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Symbiotic and antagonistic disease dynamics on networks using bond percolation
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In this paper we introduce a description of the equilibrium state of a bond percolation process on random
graphs using the exact method of generating functions. This allows us to find the expected size of the giant
connected component (GCC) of two sequential bond percolation processes in which the bond occupancy
probability of the second process is modulated (increased or decreased) by a node being inside or outside of the
GCC created by the first process. In the context of epidemic spreading this amounts to both an antagonistic partial
immunity and a synergistic partial coinfection interaction between the two sequential diseases. We examine
configuration model networks with tunable clustering. We find that the emergent evolutionary behavior of the
second strain is highly dependent on the details of the coupling between the strains. Contact clustering generally
reduces the outbreak size of the second strain relative to unclustered topologies; however, positive assortativity
induced by clustered contacts inverts this conclusion for highly transmissible disease dynamics.
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I. INTRODUCTION

A network is a collection of nodes that are connected by
edges. Bond percolation on complex networks is a widely
studied binary-state stochastic process where the edges of a
network are said to be occupied with probability T1 or un-
occupied with probability 1 − T1. When T1 is small, many
edges are unoccupied, and the network is fractured into small
components. At some critical value T1,c, the small compo-
nents connect together to form a macroscopic giant connected
component (GCC); the expected size of the GCC exhibits a
second-order phase transition. As T1 → 1, the GCC occupies
an increasing fraction of the network. Nodes not contained
within the GCC are said to be in the residual graph (RG) of
the percolation process.

The size of the GCC following bond percolation is equiv-
alent to the fraction of nodes that are in the removed state of
the SIR process. In the SIR model, nodes are either suscep-
tible, infected, or removed. Infection occurs along edges that
connect infected nodes to their susceptible neighbors. Once
infected, a node remains infected for a period τ before recov-
ering to the R state. The equivalence between SIR dynamics
and bond percolation occurs when the infection period is a
single-valued distribution [1]. Hence, the absorbing equilib-
rium of the model is binary state and is composed of only
susceptible and recovered nodes.

Once a network has been percolated, it can be percolated
a second time. Under disease mapping, this corresponds to a
second disease, temporally separated from the first, spreading
over the network. This could be a mutant strain of strain 1
invading a population or a different pathogen altogether; we
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will simply refer to “strain 2.” If strain 2 does not interact with
strain 1 in any way, then the expected dynamics will follow
the traditional SIR model, and ordinary bond percolation is
sufficient to describe the outbreak fraction. However, strain 1
could grant perfect cross-immunity to recovered nodes such
that they do not become infected further [2–8]. Alternatively,
infection by strain 1 could be a prerequisite to contracting
strain 2 [9–11]. In both cases, the infection history of a node
in the equilibrium of strain 1 is important in whether or not it
contracts the second strain. The more likely scenario, and the
most general disease interaction model, is that the spreading
of strain 2 is only modulated by the presence of strain 1.
The modulation could facilitate strain 2, a partial coinfection
model, or it could hinder its spreading, a partial immunity
model. With these definitions in place, the above two scenarios
of perfect cross-immunity and perfect coinfection are the lim-
iting logic of a smooth spectrum of interactions in which only
partial interaction is observed, and it is this case that we model
in this paper. We illustrate the concepts of partial coinfection
and partial immunity in Fig. 1.

We choose to investigate our model for clustered networks,
that is, networks containing a nonzero density of triangles. We
do this because, typically, human contact networks are highly
clustered: any two contacts often have a third, mutual friend,
and clustering has important consequences for real epidemics
[12–15]. Clustering has been well studied in the literature and
is known to greatly influence the properties of the emergence
and overall size of the GCC of strain 1. It is not only the num-
ber of triangles in a network that determines the percolation
properties but also the nature of how those triangles connect
together and to other edge topologies, degree assortativity
being a leading factor. Therefore, different clustered degree
distributions often lead to dichotomous conclusions regard-
ing the effect of clustering. It was shown by Newman [16]
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FIG. 1. From top left: A primary disease has spread over a net-
work of susceptible nodes (gray) to create a giant component of
infected hosts (red) at its equilibrium. A seed node (dotted dark
green) of degree k = 4 has degree 2 in the RG (uninfected neighbors)
and k − l = 2 strain 1 infected neighbors. In the general case, the
second strain then spreads both on the RG with transmissibility T2

and over the GCC of strain 1 (hatched light green) with modulated
transmissibility T ′

2 . The light green nodes are coinfected with both
strain 1 and strain 2, while the red (dark green) nodes only have strain
1 (2).

that Poisson networks with clustering reduce the epidemic
threshold of the first strain, while Miller [17,18] and Gleeson
and coworkers [19–21] showed that clustering can increase
the epidemic threshold when assortativity is controlled, which
was also reported by Hasegawa and colleagues [22,23].

