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Matter waves in atomic-molecular condensates with Feshbach resonance management
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The dynamics of matter waves in the atomic to molecular condensate transition with a time-modulated atomic
scattering length is investigated. Both the cases of rapid and slow modulations are studied. In the case of rapid
modulations, the average over oscillations for the system is derived. The corresponding conditions for dynamical
suppression of the association of atoms into the molecular field, or of second-harmonic generation in nonlinear
optical systems, are obtained. For the case of slow modulations, we find resonant enhancement in the molecular
field. We then illustrate chaos in the atomic-molecular BEC system. We suggest a sequential application of the
two types of modulations, slow and rapid, when producing molecules.

DOI: 10.1103/PhysRevE.104.024222

I. INTRODUCTION

The dynamics of nonlinear waves in quadratic nonlinear
media with periodic modulations in time of the parameters
is an active area for investigations [1,2]. The interest is con-
nected with the possibility of quasi-phase-matching in such
media and the ability to control the interactions of the waves.
The main type of modulation that attracts interest is the
case of periodically poling crystals with rapid modulations
of the quadratic nonlinearity parameter along the direction of
propagation. The existence of quasi-phase-matching (QPM)
for competing nonlinearities in solitons has been shown [3],
and new types of all-optical switching [4] have been demon-
strated. Another interesting case is the periodic modulation
of mismatch parameters, which can be realized in a nonlinear
optical medium [5], or for matter waves in atomic-molecular
condensates [6].

Recently soliton dynamics in quadratic nonlinear optical
media with a Kerr nonlinearity varying along the direction
of propagation have been investigated [7]. It was shown by
numerical simulations that the resonant response of the am-
plitude oscillations of the solitons appears at the frequency
of modulations for the Kerr nonlinearity and is equal to the
frequency of modulation for the uniform phase of the solitonic
solution. A second system described by this type of model is
an atomic-molecular condensate [8–13], while varying in time
the atomic scattering length. The latter case is implemented by
the so-called Feshbach resonance management [2,11,14,15],
and it can be realized for example by a variation of an external
magnetic field near the resonance value [16].

In this work, we will investigate analytically and numer-
ically the propagation of continuous waves in a quadratic
nonlinear (χ (2)) system with an additional nonuniform cubic
(Kerr) nonlinearity.

The structure of the article is the following: In Sec. II we
describe the model for propagation of the fundamental and

second harmonics in a medium with competing cubic and
quadratic nonlinearities, where the Kerr nonlinearity can be
periodically varying along the direction of evolution. We start
with a description of the unperturbed χ (2) system with a Kerr
nonlinearity and its solution for physically valid parameters
in Sec. III. In Sec. IV we then investigate the evolution of
continuous waves in the system. We derive the average over
rapid modulations of the cubic nonlinearity in the direction
of evolution. In Sec. V we study in detail the correspond-
ing management, and the efficiency in the generation of the
second harmonic (the molecular field) is investigated. We
further investigate resonances in a χ (2) system with periodic
Kerr nonlinearity in the case of slow modulations in Sec. VI.
Finally, in Sec. VII we conclude the study.

II. THE MODEL

The system, describing the propagation of the fundamental
harmonics (FH) and second harmonics (SH) in a quadratic
nonlinear medium with a cubic nonlinearity, has in standard
optics dimensionless variables the form [1]

iuz + uxx + γ (z)|u|2u + u∗v = 0,

ivz + 1

2
vxx + qv + u2

2
= 0. (1)

Here u, v are the fields of the FH and the SH, respectively. For
an atomic-molecular BEC system, they are instead the atomic
and molecular fields [8]. In optics, Kerr nonlinearities may
also be included in the second harmonics and for the cross
terms [17]. Below we will consider the model (1), keeping in
mind mainly the atomic-molecular BEC system.

