
PHYSICAL REVIEW E 104, 024305 (2021)

Breakdown of random matrix universality in Markov models
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Biological systems need to react to stimuli over a broad spectrum of timescales. If and how this ability can
emerge without external fine-tuning is a puzzle. We consider here this problem in discrete Markovian systems,
where we can leverage results from random matrix theory. Indeed, generic large transition matrices are governed
by universal results, which predict the absence of long timescales unless fine-tuned. We consider an ensemble of
transition matrices and motivate a temperature-like variable that controls the dynamic range of matrix elements,
which we show plays a crucial role in the applicability of the large matrix limit: as the dynamic range increases,
a phase transition occurs whereby the random matrix theory result is avoided, and long relaxation times ensue,
in the entire “ordered” phase. We furthermore show that this phase transition is accompanied by a drop in the
entropy rate and a peak in complexity, as measured by predictive information [Bialek, Nemenman, and Tishby
Neural Comput. 13, 2409 (2001)]. Extending the Markov model to a Hidden Markov model (HMM), we show
that observable sequences inherit properties of the hidden sequences, allowing HMMs to be understood in terms
of more accessible Markov models. We then apply our findings to fMRI data from 820 human subjects scanned
at wakeful rest. We show that the data can be quantitatively understood in terms of the random model, and that
brain activity lies close to the phase transition when engaged in unconstrained, task-free cognition—supporting
the brain criticality hypothesis in this context.
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I. INTRODUCTION

A. Background and motivation

Complex systems typically display a broad spectrum of
relaxation timescales [1]. This phenomenon is often linked to
proposed critical behavior [1,2], in analogy with equilibrium
statistical mechanics. However, equilibrium systems must be
tuned to a critical point. For example, a ferromagnetic material
has a phase transition between paramagnetism and ferromag-
netism at the Curie temperature TC . The system temperature
T must be externally tuned to the vicinity of TC in order to see
the long-range scale-free correlations and broad relaxations
characteristic of a critical point. Since there is ample evidence
for critical behavior in out-of-equilibrium complex systems,
we must either find a generic mechanism for self-tuning to a
critical point or multiple context-dependent mechanisms for
criticality, or challenge the equilibrium analogy entirely.

Bak, Tang, and Weisenfeld [3] proposed a simple mech-
anism for the ubiquity of critical behavior in slowly driven
systems. In particular, they showed how in the limit of asymp-
totically slow driving compared to internal relaxation, generic
systems can show scale-free behavior, thus mimicking equi-
librium systems at a critical point. While indeed generic,
this theory does not predict different universality classes that
would distinguish various complex systems, characterized, for
example, by critical exponents [4]. It is also of questionable
relevance to biological systems, where driving is often not
slow compared to response. Thus, even if the evidence of

criticality in complex systems is accepted, the means by which
criticality is obtained is still unclear.

Recent work has instead sought context-specific mecha-
nisms for self-organized criticality, particularly in the brain
[5,6] and in glassy systems [7]. While of clear relevance
in their particular domains, these works do not address the
question of generic emergence of long timescales.

Here we study this problem in the simple but general set-
ting of discrete Markov models. Recent work has focused on
the eigenvalue spectra of Markov models, most often in the
symmetric case [8,9], on first-passage times [10], and on gen-
eral properties of Markov ensembles [11,12]. Here we define
an appropriate ensemble of Markov models that spans the full
dynamic regime from systems that just produce random noise,
to those that are fully deterministic. Although we make use
of previous results from random matrix theory [13–15], our
ensemble is distinct from those considered previously [11,12].

We show that these regimes are separated by a transition
with many aspects of a phase transition, whose location can
be identified by a breakdown of large-N random matrix theory
results. We examine the phases in terms of network- and
information-theoretic quantities, and show in particular that
complexity peaks near the transition. We then extend these
results to Hidden Markov models (HMMs), in which a hidden
Markovian system outputs “observable” sequences. Despite
being more difficult to analytically characterize, the HMM
inherits many properties of the original simple Markov model,
which aids its interpretation. Finally, we consider neural fMRI
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data from [16] that was previously fitted to a HMM. We find
that the fMRI data lie very close to the phase transition as
predicted analytically. This can be interpreted as support of
the brain criticality hypothesis [5,6,17–23].

B. Continuous-time dynamics

To show why prediction of a broad spectrum of timescales
is challenging, and to motivate our model, we consider first a
generic continuous-time linear dynamics that is often applied
to neural data [24]:

∂t xi = −xi + M̃i jx j + ξi, (1)

where xi is a dynamical variable, M̃i j an interaction matrix,
and ξi noise, with i = 1, . . . , n. For example, (1) is a crude
model for a neural network, where the xi could be the firing
rate of the ith neuron. The first term on the right-hand side
is a stabilizing term, that will send xi → 0 in the absence of
any external stimuli. In the normalization of (1), this occurs
over a timescale of order unity. The second term on the right-
hand side represents the interactions from other neurons: if
M̃i j > 0, then neuron j is excitatory for neuron i, while in
M̃i j < 0, then neuron j is inhibitory for neuron i. The final
term ξi is a noise term, which could represent input from the
external world, for example from the part of the brain that is
not explicitly modeled.

The dynamics of (1) depends largely on a balance between
the stabilizing effect of the first term, and the interactions that
could lead to self-sustained activity. Since (1) is linear, this
balance is encoded in the spectrum of the matrix M̃, or more
precisely the matrix −δi j + M̃i j that includes the first two
terms on the right-hand side of (1). (Here δi j is a Kronecker
delta, δi j = 1 if i = j and 0 otherwise).

The relaxation times τi are related to the eigenvalues λ̃i of
M̃i j by [24]

τi = 1

1 − Re[λ̃i]
, (2)

where the stability limit Re[λ̃c] = 1 is due to the unit coef-
ficient of the stabilizing term in (1). Generically, the matrix
M̃i j is not symmetric and has no special symmetries. Then, in
the large n limit of practical interest, its spectrum will gener-
ically tend towards the Girko law in which the eigenvalues
are uniformly spread within a circle in the complex plane,
say, of radius r [13–15]. Since relaxation times become large
only when the real part of the eigenvalues approaches 1, the
system is then either stable, if r < 1, with a finite maximum
timescale, or unstable, if r > 1, except precisely at the critical
point r = 1. Thus universality of random matrices seems to
be at odds with emergence of long timescales, without fine-
tuning [24].

