncovering their underlying analytic relationships.

In addition, we present a modeling derivation method
which may help in handling a variety of complicated irre-
versible spreading problems, e.g., the epidemic information-
based behavioral response (or, say, awareness-based risk
perception) [17], vote model [21], social support [22], or
influence spreading [23]. We notice that recently Li et al. [24]
used the EBCM method to analyze the influence of aware-
ness on the epidemic spreading. However, this work did not
seem to reach sufficient accuracy and was hence unable to
discover how the local information-based awareness affects
the epidemic threshold [17]. In our previous work [25], we
derived a pair QMF model governing the epidemic spreading
over a random network with local behavioral response. This
work demonstrated that the rigorous derivation of the model
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was indeed relevant for handling the epidemic-information
dynamics. We therefore expect the MEBCM method to be
even more effective in the analysis of such problems, although
its derivation and the analysis are much more demanding than
for the standard EBCM method. As an application, we derived
the MEBCM model for the local awareness defined by an
exponential function [17,24], and all simulations confirmed
the effectiveness of our method. Furthermore, a simple EBCM
model with four equations was analytically obtained by using
the mean-field approximation.

The remaining parts of the present paper are structured as
follows. In Sec. II we derive the microscopic EBCM model
for the SIR epidemic dynamics in a complex network, deter-
mine the epidemic threshold for a small infection, and deduce
EBCM, DMP, and pQMF models by using our method. In
Sec. III, we apply our method to derive the microscopic
EBCM model and its corresponding EBCM model for the
exponential awareness. Finally, we conclude in Sec. IV and
briefly outline future research directions.

II. MICROSCOPIC EBCM METHOD

A. Notations and basic assumptions

We assume that an infectious disease follows SIR dynam-
ics on a given network denoted by (V, E ), where V is the node
set and E is the edge set. We further assume that the contact
network is both unweighted and undirected, and can be fully
determined by its adjacency matrix G = (Gi j ): if node i is
linked to node j in V , then Gi j = 1; otherwise Gi j = 0. We
also denote N as the number of nodes in V , and M stands for
the number of edges in E .

For the SIR model, each node may stay in one of three
states: susceptible (S) state, infected (I) state, and removed
or recovered (R) state. During an infinitesimal time interval
(t, t + �t], an infected node transmits the pathogen to its
susceptible neighbor with probability β�t and, meanwhile,
it recovers becoming fully immune to the disease with proba-
bility μ�t .

In the present work, Ai(t ) = P [Xi(t ) = A] stands for the
probability that node i is in the state A ∈ {S, I, R}), where
P [ξ ] represents the probability of event ξ or {ξ} occurring. Let
us denote �t as the set of nodes with a noninteracting “cavity
state” in the network before time t , where the cavity node has
no effect on the dynamical state of its neighbors. Then, the
symbol �∞ represents that its element is always in the cavity
state at any time. According to the meaning of the cavity state,
it satisfies the following three properties.

(i) P [ξ (t )|i ∈ �t ] = P [ξ (t )|i ∈ �∞].
(ii) P [Xi(t ) = A|ξ (t )] = P [Xi(t ) = A|ξ (t ), i ∈ �∞].
(iii) P [ξ (t )|Xi(t ) = S] = P [ξ (t )|Xi(t ) = S, i ∈ �∞].
Let us first briefly elaborate on these properties. During

the epidemic spreading process, ξ (t ) is unrelated with the
event that a node i is in the cavity state after t , and hence (i)
certainly holds. For the SIR model, the state change of node i
is induced by either itself (removed or recovered event) or its
neighboring nodes (infection event). It is impossible that node
i infects its connected node and then becomes infected in turn.
Hence the state of a node i does not depend on whether node
i is likely to affect its neighbors. Hence P [Xi(t ) = A|ξ (t )] =

P [Xi(t ) = A|ξ (t ), i ∈ �t ]. By using (i), the property (ii) also
holds. Because P [i ∈ �t |ξ (t ), Xi(t ) = S] = 1, we have

P [ξ (t ), Xi(t ) = S, i ∈ �t ]

= P [i ∈ �t |ξ (t ), Xi(t ) = S]P [ξ (t ), Xi(t ) = S]

= P [ξ (t ), Xi(t ) = S]

= P [ξ (t )|Xi(t ) = S]P [Xi(t ) = S]. (1)

In the same way, since P [i ∈ �t |Xi(t ) = S] = 1, P [Xi(t ) =
S, i ∈ �t ] = P [Xi(t ) = S]. So,

P [ξ (t )|Xi(t ) = S, i ∈ �t ] = P [ξ (t ), Xi(t ) = S, i ∈ �t ]

P [Xi(t ) = S, i ∈ �t ]

= P [ξ (t )|Xi(t ) = S]P [Xi(t ) = S]

P [Xi(t ) = S]
= P [ξ (t )|Xi(t ) = S].

Following the property (i), we can obtain (iii). In addition,
similar to the analysis of (ii), Ai(t ) = P [Xi(t ) = A|i ∈ �∞]
holds for any A, i, and t .

When node i is initially susceptible and i is in the cavity
state, we define {i � j(t )|Xi(0) = S, i ∈ �∞} and its inverse
event is denoted by {i ← j(t )|Xi(0) = S, i ∈ �∞}. The for-
mer symbol means the event that node i is not infected
by node j up to t , and the latter one means the event
that node i has been infected by node j up to t . If node
i is initially not susceptible, it is meaningless to consider
node i can or cannot be infected by node j. For simplicity,
we let ∅i = {Xi(0) = S, i ∈ �∞}, Aj\i(t ) = P [Xj (t ) = A|∅i],
θi� j (t ) = P [i � j(t )|∅i], and θi← j (t ) = P [i ← j(t )|∅i].