The related system of coupled Gross-Pitaevskii-like equa-
tions with conversion terms describing the atomic-molecular
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BEC is in physical units

ih̄ψa,T = − h̄2

2ma
ψa,XX +

∑
j=a,m

ga j |ψ j |2ψa − h̄Gamψ∗
a ψm,

ih̄ψm,T = − h̄2

2mm
ψm,XX + h̄δωψm

+
∑

j=a,m

gjm|ψ j |2ψm − h̄Gam
ψ2

a

2
, (2)

where mm = 2ma are the masses, h̄δω is the energy detuning,
gaa, gmm, gam, and Gam are one-dimensional parameters for
the atom-atom, molecule-molecule, and the atom-molecule
interactions [13], with (e.g.) gaa = 2h̄ω⊥as, where (e.g.) as

is the atomic scattering length, and ω⊥ is a strong enough
transverse trapping frequency for the system to be quasi-one-
dimensional [18]. Finally, the parameter Gam is the strength
of the atom-molecule conversion, while effects of elastic col-
lisions involving molecules, i.e., gmm and gam in Eq. (2), will
be neglected here [13].

The dimensionless form, i.e., Eqs. (1), is obtained by the
following change of variables in the system (2):

z = T ω⊥, x =
√

2X

la
, la =

√
h̄

maω⊥
,

u = Gam

ω⊥
ψa, v = Gam

ω⊥
ψm, γ = −ω⊥gaa

h̄G2
am

, q = − δω

ω⊥
.

Time-dependent variations of the atomic scattering length as

and therefore the parameter γ can be obtained as mentioned
before, by the variations in time of an external magnetic field
near a resonant value, the so-called Feshbach resonance man-
agement technique [19–23]. Solitons in an atomic-molecular
BEC system with adiabatically tunable interactions were in-
vestigated recently in [24].

In this work, we will investigate rapid and slow periodic
variations of the cubic nonlinearity. The modulations are taken
in the form

γ = γ0 + γ1 cos(ωz), (3)

where ω is a dimensionless driving frequency. The strong
management case corresponds to γ1 ∼ ω ∼ 1/ε, ε � 1. The
weak management case corresponds to γ1 ∼ O(1), ω ∼ 1/ε.
To study the dynamics in the case of rapid modulations, we
will derive the averaged equations. For slow modulations, we
will pay special attention to the case of resonant modulations,
i.e., when the frequency of the modulation ω is equal to the
frequency for the transformation of the FH into the SH and
vice versa.

III. DESCRIPTION OF THE UNPERTURBED χ(2)

SYSTEM WITH KERR NONLINEARITY

In this section, we consider the unperturbed system of
Eq. (1) describing propagation of continuous waves (CW)
(uxx = vxx = 0), i.e., with γ0 �= 0 and γ1 = 0. The dynamical
behavior of such a system without cubic nonlinearity was
studied by Bang et al., who explored stationary solutions and
self-trapping in a discrete quadratic nonlinear system [25], and

also with quasi-phase-matching induced nonlinearity, investi-
gated in [4]. In atomic-molecular BEC systems, the properties
of homogeneous solutions in the case when atom-atom and
atom-molecule interactions are neglected were considered in
[26].

We apply conventional normalizations for the amplitudes,
the direction of amplitudes, and the mismatch, as

u =
√

Iρeiφ, v =
√

Iμeiψ, Z = z/L, κ = qL/2,

(4)

where I = |u|2 + 2|v|2 is the conserved total intensity (i.e.,
ρ2 + 2μ2 = 1). For the atomic-molecular BEC system, it has
the interpretation of the total number of particles.

After inserting the normalizations into Eq. (1), the system
of differential equations takes the following form in the new
variables:

iρZ − ρφZ + L
√

Iρμe−i(2φ−ψ ) + LIγ0ρ
3 = 0,

iμZ − μψZ + 2κμ + L

√
I

2
ρ2ei(2φ−ψ ) = 0. (5)

By defining the parameters β = L
√

I , ϒ = LIγ0, and θ =
2φ − ψ , and separating the real and imaginary parts, we get
the following expressions for the amplitudes and phase:

ρZ = βρμ sin θ, μZ = −β

2
ρ2 sin θ, (6)

and

θZ = 2φZ − ψZ = −2κ + 2ϒρ2 +
(

2βμ − βρ2

2μ

)
cos θ.