In reality, M̃ is usually not fixed but rather evolves slowly.
For example, in neural networks it could represent the strength
of synaptic connections. Then we can ask if some dynamics
will lead M̃ to generically show long timescales. It was re-
cently shown in a detailed study of the symmetric case [24]
that a regulation mechanism based on the overall activity can
lead to an accumulation of long timescales. While such an
approach can engage with problem-specific dynamical details,

it remains a challenge to identify universal mechanisms in
which long timescales emerge.

The fundamental difficulty in finding a generic pathway to
long timescales in (1) is that the stability limit Re[λ̃c] = 1 is
not universal, but is simply when the interactions determined
by M̃ overwhelm the stabilizing force in (1). In the present
work we propose an alternative strategy. Instead of consider-
ing the dynamics directly, as in (1), we consider the motion in
phase space. That is, instead of considering the evolution of
the {xi(t )}, we consider the probability distribution over those
variables, ρ(x1, x2, . . . , xn; t ). The latter evolves according to
a master equation. Schematically this takes the form

ρ(y, t + dt ) =
∑

x

Myxρ(x, t ), (3)

where M is the transition matrix giving the probability
for a transition from state x to state y, where, e.g., x =
(x1, x2, . . . , xn) encodes the state of the entire system. Equa-
tion (3) is written in a discrete notation, but carries over
without difficulty to the fully continuous case. For a derivation
of (3) from (1) see the Appendix.

The transition matrix is related to the terms in (1). If each
xi has nx different states, then M is an N × N matrix, with
N = (nx )n. Thus for a fully continuous system, M becomes
an infinite matrix, an operator. To avoid technical difficulties,
we stick here and in the following to the discrete case, where,
however, N may be very large. We note that

∑
y Myx = 1

and each Myx � 0. Such matrices are called left-stochastic
matrices.

The Markovian dynamics (3) is attractive because of its
manifest linearity, but it has two serious disadvantages: first,
it takes place in an enormous space; and second, the details of
the dynamics are hidden inside the definition of M. Yet, if our
interest is in extracting generic properties of complex systems,
we can simply treat M as a random matrix and look for univer-
sal properties in the large N limit. This will be the perspective
taken here. It is most appropriate in a regime in which the
underlying dynamical system has very strong interactions and
is sampled over a timescale much larger than the microscopic
timescale. Indeed, under these assumptions, the phase space
dynamics will have scrambled local structural correlations
arising from continuity of the underlying dynamical process.
In some sense, this is the opposite limit to that which favors
analysis based on (1).

What is gained from working in phase space? The key
distinction between (1) and (3) is that while M̃ was relatively
unconstrained, M is instead a stochastic matrix. For simplicity
we assume that it is irreducible and aperiodic.1 This entails
that M obeys the Perron-Frobenius theorem, in particular its
largest eigenvalue has unit modulus. Thus M has a natural
scale, unity, induced from probability conservation.

In this work we consider a generic model for M, with a
“temperature” scale ε that controls its heterogeneity. We will
show that the properties of M change quite dramatically at a

1Periodicity complicates the analysis of long-time behavior since
there is then no unique stationary state. In our random model, such
behaviors are not encountered so there is no need to complicate
matters here.
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certain scale εc, which in a sense to be explained below, cor-
responds to the breakdown of large-N random matrix theory.
We show that in the entire low-temperature phase, M shows
large relaxation times.

In a second part, we promote (3) to a hidden Markov
model, where an observable sequence {o(t )} is produced by an
additional emission matrix Oox that depends on the “hidden”
state x(t ). We will find that many properties of the observable
sequences mirror those of the underlying hidden sequences.
This can be useful in practice where one has direct access to
only the observable sequences. We will explore in particular
how the observable sequences show the signature of the tran-
sition.

II. MARKOV MODELS

Markov models arise naturally in a variety of contexts,
not necessarily related to any underlying dynamical system
such as (1). We consider a system with N states. We can
always write Mab in terms of a more primitive matrix Qab such
that Mab = Qab/

∑
c Qac; then Qab � 0 but do not require any

special normalization.
It has been proved in great generality that Mab has universal

features in the large N limit [13–15]. Let the Qab be identically
and independently distributed, with bounded density, mean
μ, and finite variance σ 2. Then as N → ∞ the spectrum of
Mab converges to the uniform law on the disk |λ| < λc in the
complex plane (Girko’s law), with

λc = σ/(μ
√

N ). (4)

In practice, this law works well for large but finite N , unless a
transition intervenes, to be discussed presently.

Solving (3) in terms of the left and right eigenvectors wa,λ

and va,λ and the stationary right eigenvector πa = va,1, we
have

ρa(t ) = πa +
∑
λ �=1

Aλλ
tva,λ, (5)

with Aλ = �bwb,λρb(0). Since λt = et log(λ) we see that the
relaxation times are

τλ = − 1

log |λ| . (6)

For sufficiently large N , λc < 1 and all relaxation times are
finite. In this regime, the asymptotic large N random matrix
theory (RMT) result applies. What happens when λc > 1?
Since M is a stochastic matrix, it cannot have eigenvalues with
magnitude larger than unity, thus the large-N result must break
down, and the spectrum must reorganize. It is this collision of
random matrix theory with Perron-Frobenius that is the main
subject of this article.

A. Random matrix ensemble

Since our aim is to elucidate generic properties of Markov
models, we need to identify an appropriate ensemble of the Q
matrices. Each element Qab corresponds to an (unnormalized)
transition rate between two states. As a simple model, suppose
that the matrix elements Qab are identically and independently

formed from multiplicatively accumulating many factors.2

Then, if the factors are sufficiently independent, Qab will have
a lognormal distribution [25], viz.,

P (Qab) ∝ 1

Qab
e−ε log2(Qab/q), (7)

where ε and q are parameters of the distribution. The normal-
ized fluctuations of log Qab have magnitude

〈Q2
ab〉

〈Qab〉2
− 1 = e1/(2ε) − 1. (8)

We call ε the temperature of the matrix. The parameter q
controls the overall scaling of the elements via

〈log Qab〉 = log q. (9)

Since q drops out of the M matrix, it will not be varied in what
follows. Note that Qaa is sampled from the same distribution
as Qab for a �= b. Since (7) implies that Qaa �= 0, this also
implies that the Markov chain is aperiodic.