Moreover, we also defined the joint probability
Ai� j (t ) = P [i � j(t ), Xj (t ) = A|∅i] and Ai← j (t ) = P [i ←
j(t ), Xj (t ) = A|∅i]. Employing the total probability formula,
we have

P [i � j(t )|∅i]

=
∑

A

P [i � j(t ), Xj (t ) = A|∅i]

= P [i � j(t ), Xj (t ) = S|∅i] + P [i � j(t ), Xj (t ) = I|∅i]

+P [i � j(t ), Xj (t ) = R|∅i]. (2)

Hence the following condition always holds for any time:

θi� j (t ) = Si� j (t ) + Ii� j (t ) + Ri� j (t ). (3)

Similarly,

Aj\i(t )

= P [Xj (t ) = A|∅i]

= P [i � j(t ), Xj (t ) = A|∅i] + P [i ← j(t ), Xj (t ) = A|∅i]

= Ai� j (t ) + Ai← j (t ), (4)

Si(t ) + Ii(t ) + Ri(t ) = 1, (5)

and

S j\i(t ) + I j\i(t ) + Rj\i(t ) = 1. (6)

Besides the normalization conditions stated above, there are
also some balance conditions. Let N (i) denote a set of all
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neighbors of node i:

Si(t ) = P [Xi(t ) = S|i ∈ �∞]

= P [i � j(t ),∀ j ∈ N (i), Xi(0) = S|i ∈ �∞]

= P [i � j(t ),∀ j ∈ N (i)|Xi(0) = S, i ∈ �∞]

P [Xi(0) = S|i ∈ �∞]

= P [i � j(t ),∀ j ∈ N (i)|∅i]Si(0). (7)

When node i’s neighbors are independent of each other and
node i has no effect on its neighbors, we approximately obtain

P [i � j(t ),∀ j ∈ N (i)|∅i] =
∏

j∈N (i)

P [i � j(t )|∅i].

Hence

Si(t ) = Si(0)
∏

j∈N (i)

θi� j (t ). (8)

In addition,

Si� j (t )

= P [i � j(t ), Xj (t ) = S|∅i]

= P [i � j(t )|Xj (t ) = S,∅i]P [Xj (t ) = S|∅i]

= P [Xj (t ) = S|∅i]. (9)

This shows that Si� j (t ) = S j\i(t ). Furthermore,

Si� j (t )

= P [Xj (t ) = S|∅i]

= P [Xj (t ) = S| j ∈ �∞,∅i]

= P [ j � l ′(t ),∀l ′ ∈ N ( j), Xj (0) = S| j ∈ �∞,∅i]

= P [ j � l ′(t ),∀l ′ ∈ N ( j) \ i|Xj (0) = S, j ∈ �∞]

×P [Xj (0) = S| j ∈ �∞,∅i]

= P [ j � l ′(t ),∀l ′ ∈ N ( j) \ i|∅ j]P [Xj (0) = S| j ∈ �∞]

= S j (0)
∏

l∈N ( j)\i

θ j�l (t ). (10)

B. MEBCM model

In order to derive the microscopic EBCM system, we first
begin with an individual-based variable, Si(t ), which denotes
the probability that node i is susceptible at time t . In the SIR
model, the susceptible state of a node implies that this node is
initially susceptible and not infected by other nodes by time t .
According to Eq. (8), Si(t ) = Si(0)

∏
j∈N (i) θi� j (t ).

Next, we consider the change of θi� j (t ). For convenience,
we denote t + �t by t ′. By the total probability law, we have

P [i � j(t ′)|∅i] = P [i � j(t ′), i � j(t )|∅i]

+P [i � j(t ′), i ← j(t )|∅i]. (11)

Note that P [i � j(t ′), i ← j(t )|∅i] = P [i � j(t ′)|i ← j(t ),
∅i]P [i ← j(t )|∅i] = 0, so

P [i � j(t ′)|∅i]

= P [i � j(t ′), i � j(t )|∅i]

=
∑

A

P [i � j(t ′), Xj (t ) = A, i � j(t )|∅i]

=
∑

A

P [i � j(t ′)|Xj (t ) = A, i � j(t ),∅i]

×P [Xj (t ) = A, i � j(t )|∅i]. (12)

It is easy to know that

P [i � j(t ′)|Xj (t ) = S, i � j(t ),∅i] = 1,

P [i � j(t ′)|Xj (t ) = I, i � j(t ),∅i] = 1 − β�t, (13)

and

P [i � j(t ′)|Xj (t ) = R, i � j(t ),∅i] = 1.

As a result,

P [i � j(t ′)|∅i]

= P [Xj (t ) = S, i � j(t )|∅i]

+ (1 − β�t )P [Xj (t ) = I, i � j(t )|∅i]

+P [Xj (t ) = R, i � j(t )|∅i]

= P [i � j(t )|∅i] − β�tP [Xj (t ) = I, i � j(t )|∅i]. (14)

In terms of the following computation,

d

dt
P [i � j(t )|∅i]

= lim
�t→0

P [i � j(t ′)|∅i] − P [i � j(t )|∅i]

�t
,

we obtain the continuous-time system of θi� j (t ) as follows:

d

dt
θi� j (t ) = −βIi� j (t ). (15)

Finally, we derive the dynamical equation of Ii� j (t ). By
the total probability law, we have

P [i � j(t ′), Xj (t
′) = I|∅i]

= P [i � j(t ′), Xj (t
′) = I, i ← j(t ), Xj (t ) = S|∅i]

+P [i � j(t ′), Xj (t
′) = I, i ← j(t ), Xj (t ) = I|∅i]

+P [i � j(t ′), Xj (t
′) = I, i ← j(t ), Xj (t ) = R|∅i]

+P [i � j(t ′), Xj (t
′) = I, i � j(t ), Xj (t ) = S|∅i]

+P [i � j(t ′), Xj (t
′) = I, i � j(t ), Xj (t ) = I|∅i]

+P [i � j(t ′), Xj (t
′) = I, i � j(t ), Xj (t ) = R|∅i].

Note that

P [i � j(t ′), Xj (t
′) = I, i ← j(t ), Xj (t ) = A|∅i]

= P [i � j(t ′), Xj (t
′) = I|i ← j(t ), Xj (t ) = A,∅i]

P [i ← j(t ), Xj (t ) = A|∅i, j ∈ N (i)] = 0

for A = S, I, R and

P [i � j(t ′), Xj (t
′) = I, i � j(t ), Xj (t ) = R|∅i]

= P [i � j(t ′), Xj (t
′) = I|i � j(t ), Xj (t ) = R,∅i]

P [i � j(t ), Xj (t ) = R|∅i] = 0.
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Therefore, we have

P [i � j(t ′), Xj (t
′) = I|∅i]

= P [i � j(t ′), Xj (t
′) = I|i � j(t ), Xj (t ) = S,

∅i]P [i � j(t ), Xj (t ) = S|∅i]

+P [i � j(t ′), Xj (t
′) = I|i � j(t ),

Xj (t ) = I,∅i]P [i � j(t ), Xj (t ) = I|∅i]. (16)

For the first term, we denote kinf ( j) as the number of
infected nodes in the neighborhood of node j and let k j be
the number of all nodes in the neighborhood of node j; then