Recent results [8,11] have investigated the role of clus-
tering for a second strain in the limiting cases of perfect
cross-immunity (spreading solely on the RG) and perfect
coinfection (spreading solely on the GCC) using bond perco-
lation. It was found that clustering can again exhibit polarized
results depending on the details of the contact network. In
this paper, we introduce a model of partial immunity using
the generating function formulation and find excellent agree-
ment with Monte Carlo simulations of bond percolation. This
model generalizes the results of [8,11] by relaxing the strict
conditions imposed on how the second strain interacts with
the first one (spreading on both the RG and the GCC). We
then study the role of clustering in shaping the evolutionary
behavior of strain 2 for power law networks with tunable
clustering that exhibit exponential degree cutoffs.

II. CONFIGURATION MODEL AND
GENERATING FUNCTIONS

The configuration model is a prescription to create random
graphs whose degrees are distributed according to some pre-
defined distribution [24–28]. The central object of the model
is the degree distribution p(k), which is the probability that

a node chosen at random from the network has degree k.
By extending p(k) to a joint distribution p(s, t ), where s is
the number of ordinary tree-like edges and t is the number of
triangles that the node is involved in (such that k = s + 2t),
the configuration model can be used to create random graphs
with clustering [16,17]. Similarly, by extending the joint dis-
tribution to include other cycles, such as squares, four-cliques,
and so on, graphs with complicated clustering can be created.

To create a realization of a clustered graph of size N ac-
cording to the configuration model, each node is assigned half
degrees or stubs, in other words, an (si, ti ) pair drawn from the
joint distribution p(s, t ) where the following conditions hold:

N∑
i=1

si = 2S (1)

and

2
N∑

i=1

ti = 3T , (2)

where S is the number of tree-like edges in the network and
T is the number of triangles, both of which are integers to
ensure that the drawn sequence is graphic. At each step of
the construction, pairs of tree-like stubs from two different
randomly selected nodes i and j are connected together to
create a full edge; similarly, three triangle stubs are selected
at random from three different nodes i, j, k to create a triangle
among them. This process is repeated until all stubs have
been matched among the nodes. Each constructed graph is
a member of an ensemble of graphs with equivalent degree
distributions and is absent of degree correlations [28].

Next, we turn our attention to the generating function
formulation [16,17,24,25]. Generating functions are infinite
series that can be used to encapsulate probabilities associ-
ated with certain network properties. For instance, the joint
probability distribution is generated by a bivariate generating
function as

G0(z⊥, z�) =
∞∑

s=0

∞∑
t=0

p(s, t )z⊥sz�
t . (3)

This expression is understood as follows: we choose a node
at random from the network and let z⊥ and z� be the prob-
abilities that a single tree-like edge and a single triangle are
in states Z⊥ and Z�, respectively. Assuming that all tree-like
edges and all triangles are independent of one another (such
that Z⊥ and Z� are independent and identically distributed
probabilities), then the probability that precisely s edges and
t triangles surrounding a node are in this state is zs

⊥ and zt
�.

We then multiply this expression by the probability that the
node we chose had joint degree (s, t ), which is simply p(s, t ),
and finally, we sum over all combinations of s and t in the
network. This yields the probability of choosing a node at
random, or, equivalently, the fraction of nodes in the network
whose tree-like edges are in states Z⊥ and whose triangles are
in state Z�.
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If z⊥ = z� = 1, then these states occur with certainty, and
we have a normalizing condition

∞∑
s=0

∞∑
t=0

p(s, t ) = 1. (4)