(7)

By defining the parameters λ = ϒ/β, σ = κ/β, and w = μ2,
we can derive a Hamiltonian system with two conjugate de-
grees of freedom,

ẇ = −(1 − 2w)
√

w sin(θ ) = ∂H

∂θ
, (8)

θ̇ = −2σ + 2λ(1 − 2w) −
(

1 − 6w

2
√

w

)
cos(θ ) = −∂H

∂w
,

(9)

where an overdot denotes differentiation with respect to
ξ = βZ , and H is given by

H = 2σw − 2λ(w − w2) + (1 − 2w)
√

w cos(θ ). (10)

Applying the identity sin2(θ ) + cos2(θ ) = 1 to Eqs. (8)
and (9), these equations can be written in the form of a single
differential equation for the relative intensity, w, of the second
harmonic,

ẇ2 + P(w) = 0, (11)

which is equivalent to the dynamical equation describing a
classical particle moving in a potential P(w). The potential
P(w) is in the form of a quartic polynomial,

P(w) = D2w4 − 4(1 + DC)w3 + 4
(
1 − 1

2 HD + C2
)
w2

− (1 − 4HC)w + H2, (12)

where C = λ − σ and D = 2λ.
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FIG. 1. (Upper) Regions of the (σ, H ) plane in which the quartic
equation P(w) = 0 given by Eq. (12) has four real roots, region
A (green); two real roots (white region); and no real root, region
B (red). Large (black) dots on the line (L) indicate separatrices in
the phase space, when two of the four roots are equal. (Lower)
The potential and corresponding phase space for the two (black)
squares at different regions in the (σ, H ) plane (see the upper part).
The values are σ = 0.2, H = −0.8 for (a), and σ = 0.2, H = −0.5
for (b).

In Fig. 1 (upper), a classification of the roots of the quartic
equation P(w) in the (σ, H) plane with λ = 2 is illustrated.
In the upper left shaded (green) region (A), P = 0 has four
real positive roots. In the bottom right shaded (red) region (B),
there are four complex roots. Finally, there are two complex
and two real roots in the white regions. Large (black) points
on the line (L) correspond to the case with four real roots,
of which two are equal. Such a (black) point corresponds to
a separatrix in the phase space, which describes a complete
transformation from the power of the FH into the SH [case
(a)]. The potential P(w) and its corresponding phase portraits
are shown in Fig. 1 (lower) for σ = 0.2 and two different
values of H , corresponding to each regions in the (σ, H )
plane. In general, Eq. (11) has solutions in the physically valid
regions, the upper left (A) region, and at the large (black)
dots on the line (L). In the physical region (A) of the (σ, H )
plane, Eq. (11) has a solution w(ξ ) which is a periodic func-
tion, determined by the four real roots w0 < w1 < w2 < w3,
which oscillates between the two lowest roots w0 and w1.

The solution can be explicitly obtained by integrating Eq. (11)
according to [27]

ξ =
∫ ξ

0
d� =

∫ w(ξ )

0

dW

±√−P(W )

= 1

±D

∫ w(ξ )

0

dW√
(W − w3)(W − w2)(W − w1)(W − w0)

= ± 1

ND
sn−1

[√
(w3 − w1)(w − w0)

(w1 − w0)(w3 − w)
|k

]
, (13)

where sn(.|.) is a Jacobi elliptic function. Hence, we have the
following solution from Eq. (13):

w(ξ ) = w3asn2(rξ |k) + w0

asn2(rξ |k) + 1
, (14)

where

r = ND = λ
√

(w3 − w1)(w2 − w0),

and

k =
√

(w3 − w2)(w1 − w0)

(w3 − w1)(w2 − w0)
, a = w1 − w0

w3 − w1
.