P [i � j(t ′), Xj (t
′) = I|i � j(t ), Xj (t ) = S,∅i]

=
k j−1∑
m=0

P [i � j(t ′), Xj (t
′) = I, kinf ( j) = m

|i � j(t ), Xj (t ) = S,∅i]

=
k j−1∑
m=0

P [i � j(t ′), Xj (t
′) = I|kinf ( j) = m,

i � j(t ), Xj (t ) = S,∅i]

×P [kinf ( j) = m|i � j(t ), Xj (t ) = S,∅i]

=
k j−1∑
m=0

β�tmP [kinf ( j) = m|i � j(t ), Xj (t ) = S,∅i]

= β�t
∑

l∈N ( j)
l 	=i

P [Xl (t ) = I|Xj (t ) = S]. (17)

Here, the final step uses Lemma 1 in [17]. Since

{Xj (t ) = S} = { j � l ′(t ),∀l ′ ∈ N ( j), Xj (0) = S}, (18)

we then have

P [Xl (t ) = I|Xj (t ) = S]

= P [Xl (t ) = I|Xj (t ) = S, j ∈ �∞]

= P [Xl (t ) = I| j � l ′(t ),∀l ′ ∈ N ( j),∅ j]

= P [Xl (t ) = I| j � l (t ),∅ j]

= P [Xl (t ) = I, j � l (t ),∅ j]

P [ j � l (t ),∅ j]

= P [Xl (t ) = I, j � l (t )|∅ j]

P [ j � l (t )|∅ j]

= I j�l (t )

θ j�l (t )
. (19)

On substituting Eq. (19) into Eq. (17), we have

P [i � j(t ′), Xj (t
′) = I|i � j(t ), Xj (t ) = S,∅i]

= β�t
∑

l∈N ( j)
l 	=i

I j�l (t )

θ j�l (t )
. (20)

For the second term,

P [i � j(t ′), Xj (t
′) = I|i � j(t ), Xj (t ) = I,∅i]

= (1 − β�t )(1 − μ�t ). (21)

Therefore, the dynamical equation of Ii� j is governed by
d

dt
Ii� j = −(β + μ)Ii� j + βS j (0)

×
∏

l∈N ( j)\i

θ j�l (t )
∑

l∈N ( j)
l 	=i

I j�l (t )

θ j�l (t )
. (22)

Above all, the microscopic EBCM model for the SIR dis-
ease is given by

d

dt
θi� j = −βIi� j, (23)

d

dt
Ii� j = −(β + μ)Ii� j + βS j (0)

×
∏

l∈N ( j)\i

θ j�l (t )
∑

l∈N ( j)
l 	=i

I j�l (t )

θ j�l (t )
, (24)

Si(t ) =
∏

j∈N (i)

θi� j (t )Si(0), (25)

Ii(t ) = 1 − Si(t ) − Ri(t ), (26)

d

dt
Ri(t ) = μIi(t ). (27)

From Eqs. (23), (25), (26), and (27), we deduce

d

dt
Ii(t ) = −μIi(t ) + βSi(0)

∑
j∈N (i)

⎛
⎜⎝Ii� j (t )

∏
l∈N (i)

l 	= j

θi�l (t )

⎞
⎟⎠.

So, it suffices to consider the following system of size N +
4M as follows:

d

dt
θi� j (t ) = −βIi� j (t ), (28)

d

dt
Ii� j (t ) = −(β + μ)Ii� j (t )

+βS j (0)
∏

l∈N ( j)\i

θ j�l (t )
∑

l∈N ( j)\i

I j�l (t )

θ j�l (t )
, (29)

d

dt
Ii(t ) = −μIi(t ) + βSi(0)

×
∑

j∈N (i)

⎛
⎝Ii� j (t )

∏
l∈N (i)\ j

θi�l (t )

⎞
⎠, (30)

with initial conditions Ii(0) = εi, Si(0) = 1 − εi, Ri(0) = 0,

Ii� j (0) = I j (0) = ε j, S j (0) = 1 − ε j , and θi� j (0) = 1.

C. Epidemic threshold

When the fraction of initial infection is very small, the
epidemic threshold can be derived by using the next gener-
ation matrix [6,26]. To obtain the epidemic threshold, near the
disease-free equilibrium (θi� j = 1, Ii� j = Ii = 0), we con-
sider the linear system coupled with Ii� j and Ii except for
θi� j . Following the variable order according to the equations,
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we can write the system Jacobian matrix (denoted by J1) as

J1 =
[

F − V 0
W −μI

]
,

where 0 is a zero matrix, I is a unit matrix, W is a N × 2M
matrix with entries βSi(0)Gi j according to the variable order
listed in the model, F is a matrix with entries (F )i j,hl =
βS j (0)(1 − δil )δ jh, and V is a diagonal matrix with entries
(V )i j,hl = (β + μ)δl jδih.

Let s(J1) be the maximum real part of all the eigenvalues
of the matrix J1. Note that s(J1) = s(F − V ) and s(F − V ) >

0 ⇐⇒ ρ(FV −1) > 1 [6,26], where the matrix FV −1 is called
the next generation matrix and ρ(FV −1) denotes the spectral
radius of this matrix. The basic reproduction number for the
microscopic EBCM model (denoted by R0) reads as

R0 = ρ
(
FV −1) = β

β + μ
ρ(F1), (31)

where (F1)i j,hl = S j (0)(1 − δil )δ jh. When R0 > 1, the epi-
demic breaks out, whereas when R0 < 1, the epidemic dies
out. From above, the threshold condition of the system is
given by R0 = 1. When S j (0) � 1 for any j, the basic repro-
duction number for the SIR model becomes

R0 = β

β + μ
ρ(F ∗

1 ). (32)

Here, F ∗
1 is the nonbacktracking matrix [27].

The next generation matrix method can be used for both
SIS and SIR models [6], and provides an effective tool to
analyze the complex system. However, when the initial in-
fection fraction is relatively large, such method may not be
accurate. In fact, although Eq. (31) involves initial conditions,
this result is only approximate to the exact value because the
steady value of θ is far less than 1 for that case.