For a matrix Qab with average Q = 1
N2

∑
a,b Qab, we define

its heterogeneity

h(Q) = 1

N2

∑
a,b

log2(Qab/Q), (10)

which measures the dispersion of its elements about its
mean. Notice that heterogeneity is invariant if Qab → Q′

ab =
Q

2
/Qab. It is an appropriate measure for matrices (and tensors

[26]) with positive entries.
Over the ensemble defined by (7), we have 〈Q〉 = qe1/(4ε).

so that 〈h〉 = (2ε)−1 + (16ε2)−1. This implies that “hot” ma-
trices with ε � 1 have a small heterogeneity, and “cold”
matrices with ε � 1 have a large heterogeneity. Intuitively, ε

measures how uniformly distributed the transition probabili-
ties are: when ε → ∞, all Qab → Q, while at small ε the Qab

will vary over a huge range.
Combining (4) with (8), we see that λc =√

e1/(2ε) − 1/
√

N , thus we predict a critical temperature

εc(N ) = 1/[2 log(N + 1)], (11)

where λc = 1. The circular law cannot apply for ε < εc. The
relevant eigenvalue scale is therefore

λ̃ = min(1, λc), (12)

so that for ε < εc, λ̃ = 1.
This phenomenon is illustrated in Fig. 1(a), which shows

the distribution of |λ|/λ̃ for N = 128 and a large range of ε;
qualitatively identical results hold for N down to 16. The RMT
result is

P (|λ|) = 2
|λ|
λc

, |λ| < λc (13)

and holds well for λ > λmin, even at finite N , for ε � εc. The
lower cutoff λmin simply corresponds to the value of λ for

2This is the analog of applying the central limit theorem to motivate
a Gaussian distribution, but here since the Qab � 0, we must multiply
factors rather than sum them.
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FIG. 1. Transition matrix spectra for N = 128 as a function of ε, from ε/εc = 102.4 (green) through ε/εc = 100 (pink) to ε/εc = 10−2.4

(cyan). ε varies logarithmically by factors of 4; complete labels are shown in Fig. 5. (a) Normalized spectrum of eigenvalue magnitude,
compared to the random matrix theory prediction PRMT (|λ|) = 2|λ|, |λ| < 1. The latter holds for ε � εc. (b) P (|λ|) over a wide range, showing
a divergent tail P (|λ|) ∼ 1/[|λ| log(1/|λ|)3/2] (black) at ε/εc = 10−2.4. (c) Spectrum near |λ| = 1. In this regime, at ε/εc = 10−2.4 we find
P (|λ|) ∼ 1/{(1 − |λ|) log[1/(1 − |λ|)]5/2} (black).

which there is typically only one eigenvalue left in the disk
of radius λmin, which turns out to be λmin/λc = 1/

√
N .

More interesting is the inevitable failure of the RMT re-
sult for ε � εc. We find that when ε � εc, P (|λ|) develops a
diverging tail at small |λ|, shown in Fig. 1(b). At the small-
est ε, our data are consistent with a barely convergent form
P (|λ|) ∼ 1/[|λ| log(1/|λ|)3/2] over 10 orders of magnitude in
|λ|. Any such form implies that as the matrices increase in
size, arbitrarily small values of |λ| will be found. Assuming
this form, the smallest magnitude eigenvalue in a system of
size N is ∼e−(2N )2

; this corresponds to a short relaxation time
τmin ∼ 1/(2N )2.

Hidden in Figs. 1(a) and 1(b) is the behavior of P (|λ|)
near |λ| = 1, shown in Fig. 1(c). Surprisingly, this also shows
divergent behavior: at the smallest ε we find P (|λ|) ∼ 1/{(1 −
|λ|) log[1/(1 − |λ|)]5/2} over 10 orders of magnitude. As-
suming this form, the largest magnitude eigenvalue is |λ| ≈
1 − e−(2N/3)2/3

, aside from the Perron-Frobenius eigenvalue
|λPF | = 1. Hence the system has a huge relaxation time
τmax ∼ e(2N/3)2/3

, diverging exponentially fast in the system
size. For intermediate ε < εc, our data do not resolve the
details of this divergence with complete confidence, but it is
clear that log τmax ∼ Nα for some α > 0. This generic pres-
ence of large relaxation times in our model is the main result
of this work.

We can also look at the structure of the spectra in the com-
plex plane, shown in Fig. 2 for 1000 matrices of size N = 64,
and several values of ε. Aside from the disk expected from
random matrix theory, and lone outliers at λ = 1, we note a
key feature: there is a bicycle spoke structure that develops at

small ε. The spokes are situated along roots of unity eikπ/n, for
n = 2, 3, 4, . . ..

In the present work we will refer to εc as a phase transition.
This term is used somewhat loosely, since discontinuous be-
havior of observables may only occur in the asymptotic large
N limit (taken jointly with ε → εc). However, we observe
smooth changes with N even at the modest values of N that
we considered.

Note that the specific forms of the eigenvalue tails near
λ = 0 and |λ| = 1 are empirical fits; similar tails have been
observed before in the spectra of random symmetric matrices
with heavy-tailed element distributions [8,9].

B. Network interpretation

To illustrate how the transition matrices change as ε is
varied, it is useful to consider the directed network formed by
considering states as nodes and transitions as directed edges.
In our model, all states are connected with some probabil-
ity, thus the network is always fully connected: over a long
enough timescale, transitions between any states are possible.
However, the transition elements can vary over a wide range.
We thus construct the networks with edges above a threshold
m0, which corresponds to choosing a maximum observation
timescale. Very roughly, this corresponds to the network ob-
served on times less than ∼1/m0. We set m0 = 10−3 in what
follows. Typical networks for N = 32 are illustrated in Fig. 3,
where a spring-based force algorithm was used to determine
the vertex positions. Edge thicknesses and colors are deter-
mined by their weight.
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FIG. 2. Spectra of 1000 random Markov matrices in the complex λ plane, with N = 64, for (a) ε/εc = 0.03; (b) ε/εc = 0.5; (c) ε/εc = 2.
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FIG. 3. Illustrative networks at with N = 32 at temperatures (a) ε/εc = 10−2.4; (b) ε/εc = 10−0.6; (c) ε/εc = 100.6. Edges are defined for
matrix elements Mab > m0 = 10−3 and are colored based on their weight. Nodes are colored based on their out-degree.