The probability of choosing a node at random from the net-
work and the probability of choosing an edge at random and
then picking one of the adjacent nodes at random do not yield
equivalent probabilities in general. The reason is high degree
nodes are more likely to be chosen, and so the properties of the
nodes are different from one another. Further, the properties of
the nodes reached by following a random tree-like edge and
a random triangle are also nonequivalent in general. Thus,
we must write an expression for the probability of reaching
a node of joint degree (s, t ) by traversing a random tree-like
edge back to a node,

G1,⊥(z⊥, z�) = 1

〈s〉
∂G0

∂z⊥
, (5)

and by following a random triangle back to a node,

G1,�(z⊥, z�) = 1

〈t〉
∂G0

∂z�

. (6)

In each case, 〈s〉 is the average number of tree-like edges
a node is a member of and is given by ∂z⊥G0(1, 1) with an
analogous expression for 〈t〉.

The bond percolation equivalence can now be understood
in detail. If we set z⊥ as the probability that a single tree-like
edge does not connect the chosen node to the GCC and z�

as the probability that the chosen node’s involvement in a
single triangle fails to connect it to the GCC, then we can
generate the probability that a randomly chosen node fails to
be part of the GCC. Thus, we can find emergent macroscopic
properties of the entire network from the description of the
local environment of a node, which we then average over all
permissible node joint degrees.

III. PARTIAL INTERACTION

We begin this section with a review of traditional gener-
ating function theory for tree-like edges [26]. To obtain the
faction of the network that did not become infected, we must
examine the probability that none of the edges of a degree k
node transmit their infection. The failure to pass on infection
occurs either because the neighbor was itself uninfected with
probability u⊥ or it was infected but did not transmit in this
instance with probability (1 − u⊥)(1 − T1). Since there are k
such edges and they are all independent of one another, the
probability that a node fails to become infected at all is simply
the sum of these two probabilities raised to the power k,

[1 − T + u⊥T1]k .

The degree is then averaged over the degree distribution of the
network to obtain the total probability that the average node
remains uninfected as

∞∑
k=0

p(k)[1 − T1 + u⊥T1]k .

At the binary-state equilibrium point of bond percolation,
nodes are either infected or uninfected. Familiar generating
function theory utilizes this mutually exclusive relationship
to calculate the outbreak fraction of strain 1 as 1 minus the
fraction of uninfected nodes.

This picture was expanded upon by Newman and col-
leagues [2,9] to describe the equilibrated network from the
perspective of both an uninfected node and an infected node
given they belong to the RG and the GCC, respectively. It
is within this picture that we can create a partial immunity
model by an extension and adaptation of Newman’s work. In
a partial immunity model, we cannot simply select a single
node type to describe the final state of the network and use
the mutually exclusive property as before. This is because
subsequent strains can spread on both neighbor types, and so
neglecting one of the descriptions leads to an undercounting
of the full spectrum of transmission routes to the average
node in the network. Further, each distinct transmission route
from neighbors that have different infection histories from one
another occurs with a different probability. Thus, we must
describe the equilibrium of strain 1 by considering the local
structure of both possible node states as

1 = puninfected + pinfected. (7)

In the following two sections, we describe the local environ-
ment of a node in the RG and a node in the GCC following the
first percolation process. During the discussion, we refer to
the graph motifs in Fig. 2, where each possible neighbor state
following percolation of a clustered network is displayed.

Across both focal nodes, we observe 14 different motifs
that could surround a pair of nodes chosen at random. Among
these, there are 18 different neighbor states with unique infec-
tion histories composed from three basis states of the neighbor
node: uninfected (green), infected externally (gray), and in-
fected directly (blue). For example, consider the infected focal
node (red) in Fig. 2. There are nine different motifs (F–N)
that could potentially surround the focal node. Counting each
tree-like neighbor and each node within a triangle (excluding
the focal node itself) that is not related by symmetry to its
neighbor, there are 12 different neighboring sites; each site is
occupied by one of three infection states: uninfected (green),
externally infected (gray), and directly infected (blue).