D. Reduction to other models

1. Derivation of EBCM models

Let us first introduce the symbols defined in the EBCM
system for the SIR disease on the configuration network
determined by a degree distribution P(k). This method was
developed by Miller [20]. Let S(t ) be the fraction of the
population that has not yet been infected, which is just the
probability that a randomly chosen node is still susceptible
at time t . To calculate this probability, one susceptible node
u is regarded as the target node and its neighbor node v is
regarded as the based node. Let θ (t ) be the probability that a
randomly chosen edge has not transmitted an infection by the
time t , φS (t ) be the probability that a randomly chosen edge
has not transmitted infection and its based node is susceptible
by the time t , and φI (t ) be the probability that a randomly
chosen edge has not transmitted infection and its based node
is infectious by the time t [18].

Actually, the EBCM model can be obtained by using the
following mean-field approximations in Eqs. (28)–(30) [14]:

A(t ) = 1

N

N∑
i=1

Ai(t ), Ai(t ) � A(t ),

θ (t ) = 1

N

∑
i

∑
j∈N (i) θi� j (t )

ki
, θi� j (t ) � θ (t )

and

φA(t ) = 1

N

∑
i

∑
j∈N (i) Ai� j (t )

ki
, Ai� j (t ) � φA(t ).

After a series of analyses (see the detailed derivation in Ap-
pendix A), the microscopic EBCM model is reduced to a set
of three equations as follows:⎧⎪⎨

⎪⎩
θ ′ = −βφI ,

φ′
I = βφI

ψ ′′(θ )
〈k〉 − (β + μ)φI ,

I ′ = βφIψ
′(θ ) − μI.

(33)

Here, ψ (θ ) = ∑
k Sk (0)P(k)θ k . This model differs slightly

from the generalized EBCM model proposed by Miller [28],
where βφI

ψ ′′(θ )
〈k〉 is replaced by the term βφIφS (0)ψ ′′(θ )

ψ ′(1) . How-
ever, since φS (0) = ∑

k kP(k)Sk (0)/
∑

k kP(k) = ψ ′(1)/〈k〉
[28], the model (33) is the same as another formulation of
Eqs. (1) and (2) of [28].

2. Derivation of DMP models

Considering the total probability law, one obtains the equa-
tion of Ri� j (t ) as

d

dt
Ri� j (t ) = μIi� j (t ). (34)

According to Eqs. (28) and (34), we can get that

Ri� j (t ) = μ

β
[1 − θi� j (t )]. (35)

By using Eqs. (3), (10), and (35), we have

Ii� j (t ) = θi� j − S j (0)
∏

l∈N ( j)\i

θ j�l (t ) − μ

β
[1 − θi� j (t )].

(36)
After substituting Eq. (36) into Eq. (28), the final system takes
the form

d

dt
θi� j = −βθi� j − μ[1 − θi� j (t )]

+βS j (0)
∏

l∈N ( j)\i

θ j�l (t ), (37)

Si(t ) = Si(0)
∏

j∈N (i)

θi� j (t ), (38)

Ii(t ) = 1 − Si(t ) − Ri(t ), (39)

d

dt
Ri(t ) = μIi(t ). (40)

Since Si� j (0) = S j (0), system (37)–(40) is just the SIR
model based on the DMP method [15]. Meanwhile, by in-
troducing the variable Ii� j (t ), Eqs. (28)–(30) based on the
microscopic EBCM method can also be derived by the DMP
model (37)–(40). This indicates that these two models are
equivalent to each other. Interestingly, Sherborne et al. [29]
proved that the mean-field formulation of the DMP model
is equivalent to the EBCM model for a general transmission
and recovery process, where the same trajectory is generated
under any identical initial conditions. Our work verifies this
further at the microscopic level.
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3. Derivation of pQMF models

The pair QMF method is an accurate analytical method
for both SIS [13,30] and SIR [31] epidemic processes on
networked systems. In order to derive the pair QMF model
for SIR infectious diseases, it is first necessary to introduce
some notations: a single-node variable Ai(t ) is denoted by
〈Ai〉(t ), 〈AiBj〉(t ) = P [Xi(t ) = A, Xj (t ) = B] means the prob-
ability that nodes i and j are in states A and B, and 〈AiBjCl〉(t )
is the extension to three nodes.

According to Eq. (19), for any A ∈ {S, I, R}, we have

〈SiA j〉(t )

Si(t )
= Ai� j (t )

θi� j (t )
. (41)

Since θi� j (0) = 1, with Eq. (8) we have

Si(t ) = Si(0)
∏

j∈N (i)

θi� j (t )

= Si(0)e
∑

j∈N (i)[ln θi� j (t )−ln θi� j (0)]

= Si(0)e
−β

∑
j∈N (i)

(∫ t
0

Ii� j (t )

θi� j (t ) dt
)
. (42)

Hence

d

dt
Si(t ) = −βSi(t )

∑
j∈N (i)

Ii� j (t )

θi� j (t )

= −β
∑

j∈N (i)

〈SiIj〉(t ). (43)

By using Eq. (27) and Eq. (5), one can obtain

d

dt
Ii(t ) = − d

dt
Si(t ) − d

dt
Ri(t )

= β
∑

j∈N (i)

〈SiIj〉(t ) − μIi(t ). (44)

Note that

S j (0)
∏

l∈N ( j)\i

θ j�l (t ) = S j (t )

θ j�i(t )
. (45)

With Eq. (41), it follows that

d

dt
Ii� j = −(β + μ)Ii� j + β

S j (t )

θ j�i(t )

∑
l∈N ( j)

l 	=i

〈S jIl〉(t )

S j (t )
.

So,

d

dt
〈SiIj〉(t ) = d

dt

(
Si(t )

Ii� j (t )

θi� j (t )

)

= −β
∑

l∈N ( j)

〈SiIl〉 〈SiIj〉
Si

− (β + μ)〈SiIj〉

+β
〈SiIj〉2

Si
+ β

SiS j

θi� jθ j�i

∑
l∈N ( j)

l 	=i

〈S jIl〉
S j

= −β
〈SiIj〉

Si

∑
l∈N (i)

l 	= j

〈SiIl〉 − (β + μ)〈SiIj〉

+β〈SiS j〉
∑

l∈N ( j)
l 	=i

〈S jIl〉
S j

, (46)

where the final step uses the following equality (see its de-
tailed proof in Appendix B):

〈SiS j〉(t ) = Si(t )S j (t )

θi� j (t )θ j�i(t )
. (47)

By using a similar technique, we deduce

d

dt
〈SiS j〉(t ) = d

dt

(
Si(t )

Si� j (t )

θi� j (t )

)

= −β
〈SiS j〉

Si

∑
l∈N (i)

l 	= j

〈SiIl〉 − β〈SiS j〉
∑

l∈N ( j)
l 	=i

〈S jIl〉
S j

.