Several features are apparent. At high temperature, the
network is nearly fully connected, and therefore has many
loops. Statistically, vertices are equivalent. As the temperature
is lowered, the graph becomes sparser. Slightly below the
critical temperature, loops of various scales are present, thus
allowing nontrivial temporal behavior on a range of scales.
Finally, at the lowest temperature studied, the network is
very nearly a tree, which thus will lead to a trivial dynamic
behavior.

At low temperature, the network depends on the thresh-
old. If the threshold were to be lowered, the networks would
become denser, revealing rare transitions between states. At
the lowest temperatures, the very wide range of timescales
implies that these networks will continue to have structure as
the threshold is made ever smaller.

The networks can be analyzed with standard measures
[27]. For example, the out-degree of a node is the number of
edges leaving it. Its distribution, shown in Fig. 4 for N = 128,
clearly shows the transition: at temperatures above εc, it is
nearly a Dirac δ function peak at its average value, since the
network is nearly fully connected. It broadens continuously
as ε decreases, giving an approximately exponential tail of
well-connected nodes.

We also investigated the node centrality (not shown). For
ε > εc, the distribution of centrality is peaked around a typical

1 2 3 4 5

10-3

10-2

10-1

100

FIG. 4. The distribution of node out-degree at N = 128 and
various ε from ε/εc = 10−2.4 (cyan) to ε/εc = 101.2 (orange). The
distribution shows a transition from being pointlike for ε > εc to
having an exponential tail at large values at smaller ε.

value, while for smaller ε it develops a tail of large central-
ity nodes and a weakly divergent tail of nodes with small
centrality.

III. APPLICATIONS

We now consider several applications of the random
Markov ensemble. First, we consider the sequences produced
by the Markov model in the light of information theory.
We will show that the transition identified above has a sig-
nal in information-theoretic quantities, namely, entropy and
predictive information [28,29]. Then we extend the Markov
ensemble to an ensemble of Hidden Markov models, which
are extensively used in sequence analysis and neuroscience.
Finally, we apply the Markov ensemble to neural data and
show that several measured quantities can be quantitatively
predicted from the random model.

A. Information theory and complexity

Since we study Markov models as complex systems, we
can also look at measures of complexity using information
theory. In this section we will consider three quantities: the
Shannon entropy, whose expression for stationary Markov
models we review; the predictive information of [28,29],
whose construction we review; and Zipf’s law.

1. Shannon entropy

The Shannon entropy H = −〈logP (X )〉 of a probabil-
ity distribution quantifies the amount of information gained
upon measurement of a random variable [30]. (We define
the entropy in base e.) We can apply this to the sequences
of states visited by a Markov model, for example, X =
(ABAADDEABC . . .), etc., which is an element in the space
of sequences. Labeling the sites visited in a sequence as
x(1), x(2), . . ., we write H (t ) for the entropy of a sequence
of length t . Consider a discrete and stationary Markov pro-
cess. For simplicity, we assume that the initial conditions are
sampled from the stationary distribution πa, which is assumed
to exist. Then we have

H (t ) = −〈logP (x(1), x(2), . . . , x(t ))〉
= −〈log[P (x(1))P (x(2)|x(1)) · · ·P (x(t )|x(t − 1))]〉
= −

∑
a

πa log πa − (t − 1)
∑
a,b

πbMab log Mab

= Hπ + (t − 1)Hd , (14)

024305-5



MOSAM, VIDAURRE, AND DE GIULI PHYSICAL REVIEW E 104, 024305 (2021)

10-3 10-2 10-1 100 101 102

0

0.2

0.4

0.6

0.8

1

10-3 10-2 10-1 100 101 102
10-3

10-2

10-1

100

10-3 10-2 10-1 100 101 102
0

0.2

0.4

0.6

0.8

1

(a) (b) (c)

FIG. 5. Information-theoretic quantities. (a) The Shannon entropy rate of state visitation sequences in the Markov chain at indicated N ;
(b) information rate, showing its increase as ε is decreased from large values; (c) predictive information, peaking at an intermediate ε. Error
bars in (a) and (b) correspond to 20th and 80th percentile ranges over 1000 distinct Markov chains (samples) at each parameter value, while
error bars in (c) correspond to true measurement errors from 300 distinct Markov chains (samples) at each parameter value.

where we used the Markov property to expand the probability
of a sequence, and we defined the entropy Hπ of the station-
ary distribution πa. At large times H (t ) is dominated by the
entropy rate

Hd = lim
t→∞

1
t H (t ). (15)

If the Markov chain is irreducible but the initial conditions are
not sampled from the stationary distribution, then there will
be transient corrections to (14).

Hd is plotted in Fig. 5(a) over the full range of temperature
and system size N .3 When Hd is normalized by its maxi-
mal value log N , and temperatures are normalized by εc(N ),
then the curves collapse at large ε and also at small ε, up
to small corrections logarithmic in N (no power of log N
produces a collapse at all ε, indicating a crossover between
two functional forms). The normalized entropy rate tends to
unity at large temperature, indicating that transition sequences
are indistinguishable from random noise, while at the lowest
temperatures it is very nearly 0, indicating that sequences are
becoming nearly deterministic.

Equivalently, we can define the information rate Id =
(log N − Hd )/ log 2 such that Id is the typical amount of in-
formation contained in the probability distribution per entry
of the sequence, in bits [31]. Again, this holds for stationary
conditions. This is shown in Fig. 5(b) on logarithmic axes,
highlighting the increase in information rate as ε is decreased.
The dotted line shows the function Id/ log N ∝ εc/ε which
tracks this increase for ε � εc.