A. Uninfected node description

The local environment of a node in the RG created by the
first strain is considered here. It accounts for all motifs that
have the yellow focal node in Fig. 2. This result was first
derived in [8], and so we present and discuss the result rather
than rederive it. The generating function for the probability of
choosing an uninfected focal node (yellow) from the network
puninfected = F0(�x) is

F0(�x) = G0
(
u⊥x1 + (1 − u⊥)(1 − T1)x2, (u�x3)2

+ [(1 − u�)(1 − T1)x4]2

+ 2u�(1 − u�)(1 − T1)
(
1 − T 2

1

)
x5

)
, (8)

where u� is the probability that a neighbor node in a triangle
is uninfected. The vector �x = {x1, . . . , x5} has five dimen-
sions, one for each of the five motifs that could surround the
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FIG. 2. The 14 motifs that surround both focal nodes in the percolation model. In each case the lowest node in the motif is the focal node,
for which there are two considerations, uninfected (yellow) and infected (red). There are three states a neighboring node could be in: uninfected
(green), infected externally (gray), and infected directly (blue), although the latter occurs only when the focal node is infected. Motifs A–C
are the triangle motifs surrounding an uninfected focal node; D and E are the two types of tree-like edges. Motifs F–H are the tree-like edges
that could surround an infected focal node, and finally, motifs I–N are the triangles that an infected focal node can belong to. Among these
motifs, there are 18 unique node sites in total. Symmetric triangles (about a vertical axis bisecting the focal node) contribute only one site
type, while mixed triangles contribute two site types and tree-like edges contribute one site type each. The numbering convention for mixed
triangles always proceeds from left to right; for instance, in mixed state triangle B the uninfected neighbor is B1, while the infected neighbor
is B2. Also, we do not have to include the mirror image of mixed triangles since they occur with equal probability.

uninfected focal node. We define two additional generating
functions, F1,⊥(�x) and F1,�(�x), by replacing G0(�x) in Eq. (8)
with G1,⊥(�x) and G1,�(�x), respectively. It is well known
that Eq. (8) can be used to generate the size of the GCC
of strain 1 according to the following self-consistent set of
equations:

u⊥ = F1,⊥(�1), (9)

u� = F1,�(�1), (10)

followed by S1 = 1 − F0(�1).

B. Infected node description

The local environment of a node in the GCC created by the
first strain is presented here. This result was first derived in
[11], and so for brevity we do not repeat that work. The gen-
erating function pinfected = H0(�y) for picking an (externally)
infected focal node (red) from the network that is part of the
GCC is given by

H0(�y) = G0
(
u⊥(1 − T1)y1 + (1 − u⊥)y2 + u⊥T1y3, [u�(1 − T1)]2y4 + (1 − u�)2y5 + (u�T1)2y6

+ 2u�(1 − T1)(1 − u�)y7 + 2u�(1 − T1)u�T1y8 + 2(1 − u�)u�T1y9)

− G0(u⊥(1 − T1)y1 + (1 − u⊥)(1 − T1)y2 + u⊥T1y3, [u�(1 − T1)]2y4 + [(1 − u�)(1 − T1)]2y5 + (u�T1)2y6

+ 2u�(1 − T1)2(1 − u�)
(
1 − T 2

1

)
y7 + 2u�(1 − T1)u�T1y8 + 2(1 − u�)u�T1(1 − T1)

(
1 − T 2

1

)
y9

)
. (11)

We will also define H1,⊥(�y) and H1,�(�y) by replacing G0(�y) by G1,⊥(�y) and G1,�(�y), respectively. Additionally, we generate a
description of the directly infected neighbor state (blue) as

J1,τ (�y) = G1,τ

(
u⊥(1 − T1)y1 + (1 − u⊥)(1 − T1)y2 + u⊥T1y3, [u�(1 − T1)]2y4 + [(1 − u�)(1 − T1)]2y5 + (u�T1)2y6

+ 2u�(1 − T1)2(1 − u�)
(
1 − T 2

1

)
y7 + 2u�(1 − T1)u�T1y8 + 2(1 − u�)u�T1(1 − T1)

(
1 − T 2

1

)
y9

)
. (12)

The size of the GCC of strain 1 can be found by solving

u⊥ = J1,⊥(�1), (13a)

u� = J1,�(�1), (13b)

and then S1 = H0(�1). In relation to the uninfected node de-
scription we have that F1,τ (�1) = J1,τ (�1) and that H0(�1) =
1 − F0(�1). Thus, the full description of the binary-state equi-

librium following bond percolation is given by the relation

1 = F0(�1) + G0(�1). (14)

This expression constitutes a way of using the generating
function formulation, and it is this key equation that allows
us to create the partial immunity model.
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IV. STRAIN 2

We have seen above how the GCC of the first strain can be
obtained from either description of members of the percola-
tion equilibrium: an uninfected node in the RG or an infected
node in the GCC. Both methods utilize the state normalzation
in Eq. (7) and the mutually exclusive property of the binary
state.