IV. AVERAGED EQUATIONS FOR STRONG
MANAGEMENT

In the case of rapid modulations for a strong management
case, we consider modulations of the cubic nonlinearity of the
form

γ = γ0 + γ1 f (ζ ) = γ0 + 1

ε
f

(
z

ε

)
,

where f is a periodic function of ζ = z/ε, and ε ∼ 1/ω �
1. Our goal is to derive the corresponding average over the
rapid modulation of the system (1). We will use the following
transformation to a new field for the FH:

u = ūeiΓ (z)|ū|2 , v = v̄, (15)

where �(z) is the antiderivative of γ1 f (z), i.e., �z =
γ1 cos(ωz); see Eq. (3). This transformation allow us to
exclude strong rapidly varying terms from the mean-field
equations [28,29]. We study here the propagation of con-
tinuous waves, i.e., when uxx = vxx = 0, in a media with a
periodically varying Kerr nonlinearity. Substituting Eq. (15)
into Eqs. (1), we obtain

iūze
iΓ (z)|ū|2 − Γ (z)|ū|2z ūeiΓ (z)|ū|2 + ū∗v̄e−iΓ (z)|ū|2

+ γ0|ū|2ūeiΓ (z)|ū|2 = 0,

iv̄z + qv̄ + ū2

2
ei2Γ (z)|ū|2 = 0. (16)

From Eqs. (1) we also have

i|ū|2z = u2v∗ − u∗2
v = ū2ei2Γ (z)|ū|2 v̄∗ − ū∗2e−i2Γ (z)|ū|2 v̄,

(17)
such that Eqs. (16) take the form

iūz − iΓ (z)ū(ū∗2e−i2Γ (z)|ū|2 v̄ − ū2ei2Γ (z)|ū|2 v̄∗)

+ ū∗v̄e−i2Γ (z)|ū|2 + γ0|ū|2ū = 0,

iv̄z + qv̄ + ū2

2
ei2Γ (z)|ū|2 = 0. (18)
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To obtain an averaged system, we average over the period
� = 2π/ω for the rapid oscillations of Eq. (3), using the
relations

〈
e−i2Γ (z)|ū|2 〉 = 1

�

∫ �

0
e−i2Γ (z)|ū|2 dz = J0

(
2γ1

ω
|ū|2

)
,

〈
Γ (z)e±i2Γ (z)|ū|2 〉 = 1

�

∫ �

0
Γ (z)ei2Γ (z)|ū|2 dz

= ±i
γ1

ω
J1

(
2γ1

ω
|ū|2

)
,

where Ji(.), i = 0, 1 are the zero- and first-order Bessel func-
tions. After inserting the averaged terms into Eqs. (18), we
obtain the following system of averaged coupled equations for
the FH and SH:

iūz − γ1

ω
J1

(
2γ1

ω
|ū|2

)
ū(ū2v̄∗ + ū∗2v̄)

+ ū∗v̄J0

(
2γ1

ω
|ū|2

)
+ γ0|ū|2ū = 0,

iv̄z + qv̄ + ū2

2
J0

(
2γ1

ω
|ū|2

)
= 0. (19)

The Hamiltonian of the above averaged system, i.e.,

iūz = − ∂H

∂ ū∗ , iv̄z = − ∂H

∂ v̄∗ ,

is then

H = γ0

2
|ū|4 + q|v̄|2 + 1

2
J0

(
2γ1

ω
|ū|2

)
(ū2v̄∗ + ū∗2v̄). (20)

From the above equation, we conclude the important result
that the Hamiltonian have the same form as the standard
χ (2) system [1], but with a renormalized effective quadratic
nonlinearity parameter

χeff = J0

(
2γ1

ω
|ū|2

)
. (21)

Note that the renormalization depends nonlinearly on the in-
tensity of the FH field. For atomic-molecular BEC systems,
it means that the renormalized atom-molecular interaction
depends nonlinearly on the atomic population.