The error bars shown in Figs. 5(a) and 5(b) correspond to
20th and 80th percentile ranges over 1000 distinct Markov
chains (samples) at each parameter value.4 We see that these
bars decrease as N increases, so that the normalized entropy
rate Hd/ log N is a self-averaging quantity: it doesn’t fluc-
tuate from sample-to-sample, in the large size limit. This is
a partial a posteriori justification for the lognormal distri-
bution of matrix elements, since it implies that ε controls
the entropy, at least for large systems. Thus, for example,

3For simplicity we consider only ergodic samples. Ergodicity can
break down at small ε due to floating-point issues.

4The true error bars in the measurements are then smaller by a
factor of ∼1/

√
1000 ∼ 1/32.

if we measure the normalized entropy rate in some sys-
tem under some dynamic process, then we can infer how ε

varies.

2. Complexity

Entropy distinguishes order from randomness, and thus
captures the emergence of structure in Markov models, but
it does not necessarily measure complexity. Intuitively, from
Fig. 3, one expects that models at very low temperature are not
complex because they are too deterministic, while models at
high temperature are not complex because they are completely
random. Can this intuition be quantified?

Grassberger [32] suggested that the complexity of a se-
quence can be measured by how quickly the entropy rate
H[x(1), x(2), . . . , x(t )]/t attains its asymptotic value. This
notion was formalized by Bialek, Nemenman, and Tishby
[28,29] with the notion of predictive information. For a sta-
tionary process one asks how well the “past” (x(−t ), x(−t +
1), . . . , x(−1)) predicts the “future” (x(0), x(1), . . . , x(t −
1)). This is quantified by the mutual information [30] between
past and future, I (t, t ′) = H (t ) + H (t ′) − H (t + t ′) where we
are using the fact that the process is stationary, so that this
depends on only the length t . Bialek et al. then define the
predictive information as

Ipred(t ) = lim
t ′→∞

I (t, t ′)/ log 2, (16)

which thus measures how well the past t states predict the
entire future trajectory of the system.

Since Hd is the asymptotic extensive part of H (t ), the latter
can be written H (t ) = tHd + H1(t ) where H1(t ) is the nonex-
tensive part. Clearly dependence on Hd drops out of Ipred,
showing the insufficiency of Hd to measure predictive power,
and thus complexity, in this theory [this statement holds for
general stationary processes, not necessarily Markov ones that
follow (14)]. Consistent with the arguments of Grassberger,
complexity is measured not by the asymptotic state but by the
approach to it.

For a discrete and stationary Markov process, under the
same assumptions as (14), it follows from (14) that

I (t, t ′) = Hπ − Hd , (17)

which is independent of both t and t ′, a nongeneric property
[28,29]. The predictive information is plotted in Fig. 5(c). We
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FIG. 6. Probability distribution of the rank of states (denoted by
A in the axis label) for N = 128. Zipf’s law is a power-law relation
P (r) ∼ 1/r, as indicated by the dashed line.

confirm that it has a peak at intermediate ε ∼ 0.1εc, although
this precise location is not resolved in our data. This further-
more supports the notion that the high and low-temperature
phases are separated by a phase transition, rather than just a
cross-over.

Curiously, we find that Ipred also increases as ε becomes
very small. The interpretation of this result we leave for future
work.

3. Zipf’s law

Finally, often discussed in the context of sequence com-
plexity is Zipf’s law [33–37]. Consider the sequence of states
visited by the Markov model. Zipf’s law states that when
states A are ranked in terms of decreasing frequency of ap-
pearance, their probability is inversely proportional to their
rank: P (r(A)) ∼ 1/r(A), where r(A) is the rank of the state
A. Zipf’s law is found to hold to a good approximation in
human language texts (when “states” are words), as explained
by various theories [33–37]. This quantity is shown for our
N = 128 data in Fig. 6 on logarithmic axes. For ε > εc,
the curve is nearly flat: all sites are visited with the same
frequency. Below εc, the curve develops a nontrivial shape,
including approximate power-law regions, and for very small
ε one finds Zipf’s law, indicated by the dashed line.

B. Hidden Markov models

In most dynamical systems, we have only incomplete
knowledge of the detailed configuration of the system com-
ponents. Often we can consider that the system undergoes a
Markovian evolution, as above, but we have access to only a
sequence of observables, which are outputted as the internal
system changes state. This leads to the definition of a Hidden
Markov model [38,39]: we have (1) a set of internal “hid-
den” states, {1, 2, . . . , N} with an internal transition matrix
Mab, as above; and (2) in addition, a set of observable states
{1, 2, . . . , T } (distinct from the hidden states), and an emis-
sion matrix OaB giving the probability that when the system
is in hidden state a it outputs observable B. It is supposed that
one observable symbol is outputted between each transition of
hidden states.

For example, while an infant may be able to produce only
a small number of distinguishable noises, its hidden men-
tal state may be significantly richer. Hidden Markov models
(HMMs) have found application in various domains, partic-
ularly in bioinformatics [39,40], natural language processing
[41], and, most recently, neuroscience [16,42–45]. HMMs are
also the simplest level of the Chomsky hierarchy when applied
to probabilistic grammars, and thus serve as toy models for
syntactic structure [26,46,47].

All of our earlier considerations apply to the sequence of
hidden states visited by a HMM. When we add an emission
matrix, then we can also investigate quantities that depend
only on the observed states. The same arguments that led
us to consider a lognormal distribution for the elements of
the Markov matrix also apply to the emission matrix. We
introduce a primitive matrix P and write OaB = PaB/

∑
C PaC .

We consider the matrix P to be drawn from a lognormal
distribution, now with a “surface” temperature εs, which we
fix to εs = 0.01. We also fix T = 12.

We will investigate the sequences produced by the HMM
both in terms of their entropy, and in terms of their complexity.