To calculate the outbreak size of strain 2, we proceed as
follows. For each of the 18 possible neighboring node states,
we must introduce a probability that infection with strain 2
does not occur through this channel by some means. There-
fore, we introduce 18 distinct probabilities that a neighbor
of a given state fails to infect a given focal node with strain
2. Although arbitrary, we choose different symbols for these
probabilities depending on whether the neighbor state sur-
rounds an uninfected node or an infected node. We will see
in a moment that subsets of the 18 sites are generated by
the same expressions, and as such, the dimensionality of the
model can be significantly reduced. However, we proceed in
full for the moment.

There are six unique states that surround an uninfected
focal node, and thus, we define a set of six probabilities {w}
that each holds the value of not becoming infected by strain
2 from one of these states. Specifically, there are four triangle
neighbors and two tree-like neighbors, so

{w} = {
wA

�,wB1
� ,wB2

� ,wC
�,wD

⊥,wE
⊥
}
. (15)

Similarly, there are 12 states surrounding the node in the GCC,
and so we introduce a set {v} that holds the values of the
probabilities of not becoming infected with strain 2 from these
states. Specifically, there are three states reached by tree-like
edges and nine states within the triangle motifs. Hence,

{v} = {vF
⊥, vG

⊥, vH
⊥ , vI

�, vJ
�, vK

�, vL1
� , vL2

� , vM1
� ,

× vM2
� , vN1

� , vN2
� }. (16)

We next need to write self-consistent expressions for each
of the values in {w} and {v}. Before we do this, we define two
functions that express the probability of transmission failing
through a tree-like edge, g(v, T ) = v + (1 − v)(1 − T ), and
a triangle motif

h(vμ, vν, Tμ, Tν ) = g(vμ, Tμ)g(vν, Tν )

− vμ(1 − vν )(1 − Tν )TνTμ

− vν (1 − vμ)(1 − Tμ)TμTν, (17)

with the convention that h(vμ, vμ, Tμ, Tμ) = h(vμ, Tμ). We
will insert these functions into the �x and �y vectors in the ar-
guments of the generating functions; each insertion describes
the probability that strain 2 is not contracted from a particular
motif. The probability of not getting infected by strain 2 from
the uninfected neighbor at the end of a tree-like edge is

wD
⊥ = F1,⊥/u⊥. (18a)

The probability of not contracting strain 2 from the infected
neighbor at the end of a tree-like edge is

wE
⊥ = H1,⊥/(1 − u⊥). (18b)

We now turn to the triangle probabilities
{wA

�,wB1
� ,wB2

� ,wC
�}. The probability that the uninfected focal

node does not get strain 2 from the symmetric susceptible
site is

wA
� = F1,�/u�. (18c)

The probability that the symmetric infected site does not trans-
mit to the uninfected focal node is

wC
� = H1,�/(1 − u�). (18d)

The mixed triangle follows. For the uninfected focal node, we
have the probability of not becoming infected with strain 2
from an uninfected neighbor as

wB1
� = F1,�/u�, (18e)

while for the infected site we have

wB2
� = H1,�/(1 − u�). (18f)

We now have all of the probabilities that we require to de-
scribe the local environment of the uninfected node. We now
turn to the description of the infected node in the GCC of
strain 1. The three tree-like sites, {vF

⊥, vG
⊥, vH

⊥}, are generated
as follows: the uninfected neighbor

vF
⊥ = F1,⊥/u⊥, (18g)

the externally infected neighbor

vG
⊥ = H1,⊥/(1 − u⊥), (18h)

and the directly infected neighbor

vH
⊥ = J1,⊥/u⊥. (18i)

We now require the nine triangle values
{vI

�, vJ
�, vK

�, vL1
� , vL2

� , vM1
� , vM2

� , vN1
� , vN2

� }. The probability
that an uninfected neighbor fails to transmit strain 2 through
a symmetric uninfected triangle I is

vI
� = F1,�/u�. (18j)