It has previously been shown that periodic mismatch q(z),
and quadratic susceptibility χ (2)(z), can lead to zero effective
quadratic interactions, dependent on the ratio of modulation
amplitudes and the frequency [30,31]. Here the modulations
of the cubic nonlinearity can lead to a weakening of the
effective quadratic interaction, i.e., Eq. (21). A new effect seen
here is that in the condition for a vanishing effective coupling
(χeff = 0), which means a zero of the Bessel function, the
intensity of the fundamental harmonic (atomic population) is
a factor.

To first check the validity of the above-presented process,
the original equations (1) and the corresponding averaged
equations (19) have been solved numerically. The results con-
firm good agreement for the averaging process, shown for two
different examples of initial conditions in Fig. 2.

FIG. 2. Comparison of solutions from the original and the
averaged equations. Numerical solutions of Eq. (1), solid (red)
curves and of Eq. (19), dashed (black) curves. Parameters were
set to γ0 = 1, γ1 = 20, ω = 30, and q = 0.1, with initial condi-
tions u(0) = ū(0) = 1, v(0) = v̄(0) = 0 (upper) and u(0) = ū(0) =√

0.6 exp (iφ), v(0) = v̄(0) = √
0.2 exp (iψ ) (lower), where φ = 0

and ψ = π

2 .

V. EVOLUTION OF CW UNDER MANAGEMENT
WITH RAPID OSCILLATIONS

In this section, we consider the above case of rapid mod-
ulations and obtain an equation for the intensity of the SH,
i.e., |v̄|2, using Eqs. (19) and the averaged Hamiltonian (20).
To simplify the presentation, we apply the normalizations
(4) for the amplitudes, the direction of propagation, and the
mismatch. After applying the normalizations above, Eq. (19)
takes the following form in the new variables:

iρZ − ρφZ + L
γ1

ω
I
√

Iρ3μJ1

(
2γ1

ω
Iρ2

)
(ei(2φ−ψ )+e−i(2φ−ψ ) )

+ L
√

IρμJ0

(
2γ1

ω
Iρ2

)
e−i(2φ−ψ ) + LIγ0ρ

3 = 0,

iμZ − μψZ + 2κμ + L

√
I

2
ρ2J0

(
2γ1

ω
Iρ2

)
ei(2φ−ψ ) = 0.

(22)
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FIG. 3. Potential energy and phase portraits, from Eq. (26). Up-
per and lower figures, (left) plots for the cases without modulation
(G = 0), and (right) with modulation (G = 4.5). All other parame-
ters and the Hamiltonian are the same for the four figures: λ = 1,
σ = 0.1, and H = −0.3107.

Setting G = 2γ1I/ω, β = L
√

I , ϒ = LIγ0, and θ = 2φ − ψ ,
we have

iρZ − ρφZ + βGJ1(Gρ2)ρ3μ cos θ

+βJ0(Gρ2)ρμe−iθ + ϒρ3 = 0,

iμZ − μψZ + 2κμ + β

2
J0(Gρ2)ρ2eiθ = 0. (23)

Splitting Eqs. (23) into real and imaginary parts, setting each
part separately equal to zero, we finally have

ρZ = βJ0(Gρ2)ρμ sin θ, μZ = −β

2
J0(Gρ2)ρ2 sin θ,

(24)
and

θZ = 2φZ − ψZ = −2κ + 2ϒρ2

+
(

(2βμ − βρ2

2μ
)J0(Gρ2) + 2βGρ2μJ1(Gρ2)

)
cos θ.

(25)

Equations (24) and (25) conserve the total intensity ρ2 +
2μ2 = 1, and also the quantity H = 2κμ2 − 2ϒ(μ2 − μ4) +
βJ0(Gρ2)ρ2μ cos θ , which is related to the Hamiltonian of
the system. It is evident from Eqs. (24) and (25) that the
phase evolution is determined by an interplay among periodic
modulation (G, ϒ) and phase mismatch (β). Hence, it is con-
venient to introduce the parameters σ = κ/β = q/(2

√
I ) and

λ = ϒ/β = γ0

√
I , which depend on the total intensity. From

Eqs. (24) and (25) we can obtain the differential equation
ẇ = ±√

f (w), where w = μ2 is the relative intensity of the

FIG. 4. Phase portraits corresponding to Eq. (28) for G < G0

(upper) and G � G0 (lower), where G0 � 2.405 is the first zero of the
Bessel function J0. In the upper portrait, the 12 curves correspond to
σ = 0 (solid) and σ = 0.10 (dashed). In the lower portrait, the four
curves correspond to σ = 0. The inset legends show the values for G
for the curves 1, 2, . . . in both portraits.