(48)

From above, a pairwise system describing the networked SIR
epidemic process takes the form

d

dt
〈Si〉 = −β

∑
j∈N (i)

〈SiIj〉,

d

dt
〈Ii〉 = −μ〈Ii〉 + β

∑
j∈N (i)

〈SiIj〉,

d

dt
〈SiIj〉 = −(β + μ)〈SiIj〉 + β

〈SiS j〉
〈S j〉

∑
l∈N ( j)

l 	=i

〈S jIl〉

−β
〈SiIj〉
〈Si〉

∑
l∈N (i)

l 	= j

〈SiIl〉,

d

dt
〈SiS j〉 = −β

〈SiS j〉
〈S j〉

∑
l∈N ( j)

l 	=i

〈S jIl〉 − β
〈SiS j〉
〈Si〉

∑
l∈N (i)

l 	= j

〈SiIl〉.

(49)

The model (49) is the same as the pair QMF model for
the SIR disease studied by Sharkey [31], who proved that this
model is accurate for a treelike network. We have derived
the pQMF model by using the microscopic EBCM method
together with the probability theory. Additionally, following
Eqs. (8), (10), (28), and (41), the MEBCM model (28)–(30)
can be derived from the pQMF model (49). This shows the
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FIG. 1. Comparison of the ensemble average (red lines, “SimAve”) of 100 runs of stochastic simulations (green lines) with the numerical
predictions of theoretical models (MEBCM, EBCM, and pQMF) (symbols) in an ER random network with mean degree 〈k〉 = 5 (a), (b) and
in a scale-free network with γ = 2.5 and k0 = 3 (c), (d). In the stochastic simulations, the studied network size was N = 103, the parameter
values were β = 0.12, and μ = 0.2 for different initial infection fractions I (0) = 0.01 (a), (c) and I (0) = 0.1 (b), (d).

approximate equivalence of these two models on the assump-
tion that the network has no loops.

E. Simulations

In this part, we performed continuous-time stochastic sim-
ulations to check the effectiveness of SIR model dynamics
with microscopic EBCM method (28)–(30) and we compared
it with other relevant analytical methods including the gener-
alized EBCM [28] and pQMF methods [31]. To test the above
argument, we used two typical types of random networks:
Erdös-Rényi (ER) random network [6,32] and scale-free (SF)
networks with degree distribution P(k) ∼ k−γ for k0 � k � kc

[33]. The ER random network in our present study was fixed
with the mean degree z = 5 and the SF network was generated
from the standard configuration model by taking γ = 2.5,
k0 = 3, and kc = √

N . Both of these two kinds of networks
had a small clustering coefficient and the states of different
nodes in the same neighborhood can be approximately con-
sidered as independent since there are no direct edges between
them [34].

To simulate an SIS epidemic process on a contact network,
we set the network size N = 1000 and employed the Gille-
spie algorithm (GA) continuous-time stochastic simulations
[6,35]. At initial time, we randomly selected I (0) fraction of
nodes and we let their statuses be I, whereas all the other nodes

are S. From dependent measures, we observed the change in
the fraction of infected and recovered nodes in the network
I (t ) and R(t ), respectively. For the theoretical model [12]

I (t ) = 1

N

N∑
i=1

Ii(t ), R(t ) = 1

N

N∑
i=1

Ri(t ). (50)

The whole spreading process is terminated if no infected
node exists. On each network, we performed 100 independent
simulation runs of epidemic dynamics, and we compared the
ensemble average of simulation results with the correspond-
ing numerical solutions of theoretical models using the same
contact network, initial conditions, and disease parameters.

In Fig. 1, we compared the stochastic simulations with the
model predictions for the time evolution of infection density
in ER and SF networks. Simulations indicate that the mi-
croscopic EBCM model is highly accurate during the whole
evolution of the spreading process. One can further observe
that, for the SF network, both the the microscopic EBCM
and pair QMF models match the simulation outcomes much
more satisfactorily than the standard EBCM model, while for
the ER network all models show almost comparable perfor-
mances.

Furthermore, we compare the model predictions of the final
infection size R(∞) in the steady state over the two studied
networks. Since the self-recovery rate μ only alters the time
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FIG. 2. Density of final recovered nodes R(∞) in the steady state as a function of β for the three different models (MEBCM, EBCM,
and pQMF) and the continuous-time stochastic simulations in an ER random network with mean degree 〈k〉 = 5 (a), (b) and in a scale-free
network with γ = 2.5 and k0 = 3 (c), (d). In our stochastic simulations, the studied network size was N = 103, the recovery rate μ = 1.0, and
the initial infection fraction I (0) = 0.01 (a), (c) and I (0) = 0.1 (b), (d). Error bars show the standard deviation.

scale of the system evolution in the theoretical model, we fix
its value to μ = 1.0 and only vary the values of β. In Fig. 2,
one can see that there exists a good agreement between the
three theoretical models and stochastic simulations.

III. APPLICATIONS IN THE EXPONENTIAL
AWARENESS MODEL

When people perceive risk from infectious diseases, they
would take some measures (such as wearing protective masks,
washing hands frequently, etc.) to protect themselves [36].
Hence such individual behavior is regarded as a key factor
that influences the spread of epidemics [37]. For the purposes
of this study, it is usually assumed that the epidemic infor-
mation (its amount is denoted by x) potentially leads to the
reduction of individual susceptibility (denoted by y) [37,38].
Consider a susceptible node with k neighbors via direct con-
tact number and m infected neighbors. For the epidemic
information perceived by the healthy node, we distinguish
between the infection fraction in its neighborhood (x = m/k)
and the number of infected neighbors (x = m): we call the
former density dependent [36,38] and the latter frequency
dependent [39]. To analyze the influence of local awareness
on the epidemic spreading, it is required for us to define an
awareness function y = ϒ(x). In the present work, we focus
on the frequency-dependent case, i.e., y = ϒ(m). With this
function, the infection rate β is reduced by a discounted factor
ϒ(m).