The probabilities that the infected focal nodes in triangles J
and K do not contract strain 2 are

vJ
� = H1,�/(1 − u�) (18k)

and

vK
� = J1,�/u�. (18l)

The mixed triangle L is given by

v
L1
� =H1,�/(1 − u�) (18m)

and

vL2
� = F1,�/u�. (18n)

Triangle M follows as

vM1
� = F1,�/u� (18o)

and

v
M2
� = J1,�/u�. (18p)

Finally, triangle N is given by

v
N1
� =H1,�/(1 − u�) (18q)

and

v
N2
� = J1,�/u�. (18r)
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(a) (b) (c) (d)

FIG. 3. The outbreak fractions for several (T2, T ′
2 ) combinations of the model all in the absence of clustering. (a) Complete cross-immunity

(T2, T ′
2 ) = (1, 0), (b) partial cross-immunity (T2, T ′

2 ) = (0.6, 0.39), (c) partial coinfection (T2, T ′
2 ) = (0.4, 0.7), and (d) perfect coinfection

(T2, T ′
2 ) = (0, 0.6). Markers are the average of 50 repeats of bond percolation over CCM networks of size N = 65 000, α = 2.0, and θ = 0;

square markers are strain 1, while circles are strain 2. Solid lines are the theoretical results of Eq. (21) for strain 2.

At this point, we have not yet written the arguments of
each generating function, �x and �y. It happens that there
are several equivalent expressions among the variables,
allowing us to reduce the dimension of the problem con-
siderably. Specifically, we notice the following redundancies
among the relations: vM1

� = vL2
� = vI

� = wB1
� = wA

�, wB2
� =

wC
� = vL1

� = vN1
� = vJ

�, wE
⊥ = vG

⊥, wD
⊥ = vF

⊥, and vK
� =

vN2
� = vM2

� . This overprescription affords a reduction in the
number of system variables to only six independent variables,
one for each of the possible neighbor nodes: uninfected, ex-
ternally infected, and directly infected for tree-like edges and
triangle motifs, respectively. Therefore, if we write the argu-
ment of each generating function F1,⊥, H1,⊥, J1,⊥, F1,�, H1,�,
and J1,� once, it is known for all occurrences of that function
in the model. Further, we observe that the only difference
between F1,τ , H1,τ , and J1,τ for τ = ⊥,� is the underlying
G1,τ function, not the argument. In other words, the arguments
of F1,⊥ and F1,�, for instance, are equivalent; we do not dis-
tinguish based on their topology. A final simplification can be
achieved by noting that the arguments of J1,τ and H1,τ are also
equivalent. Therefore, there are only two arguments to write:
one for F1,τ and another for H1,τ . These are given by �x = �ζ
and �y = �ξ , where

�ζ = {g(wD
⊥, T2), g(wE

⊥, T ′
2 ), h(wA

�, T2), h(wC
�, T ′

2 ),

× h(wB1
� ,wB2

� , T2, T ′
2 )} (19)

and

�ξ = {g(vF
⊥, T2), g(vG

⊥, T ′
2 ), g(vH

⊥ , T ′
2 ), h(vI

�, T2), h(vJ
�, T ′

2 ),

× h(vK
�, T ′

2 ), h(vL1
� , v

L2
� , T ′

2 , T2),

× h(vM1
� , vM2

� , T2, T ′
2 ), h(vN1

� , v
N2
� , T ′

2 , T ′
2 )}, (20)

which constitute vectors of probabilities that each neighbor
site fails to transmit infection to the focal node (or connect it
to the GCC). With this in place, we now have an expression
for all of the required probabilities {w} and {v}. The size of
the second outbreak over the network is then found by solving

S2 = [F0(�1) + H0(�1)] − [F0(�ζ ) + H0(�ξ )], (21)

where [F0(�1) + H0(�1)] = 1. Qualitatively, this expression is 1
minus the probability that a node obtains strain 2 from either
uninfected or infected neighbors.