SH wave and f (w) can be considered as a potential P(w), as
in Eq. (11), but with a different form

P(w) = [H − 2σw + 2λ(w − w2)]2

− J2
0 [G(1 − 2w)](1 − 2w)2w = 0. (26)

In Fig. 3 the potential P(w) of (26) and the corresponding
phase portraits are depicted in the case without modulation
(G = 0) (left column) and with modulation (G = 4.5) (right
column). We observe that the bifurcation center-node occurs
when the parameter G is changed. The simulation of the
original system (1) confirms this observation.

In what follows, we focus on the relevant case without an
initial SH wave [i.e., μ(0) = 0], or in the atomic-molecular
BEC system, no molecules initially. We then have H = 0, and
we obtain the following expression for f (w):

ẇ =
√

f (w) =
√

J2
0 [G(1 − 2w)](1 − 2w)2w − 4λ2w4 + 8λ(λ − σ )w3 − 4(λ − σ )2w2, (27)

where we remind the reader that an overdot denotes differentiation with respect to ξ = βZ . We now assume that λ = 0 (γ0 = 0)
and then Eq. (27) takes the following form:

ẇ =
√

f (w) =
√

J2
0 [G(1 − 2w)](1 − 2w)2w − 4σ 2w2. (28)
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FIG. 5. Numerical evolution from Eq. (28) for the intensities
corresponding to the case G = 2 (upper) and G = 4 (lower), with
σ = 0.1 in both cases, and the initial conditions μ(0) = 0, ρ(0) = 1.
The solid (blue) curves show the relative intensity of the FH wave
(ρ2), and the dashed (red) curves show the relative intensity of the
SH wave (μ2). In the original equations, these parameters correspond
to γ1/ω = G/(2I ) and q = 2σ

√
I , where I = 1.

Equation (28) is valid when the following condition is
fulfilled:

|J0[G(1 − 2w)](1 − 2w)| � |2σ
√

w|. (29)

Figure 4 shows phase portraits obtained numerically from
Eq. (28), and Fig. 5 shows the numerical results of integrating
Eq. (28), i.e., the relative intensities, w(z) = μ2 = |v̄|2/I and
1 − 2w(z) = ρ2 = |ū|2/I . We further calculated numerically
the percentage of the intensity of the SH wave, with respect
to the total intensity, for different values of the parameters σ

and G, see Fig. 6 (upper), while Fig. 6 (lower) illustrates the
regions of parameters corresponding to 2μ2 � 0.8 (region A)
and 2μ2 < 0.8 (region B).

Let us finally comment that in the case of rapid modu-
lations, but with weak management 2γ1|ū|2/ω � 1, similar
expressions for the intensities can be obtained by applying
Taylor approximations to the Bessel functions J0 and J1 in
Eqs. (19).

VI. DYNAMICS FOR SLOW MODULATION

Let us finally study the dynamics of the system under slow
resonant modulations. By choosing parameters so that k � 1

FIG. 6. Ratio of the intensity of the SH wave and the total in-
tensity (upper), as a function of q (q = 2σ

√
I), for different values

of G (G = 2γ1I/ω); see the inset legend. Illustrative regions in the
parameter plane (σ, G) obtained from the condition (29) (lower),
where G0 � 2.405 is the first zero of the Bessel function J0. More
than 80% transformation of the energy defines region A, and less
than 80% transformation defines region B.

and a � 1 in the solution (14), we can write Eq. (14) in the
following approximative form:

w(ξ ) ≈ w3a sin2(rξ ) = w3a

2
[1 − cos(2rξ )]. (30)

To check the resonant behavior in the FH to SH oscilla-
tions, we take the frequency for the modulation of the cubic
(Kerr) nonlinearity to be equal to the frequency of Eq. (30),
i.e., ω = 2r. Results of the numerical integration are shown in
Fig. 7. We observe resonant enhancement for the amplitude of
the oscillations for the second-harmonic (the molecular field)
generation, which is growing with γ1.