A. General framework

In this part, we aim to build a general model for a general
awareness function. When node i has m infected neighbors,
it will be infected by one infected neighbor with probability
βϒ(m)�t . Since only β becomes βϒ(m) and other parame-
ters are unchanged, it suffices for us to derive all the terms that
are related to the infection rate. We first consider Eq. (13):

P [i � j(t ′)|Xj (t ) = I, i � j(t ),∅i]

=
ki−1∑
m=0

P [i � j(t ′), kinf (i) = m + 1|Xj (t ) = I, i � j(t ),∅i]

=
ki−1∑
m=0

P [i � j(t ′)|kinf (i) = m + 1, Xj (t ) = I, i � j(t ),∅i]

×P [kinf (i) = m + 1|Xj (t ) = I, i � j(t ),∅i]

=
ki−1∑
m=0

[1 − β�tϒ(m + 1)]

×P [kinf (i) = m + 1|Xj (t ) = I, i � j(t ),∅i]

�= Ei\ j
1 [1 − β�tϒ(m + 1)]

= 1 − β�tEi\ j
1 [ϒ(m + 1)]. (51)

So, the dynamical equation of θi� j (t ) reads as

d

dt
θi� j = −βEi\ j

1 [ϒ(m + 1)]Ii� j . (52)
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Next, we consider Eq. (16). For the first term,

P [i � j(t ′), Xj (t
′) = I|i � j(t ), Xj (t ) = S,∅i]

=
k j−1∑
m=0

P [i � j(t ′), Xj (t
′) = I, kinf ( j) = m

|i � j(t ), Xj (t ) = S,∅i]

=
k j−1∑
m=0

P [i � j(t ′), Xj (t
′) = I|kinf ( j) = m,

i � j(t ), Xj (t ) = S,∅i]

×P [kinf ( j) = m|i � j(t ), Xj (t ) = S,∅i]

=
k j−1∑
m=0

β�tmϒ(m)P [kinf ( j) = m|Xj (t ) = S]

�= E j\i
2 [β�tmϒ(m)]

= β�tE j\i
2 [mϒ(m)]. (53)

For the second term,

P [i � j(t ′), Xj (t
′) = I|i � j(t ), Xj (t ) = I,∅i]

=
ki−1∑
m=0

P [i � j(t ′), Xj (t
′) = I, kinf (i) = m + 1

|i � j(t ), Xj (t ) = I,∅i]

=
ki−1∑
m=0

P [i � j(t ′), Xj (t
′) = I|kinf (i) = m + 1, i � j(t ),

Xj (t ) = I,∅i]P [kinf (i) = m + 1|i � j(t ), Xj (t ) = I,∅i]

=
ki−1∑
m=0

[1 − β�tϒ(m + 1)](1 − μ�t )

P [kinf (i) = m + 1|i � j(t ), Xj (t ) = I,∅i]

�= (1 − μ�t )Ei\ j
1 [1 − β�tϒ(m + 1)]

= (1 − μ�t ){1 − β�tEi\ j
1 [ϒ(m + 1)]}. (54)

Therefore, the time evolution of Ii� j is described by

d

dt
Ii� j = −{βEi\ j

1 [ϒ(m + 1)] + μ}Ii� j + βS j (0)

×E j\i
2 [mϒ(m)]

∏
l∈N ( j)\i

θ j�l (t ). (55)

Based on the above analysis, it is easy to obtain a gen-
eral formulation for the SIR disease with local awareness as

follows:

d

dt
θi� j = −βEi\ j

1 [ϒ(m + 1)]Ii� j, (56)

d

dt
Ii� j = −{βEi\ j

1 [ϒ(m + 1)] + μ}Ii� j + βS j (0)

×E j\i
2 [mϒ(m)]

∏
l∈N ( j)\i

θ j�l (t ), (57)

d

dt
Ii(t ) = −μIi(t ) + βSi(0)

×
∑

j∈N (i)

⎛
⎜⎝Ei\ j

1 [ϒ(m + 1)]Ii� j (t )
∏

l∈N (i)
l 	= j

θi�l (t )

⎞
⎟⎠.

(58)

B. MEBCM model

It is worth mentioning that Eqs. (56)–(58) may not be
closed because two mathematical expectations (Ei\ j

1 ,E j\i
2 ) are

still unknown and possibly related to other variables. For
further investigation analysis on its performance, we assume
that the awareness function obeys

ϒ(m) = e−αm, (59)

where m = kinf (i) for the susceptible node i and α � 0. This
function can be transferred to (1 − α′)m (0 � α′ � 1) [39].
Given (59), the task now is to derive a specific MEBCM
model. After inserting (59) into Eqs. (56)–(58), it suffices for
us to compute the expected values (Ei\ j

1 ,E j\i
2 ). To this end,

let us to define an indicator function: if Xh = I, 1Xh=I = 1;
otherwise, 1Xh=I = 0:

Ei\ j
1 [ϒ(m + 1)]

= Ei| j
1 [e−α(m+1)]

= e−αEi\ j
1 [e−α

∑
h 1Xh=I ]

= e−α
∏

h∈N (i)\ j

Ei\ j
1 [e−α1Xh=I ]

= e−α
∏

h∈N (i)\ j

{e0P [Xh(t ) 	= I|∅i] + e−αP [Xh(t ) = I|∅i]}

= e−α
∏

h∈N (i)\ j

{1 − (1 − e−α )Ih\i(t )}. (60)

The derivation of Ei\ j
1 [ϒ(m + 1)] depends on a new vari-

able I j\i(t ). By the normalization condition (6), I j\i(t ) satisfies

the following equation:

d

dt
Ij\i(t ) = −μI j\i(t ) − d

dt
S j\i(t ) = −μI j\i(t ) + βS j (0)

∑
l∈N ( j)\i

⎛
⎜⎝ d

dt
θ j�l (t )

∏
h∈N ( j)

h 	=i,l

θ j�h(t )

⎞
⎟⎠.
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Next, we derive the expression of E j\i
2 [mϒ(m)]. Note that

E j\i
2 [mϒ(m)] = E j\i

2 [m e−αm]

= E j\i
2

[∑
h

1Xl =Ie
−α

∑
l 1Xl =I

]

=
∑

l∈N ( j)\i

⎧⎪⎨
⎪⎩E j\i

2 [1Xl =Ie
−α1Xl =I ]

∏
h∈N ( j)\i

h 	=l

E j\i
2 [e−α1Xh=I ]

⎫⎪⎬
⎪⎭

=
∑

l∈N ( j)\i

⎧⎪⎨
⎪⎩e−αP [Xl (t ) = I|Xj (t ) = S]

∏
h∈N ( j)\i

h 	=l

{1 − (1 − e−α )P [Xh(t ) = I|Xj (t ) = S]}

⎫⎪⎬
⎪⎭. (61)