1. Entropy

We consider first the Shannon entropy rate of observed
sequences, Hs. There is no simple expression for the entropy
rate in terms of M and O, although rigorous algorithms exist
for its estimation [48]. Here we estimate Hs by sampling,
using the method of Grassberger to eliminate sampling biases
[49]. First we define the k-gram surface entropy rate Hs(k) =
1
k H (o(1), o(2), . . . , o(k)) where the o( j) are the observable
symbols. The asymptotic entropy rate can be estimated di-
rectly by the limit Hs(k) as k → ∞, but it is also estimated
by the differential entropy rate

δHs(k) = (k + 1)Hs(k + 1) − kHs(k), (18)

and the latter converges faster [50]. We estimate these entropy
rates by constructing 300 different Markov models at each
value of N and ε, and sampling a sequence of total length
∼105 for each sample, at each parameter value. This allows
us to estimate Hs(k) for k � 4.5

The resulting δHs(3) and δHs(2) are plotted in Fig. 7 as
solid and dotted lines, respectively. First, we notice that for
N � 16 the two differential entropy rates are very nearly
equal, and thus close to their asymptotic value everywhere.
For larger N , the rates are nearly converged for ε > εc but
display some finite-k effects at smaller ε. These effects in
fact indicate correlations in the sequences [28], studied below.
Here we focus on the systematic trends with ε and N .

Consider a sequence outputted by any given HMM. It has
two sources of randomness: that in M, and that in O. In
our case, since εs = 0.01 is relatively small, the O matrix is
very sparse: given the hidden states, the observed sequence is
nearly deterministic. Variation in δHs is thus due to changes
in the physics of the hidden states.

Consider first ε > εc. If the outputted sequence is com-
pletely random noise, then we will have δHs ≈ log T , as

5As a crude estimate, since the kth entropy rate has a phase space
of size T k , we are limited to T k � 105 or k < 4.6.
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FIG. 7. Differential surface Shannon entropy rates δHs(k) for the
Hidden Markov model with k = 3 (solid) and k = 2 (dotted), at
indicated N . Error bars correspond to 20th and 80th percentile ranges
over 300 distinct Markov chains (samples) at each parameter value.
Here T = 12 and εs = 0.01.

indeed we find for large enough N . As N is lowered, δHs also
decreases. The interpretation of this regime is as follows: even
if the hidden state physics is completely random, outputted se-
quences can have structure simply because O need not output
each observed symbol with the same frequency. For example,
if the symbol A is over-represented in the output of O, then
this will impact the observed entropy rate, even for uniformly
random hidden states. This is why δHs can be small even when
ε > εc. However, there is a competing averaging effect: when
the hidden states are sampled uniformly, each O element only
contributes in the form 1

N

∑
a OaB, which is averaged over the

hidden states. When N becomes large, this is subject to the
law of large numbers and this becomes equal to 〈OaB〉, which
is then independent of B (in our model). Thus, finally, for large
N and ε > εc, the entropy becomes again that of a uniform
random variable and tends to log T as N → ∞, as observed.

As we decrease ε, the observed entropy rate always drops
substantially from its value at εc: the physics of hidden states
always plays an important role. We notice that at sufficiently
small ε, the curves for different N collapse on top of one an-
other. The asymptotic small ε entropy rate depends only on T
and εs. In this regime, the hidden state evolution is effectively
bottlenecked by O: even if it is completely deterministic, the
observed sequences have randomness simply due to that in O.

2. Complexity

We can also investigate the complexity of observable se-
quences. The full Ipred is numerically challenging to obtain,
but following the above discussion we can define an observ-
able that measures the approach to the asymptotic entropy
rate. As a simple measure, we define a complexity Ck =
−Hs(k) + k

k−1 Hs(k − 1), plotted in Fig. 8. This combination
of entropies eliminates the contribution to Hs(k) from the
asymptotic entropy rate and thus depends only on the rate at
which this asymptotic rate is approached. Consistent with Ipred

defined above, we find that Ck is nonmonotonic, with a peak
approximately at ε ∼ 0.1εc.

10-3 10-2 10-1 100 101 102
0
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0.4

0.6

0.8

FIG. 8. Complexity measure for observable sequences in the
Hidden Markov model, with k = 3. Consistent with the predictive
information measure for the hidden states, this peaks at an interme-
diate temperature below εc.

A consequence of these analyses is that for a HMM, many
properties of the observable sequences mirror those of the un-
derlying hidden sequences. This is useful, because the hidden
sequence is Markovian and therefore easier to analyze a pri-
ori. In the usual scenario where only observable sequences are
known, this is tempered by the fact that the hidden sequence
must be reconstructed from the observations. Fortunately, ef-
ficient algorithms and toolboxes exist for this process [38,43].

C. Hidden Markov model applied to neural data

The explosion in availability of neural fMRI data requires
tools that can reduce the dimensionality of the data and
connect the data to functionally significant “modes” of neu-
ral activity [51]. Hidden Markov models are well suited to
this task and have been extensively applied in neuroscience
[16,42–45,52].

To test the extent to which the random HMM discussed
above applies to these experimental data, we obtained the
HMM transition matrix M and numerous hidden-state se-
quences from [16], which itself uses neural data from the
Human Connectome project [53]. The whole-brain fMRI data
are taken from the resting-state activity of 820 human sub-
jects. N = 12 states were inferred at the group level, using
multivariate Gaussian distributions applied to the raw fMRI
data. After determining the states, the transition matrices M
were inferred at the subject level. Pseudocounts were added to
the state transition counts, following Laplace’s rule of succes-
sion [54]. Approximately 80% of subjects used all 12 states,
while 20% used 11 states, and a handful used 8–10 states. In
our subsequent analysis, we defined and used an N value for
each subject.

A typical state-by-state network from this data is shown in
Fig. 9 (no threshold was used). Comparing with the networks
in Fig. 3, a conspicuous feature here is that the self-transitions
A → A are much more probable than transitions between
states. This possibility was not taken into account in the ran-
dom model, but its consequences will be deduced below.

Note that although these data were fitted to a Hidden
Markov model, we will analyze only properties of the hidden
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FIG. 9. Representative network for the Hidden Markov model
applied to neural data.

states, so that we work in the context of the original Markov
ensemble.