Resonance and chaos in the second-harmonic genera-
tion when the mismatch q is a periodic function of z has
been shown in Ref. [5]. Chaotic oscillations originating from
homoclinic crossing [32,33] are also possible here. To inves-
tigate possible chaotic regimes of oscillations, we calculate
the Melnikov function [32] for the particular case γ0 = 0
(corresponding to a periodic Feshbach resonance management
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FIG. 7. Numerically calculated intensity of the SH wave for
resonant modulations, from Eq. (1). Dashed (blue) curves show
oscillations of the SH wave in the case where the modulation is
absent (γ1 = 0). Solid (red) curves show resonance behavior when
the frequency (ω) of modulations for the cubic (Kerr) nonlinear-
ity is equal to the frequency (2r) of oscillations for the SH wave
without modulation. For the upper graph γ1 = 0.2, and for the
lower graph γ1 = 0.4. The other parameters were ω = 2r ≈ 3.95,
γ0 = 2, q = 0.2, and I = 1 (w0 = 0.0, w1 = 0.060 90, w2 = 0.7878,
w3 = 1.3011).

close to zero in the atomic scattering length),

M(z0) =
∫ ∞

−∞

(
∂H0

∂w

∂HI

∂θ
− ∂HI

∂w

∂H0

∂θ

)
dz, (31)

where

H0 = 2σw + (1 − 2w)
√

w cos(θ ),

HI = −2γ1 cos(ωz)(w − w2).

The integral is calculated on the separatrix solution of the un-
perturbed problem (γ1 = q = 0) with θ = ±π

2 , sin(θ ) = ±1,
i.e.,

ρ(z) = sech

(
z + z0√

2

)
, μ(z) = 1√

2
tanh

(
z + z0√

2

)
. (32)

The result for the Melnikov function (31) is

M(z0) = −πγ1

3

ω2(2 + ω2)

sinh
(

πω√
2

) sin(ωz0). (33)

FIG. 8. Numerically calculated intensity of the SH wave for
strong resonant modulations, from Eq. (1). For example, for the case
of γ1 = 5 (upper) and γ1 = 6 (lower), chaos occurs. All the other
parameters are the same as in Fig. 7.

Since the Melnikov function above has an infinite number of
zeros, chaos in the harmonic generation is expected to occur
[32]. This is also found numerically; see Fig. 8.

VII. CONCLUSION

In this paper, we have investigated the process of wave
propagation in quadratic nonlinear media with an additional
Kerr nonlinearity. Such systems can be realized in nonlinear
optics and with atomic-molecular BECs. The Kerr nonlinear-
ity is assumed to be periodically modulated in the direction
of evolution. We studied the cases of both rapid and slow
variations on the SH generation (the molecular field in the
case of atomic-molecular BECs), and the transformation into
the FH (the atomic field). We have derived the average over
rapid modulations for the χ (2) system with a competing Kerr
nonlinearity. The obtained Hamiltonian for the averaged sys-
tem shows that the result for rapid modulations of the Kerr
nonlinearity leads to a nonlinear renormalization of the χ (2)

nonlinearity coefficient. As a result, we have obtained the
parameters of modulations for which the SH generation (the
association of atoms into a molecular condensate) can be
suppressed dynamically. For the case of slow modulations,
we find an enhancement of the SH generation (the molec-
ular field) for the resonant value of the frequency for the
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modulations of the nonlinearity, which for strong amplitudes
are chaotic. A sequential application of enhancing and sup-

pressing modulations may be used in producing molecules
from atoms.
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