By Eq. (19), the final expression of E j\i
2 [mϒ(m)] is obtained. Therefore, the microscopic EBCM model for exponential

awareness can be expressed as follows:

d

dt
θi� j = −β e−α

∏
l∈N (i)\ j

{1 − (1 − e−α )Il\i(t )}Ii� j, (62)

d

dt
Ii� j = −

⎧⎨
⎩β e−α

∏
l∈N (i)\ j

{1 − (1 − e−α )Il\i(t )} + μ

⎫⎬
⎭Ii� j + β e−αS j (0)

×
∑

l∈N ( j)\i

⎧⎪⎨
⎪⎩

I j�l (t )

θ j�l (t )

∏
h∈N ( j)\i

h 	=l

{
1 − (1 − e−α )

I j�h(t )

θ j�h(t )

}⎫⎪⎬
⎪⎭

∏
l∈N ( j)\i

θ j�l (t ), (63)

d

dt
Ij\i(t ) = −μI j\i(t ) + β e−αS j (0)

∑
l∈N ( j)\i

⎛
⎜⎝I j�l (t )

∏
h∈N ( j)

h 	=i,l

θ j�h(t )
∏

h∈N ( j)\l

{1 − (1 − e−α )Ih\ j (t )}

⎞
⎟⎠, (64)

d

dt
Ii(t ) = −μIi(t ) + β e−αSi(0)

∑
j∈N (i)

⎛
⎜⎝Ii� j (t )

∏
l∈N (i)

l 	= j

θi�l (t )
∏

l∈N (i)\ j

{1 − (1 − e−α )Il\i(t )}

⎞
⎟⎠, (65)

with initial conditions Ii(0) = εi, Si(0) = 1 − εi, Ri(0) =
0, Ii� j (0) = I j\i(0) = I j (0) = ε j, S j (0) = 1 − ε j , and
θi� j (0) = 1.

C. Epidemic threshold

Similar to the analysis in Sec. II(C), near the disease-free
equilibrium (θi� j = 1, Ii� j = I j\i = Ii = 0), we consider the
linear system coupled with Ii� j and Ii except for θi� j . Fol-
lowing the variable order according to the equations, we can
write the system Jacobian matrix (denoted by J2) as

J2 =
⎡
⎣F − V 02M×2M 02M×N

W1 −μI2M×2M 02M×N

W2 0N×2M −μIN×N

⎤
⎦,

where W1 is a 2M × 2M matrix with entries (W1)i j,hl =
β e−αSi(0)(1 − δil )δ jh, W2 is a N × 2M matrix with entries
β e−αSi(0)Gi j according to the variable order, F is the matrix
with entries (F )i j,hl = β e−αS j (0)(1 − δil )δ jh, and V is a di-
agonal matrix with entries (V )i j,hl = (β e−α + μ)δl jδih. After

a simple computation, the result is

RA
0 = ρ

(
FV −1

) = β

β + μ eα
ρ(F1), (66)

where (F1)i j,hl = S j (0)(1 − δil )δ jh. Since R0 > RA
0 , the expo-

nential awareness can inhibit the epidemic spreading through
reducing the basic reproduction number.

D. EBCM model

Based on mean-field approximations, we can derive the
EBCM model for exponential awareness. Similar to the vari-
able φI , the equation of ρI (t ) is built by using the following
approximation:

ρI (t ) = 1

N

∑
i

∑
j∈N (i) I j\i(t )

ki
, I j\i(t ) � ρI (t ).
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FIG. 3. Comparison of the ensemble average (red lines, “SimAve”) of 100 runs of stochastic simulations (green lines) with the numerical
predictions of theoretical models (MEBCM and EBCM) (symbols) in an ER random network with mean degree 〈k〉 = 5 (a), (b) and in a
scale-free network with γ = 2.5 and k0 = 3 (c), (d). In the stochastic simulations, the studied network size was N = 103, the parameter values
were β = 0.2 and μ = 0.2, and the initial infection fraction I (0) = 0.01.

Thus the EBCM model for exponential awareness can be
written as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θ ′ = −β e−αφI〈νk−1
1 〉,

φ′
I = β e−αφI

ψ ′′(ν2 )
〈k〉 − (β e−α〈νk−1

1 〉 + μ)φI ,

ρ ′
I = −μρI + β e−αφIν1

ψ ′′(ν1θ )
〈k〉 ,

I ′ = β e−αφIψ
′(ν1θ ) − μI,

(67)

where ν1 := 1 − (1 − e−α )ρI and ν2 := θ − (1 − e−α )φI .
Remark 1. The model (67) is composed of four equations.

Compared to the microscopic EBCM model (62)–(65), this
model is very simple and convenient for theoretical analysis
and numerical calculation. Most importantly, this model has a
good performance on the epidemic prediction as shown in the
later simulations.

Remark 2. This model is indirectly derived by perform-
ing the mean-field approximation of the microscopic EBCM
model. It is still an open problem for us to present a direct
derivation of (67) by Miller’s method [9,18]. We notice that
Li et al. [24] used the EBCM method to derive a mathe-
matical model for the SIR disease with density-dependent
exponential awareness. Their results implied that the local
information-based awareness has no effect on the epidemic
threshold. However, from the model (62)–(65), one can easily
see that the local awareness can remarkably raise the epidemic
threshold since β is replaced by β e−α .

E. Simulations

Now, we continue to perform continuous-time stochastic
simulations to check the effectiveness of the MEBCM model
(62)–(65) and the EBCM model (67). In Fig. 3, we compare
the stochastic simulations with the model predictions for the
time evolution of infection density in ER and SF networks.
In Fig. 4, we compare the model predictions of the final
infection size R(∞) in the steady state over the two studied
networks.

Simulations show that the microscopic EBCM model is
still very accurate even for the exponential awareness model.
We also can see that the EBCM model has a good agreement
with stimulation results. For the SF network with large α and
β values, the EBCM model prediction is slightly lower than
the simulation result. In addition, we can see that a larger
α can lead to a smaller I (t ) and R(∞). Additionally, for
both ER and SF networks, one can observe that the epidemic
threshold is indeed raised when the local awareness parameter
α increases. This complies with our theoretical analysis on the
epidemic threshold.