First, we naively analyze the HMMs in the context of
the random model. For each subject, we measure the het-
erogeneity h of its M matrix and infer a temperature ε ≡
1/(4[−1 + √

1 + h]), the entropy rate Hd , using (14), and
Ipred, also derived from (14). The probability distributions of
these quantities, rescaled as in earlier sections, are shown in
Fig. 10. All of these quantities are sharply peaked around
typical values, compared to the vast region explored, for ex-
ample, in Fig. 5, which extends over five orders of magnitude
in ε/εc. In particular, the most likely temperature is very near
the critical one, a striking result given its status as a phase
transition, and the peak in complexity near εc [Fig. 5(c)].
The mean values are ε/εc ≈ 0.97, Hd/ log N ≈ 0.375, and
Ipred/ log N ≈ 0.84. However, if we naively try to match these
values with the random model, the comparison clearly fails:
for example, ε ≈ εc would imply that Hd/ log N ≈ 0.6, signif-
icantly higher than the observed value. How can we interpret
this?

The key is the feature already noticed in Fig. 9, namely,
that self-transitions are much more probable than transitions
between states. Quantitatively, we find that the probability
of a self-transition is p ≈ 0.75, with fluctuations ∼ ± 0.06.
For simplicity consider that all self-transitions have this same
probability p. Then we can decompose the entropy rate as

follows:

Hd = −
∑
a,b

πbMab log Mab

= −
∑

b

πb p log p −
∑

b

∑
a �=b

πbMab log Mab

= − p log p −
∑

b

∑
a �=b

πb(1 − p)M̃ab log[(1 − p)M̃ab]

= [−p log p − (1 − p) log(1 − p)]

− (1 − p)
∑

b

∑
a �=b

πbM̃ab log M̃ab

= HBer(p) + (1 − p)H̃d , (19)

where HBer(p) is the entropy of a Bernoulli process with
probability p and M̃ab = Mab/(1 − p) is the conditional prob-
ability of the transition b → a, given that this is not a
self-transition. Thus the entropy rate is decomposed into the
entropy for the decision whether or not to transition be-
tween states, and the remaining entropy of the conditional
distribution described by M̃ab. The crucial point is that the
latter contribution is weighted by the small factor 1 − p ≈
0.25. Thus if the conditional process is considered a ran-
dom process with H̃d/ log N ≈ 0.6, we expect Hd/ log N ≈
[HBer(0.75)/ log 12] + 0.25 × 0.6 = 0.375, which is exactly
what we find.

We can apply a similar analysis to Ipred. If ε = εc, then from
Fig. 5(c) we estimate Ĩpred/ log N ≈ 0.4 for the random model.
Using (17) this implies Hπ/ log N = log(2) × 0.4 + 0.6 =
0.88, which, again using (17), then implies Ipred/ log N =
(0.88 − 0.26)/ log(2) = 0.89. This is remarkably close to the
measured mean value 0.84.

Altogether, if we know the value of p, and assume ε = εc,
then we can quantitatively predict the values of the entropy
rate and the predictive information. This was unexpected,
because our random model contains only two parameters,
namely, the number of hidden states N and the temperature
ε. Naively, one might imagine that many parameters would be
needed to capture the properties of the HMM. This is espe-
cially so in the present context since it was shown in [16] that
the HMM contains information on functional modes of neural
activity (such as motor network versus language network vs
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FIG. 10. Hidden Markov model applied to neural data. Probability distributions of (a) temperature, (b) Shannon entropy rate of hidden
sequences, and (c) predictive information of hidden sequences.
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FIG. 11. Hidden Markov model applied to neural data. (a, b) Eigenvalue spectra, (c) out-degree distribution.

visual network), which are known to exhibit considerable
spatial and temporal complexity.

To confirm that these results are not a coincidence, we
can check that other properties of the random model hold for
the neural data. To this end we measure the spectra of the
transition matrices and the degree distribution of the networks.
As earlier, we plot the eigenvalue density versus 1 − |λ| and
versus |λ|, and the distribution of zout/〈zout〉, in Figs. 11(a),
11(b), and 11(c), respectively. Although noisy, these distri-
butions have key features of Fig. 1(c), Fig. 1(b), and Fig. 4,
respectively. In particular: P (|λ|) has a tail of small values,
corresponding to short relaxation times, as well as a tail of
values close to 1, corresponding to long relaxation times,
and P (zout ) is peaked around unity with the beginnings of an
exponential tail at large values.

Let us note that the parameter p is related to the sampling
rate of the data: if the decision whether or not to change
state is a Bernoulli process, then the number of time steps 
n
before a true transition is a geometric random variable, with
mean 1/(1 − p). These parameters are thus equivalent. If the
sampling rate is f (in Hz), then the typical time (in s) between
transitions is 
t = 〈
n〉/ f = 1/[ f (1 − p)].

Finally, let us comment on the surprising finding ε ≈ εc,
that is, subjects lie at the phase transition at which the large-N
random matrix theory result breaks down. Since long relax-
ation times exist in the entire low-temperature phase, there
is no simple a priori reason to expect neural activity to be
right at this transition. However, since complexity peaks near
the transition [Fig. 5(c)], this could be explained if brains are
driven towards a state of maximal complexity.

These results lend support, at the whole-brain level, to
the hypothesis that the brain operates in a critical regime,
adding mathematical evidence to previous studies on small
populations of individual neurons and EEG [17–23].

IV. CONCLUSION

The analysis of complex systems is often limited by the
lack of a nontrivial null model to which one can compare
data. One approach to this problem is to consider the en-
semble of all models of a given class, for example, discrete
Markov models of a given size. The ensemble is generally
vast, including all possible models to which the data could be
fitted, and cannot be completely characterized if the system
under consideration has a high complexity. However, if one
can identify a few key parameters that control variation of
interesting observables in the ensemble, then one can consider

this random model as a null model. One can then look for
phase transitions in the ensemble, with the aim of mapping out
the general behaviors available within the class of model. This
program has been advocated as a general strategy for the study
of complex systems [55] and has been attempted for constraint
satisfaction problems [56], for language syntax [26,57], and
for ecosystems [58], to give a few examples.

In this work we have proposed a simple ensemble of
discrete Markov models and a straightforward extension to
Hidden Markov models. As a control parameter we introduced
ε, which we call a temperature. The physical interpretation
of ε is that it controls the dynamic range of transition matrix
elements: large ε corresponds to a small dynamic range. In
other words, when ε is large the various transitions have simi-
lar probabilities, while when ε is small, these probabilities can
be vastly different. We have shown that the ε plays a key role
in the behavior of the Markov models: there is a critical value
εc such that large-N random matrix theory results hold for
ε > εc, but not otherwise. In the low-temperature phase, the
Markov models generically have a broad spectrum of relax-
ation times, without any fine-tuning. The critical point εc thus
acts as a phase transition between a simple high-temperature
phase and a more ordered low-temperature phase. In our
ensemble the value εc = 1/[2 log(N + 1)] depends only on
the number of states in the Markov model. We have further-
more shown that ε controls the entropy of state-transition
sequences.