V. NUMERICAL RESULTS

The results of the model under four different strain inter-
actions for tree-like networks in the absence of clustering are
shown in Fig. 3 as T1 is varied. Across the simulations, the
networks are built according to the clustered contact model
(CCM), defined in [11], which is an example of a configu-
ration model degree distribution with clustering. Power law
contact distributions are typical of those found in real-world
social networks [29]. The underlying degree distribution is
given by a power law model with exponential degree cutoff
(PLC) defined as

pPLC(k) = k−αe−k/κ

Liα (e−1/κ )
(22)

where κ is the degree cutoff, α ∈ [2, 3] is a power law ex-
ponent, and Lin(z) is the nth polylogarithm of z [26]. Each k
is then decomposed into tree degrees s and triangle degrees t
according to

pCCM(k) = pPLC(k)

k/2�∑
t=0

(
k/2�
t

)
θ t (1 − θ )
k/2�−t , (23)

where 
·� is the floor function and θ ∈ [0, 1] is the probability
of a pair of edges belonging to a triangle.

We simulate bond percolation for both strains numerically
using Monte Carlo simulations. Following strain 1, infected
nodes are labeled, and subsequent infection with strain 2 oc-
curs with probability T2 for nodes in the RG or T ′

2 for GCC
nodes.

In Fig. 3(a) we have T2 = 1 and T ′
2 = 0, a perfect cross-

immunity model [2] in which infection with strain 1 prevents
infection with strain 2. In Fig. 3(b) we relax this hard limit,
with T2 = 0.6 and T ′

2 = 0.39, to obtain a partially cross-
immune interaction whereby the transmission of strain 2 is
reduced for strain 1 infected nodes. For T1 < T1,c we observe
the steady-state of strain 2 without competition from strain 1.
At T1 = T1,c a GCC in strain 1 emerges, and the number of
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cases of strain 2 drops but does not vanish; in the limit T1 =
1 strain 2 reaches its lowest incidence rate as competition
is maximized. In Fig. 3(c) we observe a partial coinfection
model, with T2 = 0.4 and T ′

2 = 0.7. In this case, strain 2 is
facilitated by the presence of strain 1 in the network, the
symbiotic interaction leading to an increase in the incidence
of strain 2 infected nodes. Figure 3(d) shows the hard limit
of a perfect coinfection model [9] with T2 = 0 and T ′

2 = 0.6;
strain 2 cannot survive without a GCC of strain 1 present in
the network.

With an understanding of the model without clustering, we
now examine the case where θ �= 0 for both partial interaction
models with κ = 20, α = 2, and θ = 0.5 (see Fig. 4). The
epidemic threshold of strain 1 is reduced with clustering,
so too is the overall outbreak size of strain 1 at large T1

compared to unclustered networks. The incidence of strain 2
exhibits dual behavior over the range of T1. For the partial
immunity scenario [Fig. 4(a)], with T2 = 0.6 and T ′

2 = 0.4,
clustering reduces the incidence of strain 2 at low T1; however,
it increases it as T1 → 1. Conversely, for partial coinfection
[Fig. 4(b)], with T2 = 0.4 and T ′

2 = 0.7, having lowered the
epidemic threshold of strain 1, clustering causes an increase
in the incidence of strain 2 at lower T1 values compared to the
unclustered analog.

In Fig. 5 we perform a second experiment using the
degree-δ model [11,17,19]. We define a distribution in which
the degree of nodes involved in triangles is fixed to k = 3
and thus (s, t ) = (1, 1), while all other degrees are given
by Eq. (23) for (s, t ) = (k, 0). With the degree correlations
among triangles fixed, the epidemic threshold of the first
strain increases with clustering. The partial cross-immune
coupling [Fig. 5(a)], with T2 = 0.8 and T ′

2 = 0.65, no longer
exhibits a crossover in expected size of strain 1 and strain 2;
clustering reduces the incidence of strain 2 for all values of
T1. Similarly, the partial coinfection model [Fig. 5(b)], with
T2 = 0.6 and T ′

2 = 0.75, exhibits a reduced incidence of strain
2 compared to the unclustered analog. As T1 → 1, however,
the coinfection is reduced in the clustered graph compared to
the unclustered one.