IV. CONCLUDING REMARKS

Mathematical models have contributed substantially to our
understanding of infectious disease dynamics and helped
us develop a variety of control measures to adequately
respond to epidemic outbreaks. Here, we proposed an
individual-based method—the microscopic EBCM model—
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FIG. 4. Density of final recovered nodes R(∞) in the steady state as a function of β for the two different models (MEBCM and EBCM)
and the continuous-time stochastic simulations in an ER random network with mean degree 〈k〉 = 5 (a), (b) and in a scale-free network with
γ = 2.5 and k0 = 3 (c), (d). In our stochastic simulations, the studied network size was N = 103, the recovery rate μ = 1.0, and the initial
infection fraction I (0) = 0.01. Error bars show the standard deviation.

to study the nonrecurrent SIR epidemic dynamics in random
complex networks. The continuous-time simulations with
theoretical models demonstrated that the link-type model pre-
dictions agreed well with stochastic simulations, regardless
of the underlying network topology or the initial infection
condition.

The microscopic EBCM method provided in the paper can
be used to solve certain problems. By using this analytical
method, we studied the influence of the exponential aware-
ness on spreading behaviors in random networks. Compared
to the stochastic simulations, we found that the MEBCM
model can be used to analyze such epidemic information-
based problems. Hence our present work provides not only an
analytic method by which the EBCM, DMP, and pQMF mod-
els can be derived, but it also represents a derivation procedure
for handling some highly nontrivial and irreversible spread-
ing phenomena [21,22,25]. Interestingly, we also derived the
EBCM model for local awareness from its corresponding
MEBCM model. This model only includes four equations and
has a good performance compared to the stochastic simula-
tions.

As shown in [14], the non-Poissonian infection and re-
covery processes have been included in the DMP model.
We feel that it is vital to develop the microscopic EBCM
model with general infection and recovery processes [40].
In addition, the present work only considered the unclus-
tered network; it will be promising for future research to

further explore the influence of the clustering on the epidemic
spreading [41].
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APPENDIX A: DERIVATION OF EQ. (33)

In this Appendix, we would like to give a detailed deriva-
tion of the generalized EBCM model (33). The main task is
to derive the equations of S(t ), φI (t ), and I (t ). By taking the
expectation and mean-field approximation of state variables,
we have

S(t ) = 1

N

N∑
i=1

⎡
⎣Si(0)

∏
j∈N (i)

θi� j (t )

⎤
⎦

= 1

N

∑
k

∑
ki=k

⎡
⎣Si(0)

∏
j∈N (i)

θi� j (t )

⎤
⎦

=
∑

k

∑
ki=k Si(0)

NP(k)
P(k)θ k (t )

=
∑

k

Sk (0)P(k)θ k (t ) =: ψ (θ )(t ).
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This gives the equation of S(t ) and is not shown in Eq. (33).
Similarly, we have

1

N

∑
i

⎧⎨
⎩k−1

i

∑
j∈N (i)

⎡
⎣S j (0)

∏
l∈N ( j)\i

θ j�l (t )
∑

l∈N ( j)\i

I j�l (t )

θ j�l (t )

⎤
⎦
⎫⎬
⎭

= 1

N

∑
i

∑
j∈N (i)[S j (0)(l j − 1)θ l j−2(t )φI (t )]

ki

= φI (t )

N

∑
k

∑
ki=k

∑
j∈N (i)[S j (0)(l j − 1)θ l j−2(t )]

k

= φI (t )

N

∑
k

∑
ki=k

∑
l

∑
l j=l [S j (0)(l j − 1)θ l j−2(t )]

k

= φI (t )

N

∑
k

∑
ki=k

∑
l lP(l )[Sl (0)(l − 1)θ l−2(t )]

〈k〉

= φI (t )

N

∑
k

∑
ki=k ψ ′′(θ )

〈k〉 = φI (t )ψ ′′(θ )

〈k〉 ,

where (
∑

l j=l 1)/k = lP(l )/〈k〉 approximately holds when the
degree correlation between two connected nodes is not con-
sidered. Hence one can obtain the equation of φI as the second
equation of Eq. (33).

We also notice that

1

N

N∑
i=1

Si(0)
∑

j∈N (i)

⎛
⎝Ii� j (t )

∏
l∈N (i)\ j

θi�l (t )

⎞
⎠

= 1

N

∑
k

θ k−1
∑
ki=k

Si(0)
∑

j∈N (i)

φI (t )

= φI (t )

N

∑
k

θ k−1
∑
ki=k

Si(0)ki

= φI (t )
∑

k

P(k)θ k−1

∑
ki=k Si(0)ki

NP(k)

= φI (t )
∑

k

Sk (0)kP(k)θ k−1 = φI (t )ψ ′(θ ).

So, the final equation can be easily derived.

APPENDIX B: PROOF OF EQ. (47)

In this Appendix, we derive Eq. (47) used in Sec. II D 3.
Similar to Eq. (8), we have

〈SiS j〉(t )

= P [Xi(t ) = S, Xj (t ) = S|i, j ∈ �∞]

= P [i � l (t ),∀l ∈ N (i), Xi(0) = S, j � h(t ),∀h ∈ N (i),

Xj (0) = S|i, j ∈ �∞]

= P [i� l (t ),∀l ∈ N (i) \ j, j �h(t ),∀h∈N ( j) \ i|∅i,∅ j]

P [Xi(0) = S, Xj (0) = S|i, j ∈ �∞]

= P [i� l (t ),∀l ∈N (i) \ j, j �h(t ),∀h∈N ( j) \ i|∅i,∅ j]

× Si(0)S j (0). (B1)
Assuming that nodes i and j’s neighbors are independent

of each other (both internal and external to their neighbors),
we approximately obtain

P [i � l (t ),∀l ∈ N (i) \ j, j � h(t ),∀h ∈ N ( j) \ i|∅i,∅ j]

= P [i � l (t ),∀l ∈ N (i) \ j|∅i]

×P [ j � h(t ),∀h ∈ N ( j) \ i|∅ j]

=
∏

l∈N (i)\ j

P [i � l (t )|∅i]
∏

h∈N ( j)\i

P [ j � h(t )|∅ j]. (B2)

Hence we have

〈SiS j〉(t ) = Si(0)
∏

l∈N (i)\ j

θi�l (t )S j (0)
∏

h∈N ( j)\i

θ j�h(t ). (B3)

By Eq. (10), we further obtain

〈SiS j〉(t ) = S j�i(t )Si� j (t ). (B4)

According to Eq. (41),

〈SiS j〉(t ) = Si(t )
Si� j (t )

θi� j (t )
(B5)

and

〈S jSi〉(t ) = S j (t )
S j�i(t )

θ j�i(t )
. (B6)

After inserting Eqs. (B5) and (B6) into Eq. (B4), Eq. (47) is
then obtained.
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