The utility of this ensemble was explicitly shown using
human fMRI data, where we could quantitatively characterize
the values of entropy and predictive information found in a
HMM fit to fMRI data. The latter measures how informative
observations of the “past” are with respect to predicting the
future and is an essentially unique measure of complexity
[29].

Owing to the generality of Markov models, this work fits
into a number of larger problems. First, Hidden Markov mod-
els are the simplest class of probabilistic grammars, which
are organized by the Chomsky hierarchy [26,46,47]. The next
level of complexity in grammars are the context-free gram-
mars, considered as an ensemble in [26,57,59]. These are
related to syntactic structure in both natural and computer
languages. A similar phase transition to that discussed here
was found in [26,57], but without any interpretation in terms
of random matrix theory. As discussed therein, the phase tran-
sition can be interpreted in terms of breaking of permutation
symmetry, an interpretation that also holds in the present case.
Briefly, at high temperature, all the symbols are statistically
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equivalent: the permutation symmetry among them is pre-
served. As temperature is lowered through εc, the transition
rates span a broad enough dynamic range that the symbols
can then be distinguished. This is precisely what is measured
by the Zipf plot, Fig. 6. This connects to the standard Landau
paradigm of phase transitions in terms of symmetry breaking.

Second, the low-temperature regime of the Markov ensem-
ble has matrices that are effectively sparse; thus the phase
transition discussed here can be interpreted as a full-to-sparse
transition of random matrices. The behavior of sparse random
matrices, while important, is understood much more poorly
than that of their dense cousins. Recent work has built the-
oretical tools for such study [8,9,60] and could be useful to
theoretically derive the behavior of the eigenvalue tails we
found near |λ| = 0 and |λ| = 1. Eigenvalue tails have pre-
viously been predicted in models of complex networks [61]
but in the symmetric case. We found that the eigenvalue
spectra in the low-temperature regime show a bicycle wheel
structure in the complex plane, with spokes at the roots of
unity. We are not aware of any previous mention of this phe-
nomenon.

Third, we have considered Markov models in discrete time,
but a natural generalization would be to continuous time. This
would also allow a connection to stochastic thermodynamics
[62].

Finally, the presence of a phase transition allows one to
place stochastic matrices in the phase diagram and evaluate
how near or far they are from the transition. Applied to fMRI
data, we found that the data are very near the transition,
supporting the brain criticality hypothesis. A natural question
is whether stochastic matrices from other complex systems
are also near this transition. Since the ensemble includes all
discrete Markov models, it can unify the study of disparate
systems, in the goals of seeking universal patterns. This may
shed light on the origin and possible universality of criticality
in biological systems.
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APPENDIX: FROM CONTINUOUS-TIME DYNAMICS TO
THE MASTER EQUATION

Here we discuss how the transition matrix M is related to
the interaction matrix M̃. It is simplest to discretize time, x,
and ξ . A continuum limit can be taken later, if necessary.

For example, if we discretize time, x, and ξ , then (1)
becomes

xi(t + dt ) = xi(t )(1 − dt ) + dtM̃i jx j (t ) + dξi(t ). (A1)

This induces a motion in phase space with a transition matrix
between states x = (x1(t ), x2(t ), . . . , xn(t )) and y = (x1(t +
1), x2(t + 1), . . . , xn(t + 1)) as

Myx =
∑
{dξ}

P (dξ )
∏

i

δyi−xi (1−dt )−dtM̃i j x j−dξi
, (A2)

where P (dξ ) is the probability of noise increments dξ =
(dξ1, . . . , dξn), and the Kronecker δ’s impose the dynamics,
which trivially generalizes to any nonlinear extension of (1).
Notice that

∑
y Myx = 1 and each Myx � 0. The phase space

dynamics is given by the master equation

ρ(y, t + dt ) =
∑

x

Myxρ(x, t ), (A3)

where ρ(x, t ) is the probability of state x at time t . If each
xi has nx different states, then M is an N × N matrix, with
N = (nx )n.

Let us now generalize to the continuum limit in x and ξ . M
becomes a function of two arguments

M(y, x) =
∫

dP(ξ )
∏

i

δ[yi − xi(1 − dt ) − dtM̃i jx j − dξi].

(A4)

For simplicity we assume ξ is Gaussian with 〈dξi〉 = 0 and
correlation matrix Ci j dt = 〈dξi dξ j〉. Then

ρ(y, t + dt ) =
∫

dxMyxρ(x, t )

=
∫

dxρ(x, t )
∫

dP(ξ )
∏

i

δ[yi − xi(1 − dt ) − dtM̃i jx j − dξi]

= |1 − dt + dtM̃|−1
∫

dP(ξ )ρ([1 − dt + dtM̃]−1(y − dξ), t )

= e−dt (−n+trM̃ )+O(dt2 )
∫

dP(ξ )ρ(y − dξ + dty − dtM̃y + O(dt2), t )

= [1 + dt (n − trM̃ ) + O(dt2)]
∫

dP(ξ )[ρ(y, t ) + (dty − dtM̃y − dξ)∇ρ(y, t ) + 1
2 dξ dξ:∇∇ρ(y, t ) + O(dt2)]

= ρ(y, t ) + dt (n − trM̃ )ρ(y, t ) + dt (y − M̃y)∇ρ(y, t ) + 1
2 dtC:∇∇ρ(y, t ) + O(dt2)

= ρ(y, t ) + dt∇ · [(y − M̃ · y)ρ(y, t )] + 1
2 dt∇∇:[Cρ(y, t )] + O(dt2)
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or
∂tρ(y, t ) = ∇ · [(y − M̃ · y)ρ(y, t )] + 1

2∇∇:[Cρ(y, t )], (A5)

which is the Fokker-Planck equation, as expected.
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