VI. CONCLUSION

In this paper we have presented a general model of two
pathogens spreading sequentially over a clustered network.
The two strains can interact in a very broad manner rang-
ing from perfect coinfection, facilitating the spreading of the
subsequent strain, to perfect antagonism, competing for hosts,
and all combinations in between. Our model uses generating
functions to provide a theoretical understanding of Monte
Carlo simulations of bond percolation, showing excellent
agreement. Our model, which considers the local descriptions
of both uninfected and infected nodes simultaneously, intro-
duces a way to use generating functions to describe bond
percolation. The paradigm of describing the entire absorbing
state of the percolation equilibrium rather than the typical
approach of only the uninfected nodes will certainly prove
illuminating to many areas of epidemic spreading and network
dynamics.

Our simulations on clustered networks examined how the
dynamics of strain 2, under a partial disease interaction, were

(a)

(b)

FIG. 4. The outbreak fractions for both strains for clustered
[Eq. (23)] and unclustered networks as T1 is varied under two dis-
ease couplings: (a) partial cross-immunity (T2, T ′

2 ) = (0.6, 0.4) and
(b) partial coinfection (T2, T ′

2 ) = (0.4, 0.7). Simulations are the aver-
age of 50 repeats of bond percolation on networks with N = 35 000
and θ = 0.0, with α = 2.0 and 0.5 for the unclustered and clus-
tered networks, respectively. Solid lines are the theoretical results of
Eqs. (11) and (21). In general, clustering reduces the extent of plural
infections in the network; however, degree assortativity within the
contact topology causes a reversal of this at high (low) values of T1

in (a) [(b)].

influenced by contact topology. We found that clustering
generally reduces the prevalence of strain 2 in the network.
The magnitude of this effect is dependent on the details of
the clustering and the value of the transmissibility of strain
1. However, networks with finite degree correlations present
(due to contact clustering) were found to have greater inci-
dences of coinfection.

It is clear that this model can be reduced to purely tree-like
networks by the removal of references to triangle motifs in the
generating functions. The work herein can be generalized in
a number of ways: first, we have formulated a clear recipe to
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(a)

(b)

FIG. 5. The outbreak fractions of the degree-δ model with
clustering constrained to low degree assortativity for (a) partial im-
munity (T2, T ′

2 ) = (0.8, 0.65) and (b) partial coinfection (T2, T ′
2 ) =

(0.6, 0.75) disease interactions. Simulations are the average of 50
repeats of bond percolation on networks with N = 35 000, α = 2.0;
solid lines are the theoretical results of Eqs. (11) and (21). Clustering
reduces the fraction of the network that becomes infected by both
strains for all values of T1.

follow for the inclusion of different types of clustering, such as
higher-order cliques and cycles [30], or, indeed, custom motifs
such as those in [31]. In many cases, these subgraphs may rep-
resent social networks more accurately than the tree-triangle
model we have considered here, and thus, this extension is
important for the rationalization of disease spreading among
human populations.

As presented, the model considers sequential strains that
are temporally separated. Often, diseases spread simultane-
ously among a population. It is well known from analytical
methods based on differential equations [32,33] and sim-
ulations of SIR through, for instance, Gillespie simulation
that the initial conditions of each strain or disease greatly
influence the dominant pathogen for two otherwise sym-
metric diseases [3]. Bond percolation and the method of
generating functions inherently cannot capture the stochastic
effects of concurrent spreading due to its equilibrium-based
nature. However, previous work was conducted [3,4] to model
a mutual pathogen interaction using generating functions.
Extending our model to the study of concurrent strains
would be a significant step forward for understanding disease
spreading.

The model could be applied to multilayer clustered net-
works with some adaptation to increase the influence of
topology on the spreading and enrich the dynamics further. Or
perhaps the effects of drugs or vaccines that target particular
topologies or node sites could also be investigated.

However, perhaps the most significant future generaliza-
tion of this model is the extension to additional strains, in
other words, subsequent percolations. As we do this, the
immunological landscape becomes increasingly rich, and the
node’s infection histories become more diverse. We believe
that the best approach would be to develop an automation,
perhaps through recursion, that can write the required ex-
pressions, in a vein similar to [31]. This would allow the
exact study of an N-strain seasonal influenza model and could
also be used to discover once-a-century events (such as the
1918–1919 Spanish influenza and the COVID-19 pandemic),
along with generational evolutionary pressures and genetic
drift. We also believe that the parameters controlling disease
interactions could be matched to real-world data to understand
the relationship, symbiotic or antagonistic, between multiple
diseases as they evolve and spread.
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